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This paper presents the most thorough study to date of vehicular carrier-phase differential GNSS (CDGNSS) positioning
performance in a deep urban setting unaided by complementary sensors. Using data captured during approximately 2 hours
of driving in and around the dense urban center of Austin, TX, a CDGNSS system is demonstrated to achieve 17-cm-accurate 3D
urban positioning (95% probability) with solution availability greater than 87%. The results are achieved without any aiding by
inertial, electro-optical, or odometry sensors. Development and evaluation of the unaided GNSS-based precise positioning system
is a key milestone toward the overall goal of combining precise GNSS, vision, radar, and inertial sensing for all-weather high-
integrity high-absolute-accuracy positioning for automated and connected vehicles. The system described and evaluated herein is
composed of a densely-spaced reference network, a software-defined GNSS receiver, and a real-time kinematic (RTK) positioning
engine. A performance sensitivity analysis reveals that navigation data wipeoff for fully-modulated GNSS signals and a dense
reference network are key to high-performance urban RTK positioning. A comparison with existing unaided systems for urban
GNSS processing indicates that the proposed system has significantly greater availability or accuracy.

Index Terms—urban vehicular positioning; CDGNSS; low-cost RTK positioning.

I. INTRODUCTION

FUTURE Vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) connectivity will permit vehicles

to relay their positions and velocities to each other with
millisecond latency, enabling tight coordinated platooning
and efficient intersection management. More ambitiously,
broadband V2V and V2I enabled by 5G wireless networks
will permit vehicles to share unprocessed or lightly-processed
sensor data. Ad hoc networks of vehicles and infrastructure
will then function as a single sensing organism. The risk
of collisions, especially with pedestrians and cyclists—
notoriously unpredictable and much harder to sense reliably
than vehicles—will be significantly reduced as vehicles and
infrastructure contribute sensor data from multiple vantage
points to build a blind-spot-free model of their surroundings.

Such collaborative sensing and traffic coordination requires
vehicles to know and share their own position. How accu-
rately? The proposed Dedicated Short Range Communications
(DSRC) basic safety message, a first step in V2V coordination,
does not yet define a position accuracy requirement, effec-
tively accepting whatever accuracy a standard GNSS receiver
provides [1]. But automated intersection management [2],
tight-formation platooning, and unified processing of sensor
data—all involving vehicles of different makes that may not
share a common map—will be greatly facilitated by globally-
referenced positioning with sub-30-cm accuracy.

Poor weather also motivates high-accuracy absolute po-
sitioning. Every automated vehicle initiative of which the
present authors are aware depends crucially on lidar or cam-
eras for fine-grained positioning within their local environ-
ment. But these sensing modalities perform poorly in low-
visibility conditions such as a snowy whiteout, dense fog,
or heavy rain. Moreover, high-definition 3D maps created

with lidar and camera data, maps that have proven crucial to
recent progress in reliable vehicle automation, can be rendered
dangerously obsolete by a single snowstorm, leaving vehicles
who rely on such maps for positioning no option but to fall
back on GNSS and radar to navigate a snow-covered roadway
in low-visibility conditions. When, as is often the case on
rural roads, such snowy surroundings offer few radar-reflective
landmarks, radar too becomes useless. GNSS receivers operate
well in all weather conditions, but only a highly accurate
GNSS solution, e.g., one whose absolute errors remain under
30 cm 95% of the time, could prevent a vehicle’s drifting onto
a snow-covered road’s soft shoulder. Code- and Doppler-based
GNSS solutions can be asymptotically accurate (averaged over
many sessions) to better than 50 cm, which may be adequate
for digital mapping [3], but they will find it challenging to meet
a 30 cm 95% stand-alone requirement, even with modernized
GNSS offering wideband signals at multiple frequencies.

Carrier-phase-based GNSS positioning—also referred to
as precise GNSS positioning even though it actually offers
absolute accuracy, not just precision (repeatability)—can meet
the most demanding accuracy requirements envisioned for
automated and connected vehicles, but has historically been
either too expensive or too fragile, except in open areas with a
clear view of the overhead satellites, for widespread adoption.
Coupling a carrier-phase differential GNSS (CDGNSS) re-
ceiver with a tactical grade inertial sensor, as in [4]–[7] enables
robust high-accuracy positioning even during the extended
signal outages common in dense urban areas. But GNSS-
inertial systems with tactical-grade inertial measurement units
(IMUs) cost tens of thousands of dollars and have proven
stubbornly resistant to commoditization. Coupling a GNSS
receiver with automotive- or industrial-grade IMUs is much
more economical, and significantly improves performance, as
shown in [8]. But such coupling only allows approximately 5

Copyright c© 2020 by Todd Humphreys, Matthew Murrian,
and Lakshay Narula

Preprint of the 2020 IEEE ITS Magazine



seconds of complete GNSS signal blockage before the IMU no
longer offers a useful constraint for so-called integer ambiguity
resolution [9], which underpins the fastest, most accurate,
and most robust CDGNSS techniques, namely, single-baseline
RTK, network RTK, and PPP-RTK [10], [11].

Previous research has suggested an inexpensive technique
for robustifying RTK positioning: tightly coupling carrier-
phase-based GNSS positioning with inertial sensing and vision
[12], [13]. Such coupling takes advantage of the remarkable
progress in high-resolution, low-cost cameras within the in-
tensely competitive smartphone market. The current authors
are engaged in developing a high-integrity RTK-vision system
for high-accuracy vehicular positioning in rural and urban
environments. Further coupling with radar will make the
system robust to low-visibility conditions.

As a step toward this goal, it is of interest to evaluate the
performance of stand-alone RTK techniques—those unaided
by IMUs, odometry, or vision—in urban environments. Such
a study will reveal why and when aiding is necessary, and
how an RTK positioning system might behave if aiding were
somehow impaired or unavailable, whether due to sensor faults
or, in the case of exclusive visual aiding, poor visibility
conditions.

Little prior work has explored unaided vehicular RTK
performance in urban environments, no doubt because per-
formance results have historically been dismal. Short-baseline
RTK experiments between two vehicles in [14] revealed that
multi-frequency (L1-L2) GPS and Glonass RTK yielded poor
results in residential and urban environments. Only along a
mountain highway with a relatively clear view of the sky was
availability greater than 90% and accuracy better than 30 cm.
RTK positioning in downtown Calgary was disastrous, with
less than 60% solution availability and RMS errors exceeding
9 meters.

More recently, Li et al. [8] have shown that, with the benefit
of greater signal availability, unaided professional-grade dual-
frequency GPS + BDS + GLONASS RTK can achieve correct
integer fixing rates of 76.7% on a 1-hour drive along an urban
route in Wuhan, China. But Li et al. do not provide data on
the incorrect fixing rate, nor a full error distribution, so the
significance of their results is difficult to assess.

Recent urban RTK testing by Jackson et al. [15] indi-
cates that no low-to-mid-range consumer RTK solution offers
greater than 35% fixed (integer-resolved) solution availability
in urban areas, despite a dense reference network and dual-
frequency capability. A key failing of existing receivers ap-
pears to be their slow recovery after passing under bridges or
overpasses.

This paper describes and evaluates an unaided RTK posi-
tioning system that has been designed for vehicular operation
in both rural and urban environments. Preliminary perfor-
mance results were published in a conference version of this
paper [16]. The current paper improves on the conference ver-
sion in four ways: (1) the test route is both more challenging
and more comprehensive, (2) a proper independent ground
truth trajectory is used as the basis of error evaluation, (3) data
modulation wipeoff for improved carrier tracking robustness
is applied not only on GPS L1 C/A signals, as previously, but

now also on SBAS L1 signals, and (4) the performance benefit
of vehicle GNSS antenna calibration is assessed.

This paper’s primary contributions are (i) a demonstration
of the performance that can be achieved with a low-cost
software-defined unaided RTK GNSS platform in a dense
urban environment, and (ii) an evaluation of the relative
importance of various factors (e.g., data bit wipeoff, age of
reference data, rover antenna calibration, reference network
density) to the overall system performance.

To stimulate further innovation in urban precise position-
ing, all data from this paper’s urban driving campaign have
been posted at http://radionavlab.ae.utexas.edu under “Public
Datasets,” including wideband (10 MHz) intermediate fre-
quency samples from both the reference and rover antennas,
RINEX-formatted rover and reference observables, and the
ground truth trajectory.

II. CHALLENGES OF MOBILE PRECISE POSITIONING IN
URBAN ENVIRONMENTS

The mobile urban satellite-to-user channel is distinguished
by rapid channel evolution. As the vehicle travels along streets
closely lined with tall buildings, only glimpses of power
are available from signals arriving from directions roughly
perpendicular to the roadway. A GNSS receiver designed to
provide phase-locked carrier measurements for RTK position-
ing in such environments must simultaneously (1) prevent
frequency unlock during the deep fades caused by building
occlusions, and (2) exploit momentary signal availability by
immediately acquiring full-cycle phase lock and indicating this
to downstream processing.

Tracking in the mobile urban channel is unlike indoor
or weak-signal tracking, such as explored in [17], [18], in
that the urban fading environment is substantially binary:
either the line-of-sight signal is present at a fairly healthy
carrier-to-noise ratio C/N0, or it is hopelessly attenuated after
passing through entire buildings constructed of concrete, steel,
and glass. The traditional weak-signal-tracking technique of
extending the signal integration time and lowering the tracking
loop bandwidths can be useful to slow the rate of frequency
unlock during such fading, but not for actually recovering
a weak signal from the noise. There is simply no signal to
recover.

Fig. 1 illustrates this fact. The initial disturbance at 950
seconds is due to an overhead traffic light. This is followed in
rapid succession by a complete signal blockage due to a tall
building on the south side of the east-west street, a brief (four-
second) interval of clear satellite availability as the receiver
catches a glimpse of the signal between two buildings, and
another signal eclipse by a second building.

A GNSS receiver designed for urban tracking will make full
use of such between-building glimpses. This requires immedi-
ate (within approximately 100 ms) recovery of full-cycle phase
lock, which is only possible on suppressed-carrier signals
like GPS L1 C/A if the receiver can accurately predict the
modulating data symbols. Downstream RTK processing must
also be poised to exploit signal glimpses by identifying and
rejecting observables from blocked or otherwise compromised
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Fig. 1. In-phase (green, top) and quadrature (blue, bottom) 10-ms complex
correlation products for a GPS L1 C/A signal at 35 degrees elevation arriving
from the south to a vehicle traveling west on an urban roadway. The 20-
ms LNAV navigation data bits have been wiped off to allow full carrier cycle
recovery. Rapid fading—and rapid recovery—occur as buildings intermittently
block the signal.

signals, and by immediately re-evaluating the corresponding
integer ambiguities when signals reappear. A multi-stage cycle
slip detection and recovery technique, such as proposed in
[19], is too slow for urban positioning.

A related hallmark of the urban mobile channel is the wide
and rapid variation of the number of signals available for
RTK positioning. The number NDD of double-difference (DD)
signals (each one providing a DD pseudorange and a DD
carrier phase observable) varies widely whenever the vehicle
is moving. The implication for RTK processing is that integer
ambiguity continuity will often be lost, requiring rapid and
continuous re-estimation of ambiguities.

III. SYSTEM DESCRIPTION

A. Overview

GNSS components of this paper’s precise positioning sys-
tem are shown in Fig. 2. The sub-components enclosed in
the gray box are the target of the present work’s optimization
efforts for good performance in urban environments.

Two rover antennas feed analog signals to a radio frequency
(RF) front end, which down-mixes and digitizes the signals,
producing a stream of intermediate frequency (IF) samples.
The RF front end used in the present work produces samples at
10 MHz for two antennas and two frequencies: a band centered
at GPS L1 and one centered at GPS L2. The (single-sided)
analog bandwidth of each band is 4 MHz—wide enough to
capture over 90% of the power in the GPS L1 C/A, Galileo
E1 BOC(1,1), and GPS L2C signals.

Four IF sample streams, one for each antenna and band,
are fed to PpRx, an embeddable multi-frequency software-
defined GNSS receiver developed primarily at The University
of Texas [20]–[22]. PpRx draws ephemeris data, GPS LNAV
and SBAS (WAAS) data bit estimates from the Longhorn
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solutionIF samples
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Fig. 2. The University of Texas precise positioning system.

Dense Reference Network (LDRN), a set of 8 GNSS reference
stations deployed in Austin, TX. Each reference station in the
LDRN runs a strict-real-time variant of PpRx and sends its
data to a central network server from which any compatible
receiver can draw assistance data and network observables.

PpRx feeds code and carrier observables, and other useful
signal information, to an RTK engine called PpEngine. For the
results presented in this paper, PpEngine draws observables
and ephemeris data from a single LDRN reference station at
a time—the traditional RTK topology. The precise solution
produced by PpEngine is a fixed (integer-resolved) or float
solution depending on the results of an integer aperture test
[23].

B. Performance Metrics

The performance of precise positioning systems in safety-
of-life applications is assessed in terms of integrity, accuracy,
and availability [24], [25]. For several emerging applications
of practical interest, such as automated and connected vehicles,
no regulatory body has set clear positioning performance
requirements. An industry consensus appears to be emerging
which calls for a 95% accuracy requirement of 30 cm, but it
is not clear what the associated integrity risk or continuity
requirements should be. It is likely that the U.S. National
Highway Traffic Safety Administration, and other regulatory
bodies worldwide, will eventually issue positioning perfor-
mance requirements for connected and automated vehicles.

This paper focuses on four related performance metrics: d95,
the 95th percentile error magnitude for fixed solutions, PV ,
the probability (or rate in continuous trials) that a validated
(fixed) solution is available at each epoch, as opposed to
a fallback float solution, PS , the probability of correctly
(successfully) resolving the full integer set at each epoch,
and PF , the probability that one or more integer ambiguities
failed to resolve correctly at each epoch [24]. PV , PS , and
PF are related by PV = PS + PF . A fourth probability,
PU = 1 − PF − PS = 1 − PV , that of the undecided event,
is the probability that a float solution, or no solution at all,
is produced, due to an aperture test failure or failure of some
other validation test.
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An unavoidable tradeoff between PS and PF exists such
that any widening of the integer aperture region to increase PS
comes at the expense of an increase in PF (not necessarily of
the same amount) [26]. Therefore, an optimization problem
can be stated in terms of PS and PF as follows: maximize
PS for PF ≤ P̄F , where P̄F is a fixed tolerable probability of
failed fixing. Integer aperture bootstrapping techniques such as
[26] and its generalization to partial ambiguity resolution in
[24] analytically determine thresholds for the integer aperture
test to ensure PF ≤ P̄F . For the optimal integer least squares
(ILS) approach adopted in this paper, it is not possible to
calculate an analytical aperture threshold, but an approximate
one can be obtained via simulation such that PF ≤ P̄F is
satisfied almost surely [27]. A value of P̄F = 0.001 was
adopted for the present paper, meaning that a fixing failure rate
less than 1 in 1000 epochs was deemed acceptable. However,
multipath, GNSS signal passage through foliage, and other
signal impairments common in urban areas cause the empirical
PF to significantly exceed P̄F when the aperture threshold is
chosen according to the Gaussian error assumptions ubiquitous
in the integer aperture literature. Thus, a looser empirical
upper bound ¯̄PF must be chosen. The optimization problem is
then to maximize PS subject to the empirical PF respecting
the bound PF ≤ ¯̄PF .

C. Design Philosophy

With origins in scintillation-resistant carrier tracking [28],
[29], PpRx was designed from the beginning for robust carrier
recovery. Likewise, from its inception PpEngine was targeted
for the harsh urban environment. Over the past few years, de-
velopment of PpRx, PpEngine, and the LDRN has proceeded
as a parallel evolution, with each subsystem benefiting from
improvements in the others.

The overriding design philosophy of this development has
been to adapt, rebuild, and reconfigure all three subsystems,
separately and in parallel, with the goal of minimizing d95
while maximizing PV , or, relatedly, maximizing PS sub-
ject to PF ≤ ¯̄PF . This approach benefits greatly from a
purely software-based approach to GNSS signal processing
(as opposed to processing that exploits dedicated silicon or
FPGAs), for two reasons. First, a software-defined approach
is almost infinitely flexible: all processing downstream from
the RF front end can be reconsidered, rebuilt, and re-evaluated
in a rapid iterative process using an efficient and common
high-level programming language. Second, software-defined
receivers can exploit multiple cores to run faster than real time
on recorded IF samples [21]. The PpRx-PpEngine pipeline
runs at 10x real time on a 6-core Intel Xeon 2.27 GHz
processor, enabling rapid iteration cycles for quickly probing
the optimization landscape.

D. Carrier and code tracking

GNSS carrier and code tracking in an urban environment
must be opportunistic, taking advantage of short clear glimpses
to overhead satellites as they present themselves. PpRx’s code
and carrier tracking architecture, illustrated in Fig. 3 has been
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Fig. 3. PpRx’s carrier and code tracking architecture.

designed for immediate (within approximately 100 ms) recov-
ery of full-cycle phase lock after a blockage, and, importantly,
for prompt lock indication. The following subsections describe
the essential elements of PpRx’s tracking strategy, calling
out parameters whose values significantly affect urban RTK
performance.

1) Correlation and accumulation
Correlation and accumulation is performed on a sequence of

noisy IF samples x(τj), j = 0, 1, ..., where τj denotes the time
of the jth sample according to the receiver’s clock. Within the
correlation and accumulation block, a complex local replica
signal is formed with code and carrier phase estimates t̂s(τj)
and θ̂(τj) provided by the code and carrier phase tracking
loops. The outputs of the correlation and accumulation block
are prompt, early, and late complex correlation products Sk,
Se,k, and Sl,k of the form Sk = Ik + jQk, where Ik and Qk
are the in-phase and quadrature accumulations. (The green and
blue traces in Fig. 1 correspond to Ik and Qk, respectively.)
The accumulation interval, Ta, is an important configuration
parameter for urban RTK.

2) Navigation data bit wipeoff
The GPS L1 C/A and SBAS L1 signals have no dedicated

pilot component. The phase ambiguity introduced by their full
suppressed-carrier binary modulation makes it challenging to
recover an accurate carrier phase measurement in an urban
environment. However, the reference network can provide low-
latency estimates d̂k with which the incoming modulation can
be “wiped off,” allowing full-cycle carrier recovery.

GPS L1 C/A data bit wipeoff has been employed for years
to improve weak-signal acquisition in smartphones [30], but,
so far as the authors are aware, it has not been previously
applied in the context of CDGNSS positioning. SBAS L1
data wipeoff, a novel technique introduced in this paper, is
even more valuable on a per-signal basis than GPS L1 C/A
data wipeoff, since the short 2-ms binary SBAS symbol period
otherwise renders SBAS signals of little use for urban precise
positioning.

3) Lock statistic calculation
Also key to robust urban RTK is the ability to exclude

corrupt or otherwise inaccurate carrier phase measurements.
However, due to poor signal availability, an urban RTK engine
cannot afford to be overly conservative: it must minimize
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the number of adequate-quality measurements that get falsely
labeled as corrupt. An important indicator for this wheat-from-
tares separation is the lock statistic sθ. Let I and Q be coherent
sums of Ik and Qk over NL accumulation intervals. Then sθ
is calculated as [31]

sθ =
I2 −Q2

I2 +Q2

The goal of the carrier tracking loop is to adjust its phase
estimate θ̂k to shift signal power from Qk to Ik. Thus, for a
loop in lock, I2 >> Q2 and sθ is near unity.

A new lock statistic is produced every NL accumulations.
NL, must be chosen large enough to suppress thermal noise
in Ik and Qk, but small enough to provide a prompt indicator
of phase lock to all dependent processing. PpEngine relies
crucially on sθ to screen out bad measurements. Note from
Fig. 3 that sθ is also fed to the code tracking loop and to
PpRx’s central state estimator: each one adapts its behavior to
rely less on Doppler measurements when sθ is low.

4) Carrier tracking
As illustrated in Fig. 3, PpRx employs a vector signal

tracking architecture wherein a central estimator, implemented
as a Kalman filter with a nearly-constant-velocity dynamics
model, receives observables from all tracking channels and
drives local replica generation for each channel [32]. More
particularly, PpRx employs a hybrid strategy in which, for
each channel, a local phase tracking loop is closed around a
modeled Doppler value f̄D provided by the central estimator.
The local loop’s residual Doppler frequency estimate ∆f̂D is
added to f̄D to produce the full estimate f̂D used in replica
generation.

A four-quadrant arctangent phase discriminator,
atan2(Qk, Ik), which is nearly optimal for decision-
directed carrier recovery, and optimal for data-free signals,
or when data bit wipeoff is error-free, feeds a phase error
measurement at every accumulation interval to the carrier
tracking loop filter. PpRx’s carrier loop filter is designed
according to the controlled-root formulation of [33]. The
filter adapts its bandwidth Bθ at every accumulation interval
according to the value of |Sk|. The adaptation schedule has a
significant effect on RTK performance.

One might expect that adapting Bθ so to maintain a constant
loop SNR as |Sk| varies would yield the best results. This
is effectively the adaptation schedule that gets applied in
Kalman-filter-based weak signal tracking [17]. However, this
reasonable approach was found to yield reduced urban RTK
performance. More effective is a three-tiered schedule that
reduces Bθ when |Sk| falls below a fairly low threshold γ1,
and sets Bθ to zero if |Sk| falls below another threshold
γ0 < γ1. Within this lowest tier, ∆f̂D is also driven to zero
over a few accumulation intervals, thereby breaking the local
feedback loop. In this open-loop mode, the local replica’s
phase estimate is driven entirely by the model Doppler f̄D. The
lock statistic sθ continues to be calculated. If sθ is sufficiently
close to unity, the central estimator, the code tracking loop, and
the RTK engine continue to treat θ̂(τj) as a valid measurement.
But this is a rare occurrence; sθ is typically far from unity in
open-loop mode.

Such open-loop tracking has been found to be useful for
preventing frequency unlock during intervals when signals are
entirely blocked, e.g., by buildings or bridges, and for enabling
fast re-acquisition of carrier lock immediately following the
blockage.

5) Code tracking
PpRx’s code tracking loop, which is aided by the Doppler

estimate f̂D, is implemented as a 1st-order loop that toggles
between a non-coherent (dot product) discriminator and a
coherent discriminator. The coherent discriminator is applied
when the channel is phase locked and no recent phase trauma
(indicated by sθ) has been detected; otherwise, the non-
coherent discriminator is applied. A flag attached to each code
phase measurement t̂s(τj) indicates to downstream processes
whether it was produced under coherent or non-coherent
tracking.

As with carrier tracking, the code tracking loop filter’s
bandwidth, Bts , is adaptive. But rather than responding to
|Sk| as the carrier loop’s bandwidth does, Bts takes on a
different value for each of four code tracking modes: (1) pre-
phase lock, (2) first post-lock transient, (3) second post-lock
transient, and (4) steady-state. These modes are designed to
ensure rapid convergence of the code phase estimate t̂s(τj)
after initial signal acquisition, or in the aftermath of phase
unlock.

E. Precise positioning
PpRx and the LDRN send carrier and code phase observ-

ables, together with signal quality indicators sθ and C/N0, and
various other meta-data, to PpEngine for processing. PpEngine
is capable of processing observables from both rover antennas
simultaneously, exploiting the known distance between these.
But for the results presented in this paper, PpEngine was
invoked only in its simplest single-antenna mode, producing
a precise 3-dimensional baseline between the primary rover
antenna and a selected reference station antenna in the LDRN.
This simple single-baseline RTK mode was chosen so that the
precise positioning system’s performance could be evaluated
in a familiar configuration and easily compared with other
single-baseline RTK evaluations such as [8].

1) Treatment of real- and integer-valued states
The current embodiment of PpEngine adopts a straight-

forward approach to RTK. It first forms code and carrier
measurement double differences (DDs) from the rover and
reference data, then sends these to a mixed real/integer ex-
tended Kalman filter for processing. The filter is implemented
as a square-root information filter, as in [34], but limits growth
of the number of integer states by either (1) marginalizing at
each epoch over float-valued integer ambiguity states modeled
as Gaussian-distributed, or (2) conditioning on the estimated
integer values. Thus, PpEngine’s current approach is to discard
all integer states, by marginalization or by conditioning, after
each measurement epoch. The marginalization option, which
yields the float solution, can be thought of as a special case
of the sub-optimal filter in [34] with a window length i = 1.
The conditioning option, which yields the fixed solution, is
invoked only if the integer estimates, found by integer least
squares (ILS) [35], are validated by an aperture test.
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Conditioning the real-valued states on the lowest-cost inte-
ger estimates yields a maximum a posteriori 3D baseline es-
timate. After each measurement update, the real-valued states
are propagated to the next measurement epoch, whereupon a
new set of integer estimates are formed and conditioning or
marginalization occurs yet again. Importantly, if the integer
states are validated at the lth measurement epoch, it is the
integer-conditioned real-valued states that are propagated to
the (l + 1)th measurement epoch. Thus, although all integer
states are discarded between measurement updates, correct
integer resolution is highly likely at the (l + 1)th epoch if
integer ambiguities were correctly resolved at the lth epoch
because the real-valued states carry forward a decimeter-
accurate position estimate.

Carrying forward integer-conditioned real-valued states is
perilous because eventually an erroneous integer estimate
passes the aperture test, whereupon the integer-conditioned
real-valued states are corrupted by conditioning on the incor-
rect fix. What is more, the associated square-root information
matrices indicate high confidence in the erroneous real-valued
state, raising the chances that the next integer estimates,
which are constrained by the prior real-valued states, will
also be incorrectly fixed. This cycle, which can persist for
several seconds, is eventually broken by an aperture test
failure prompted by signal loss, large measurement errors,
or the persistent lack of consistency between the incoming
observables and the current state.

In view of this peril, the authors are developing a gener-
alization of PpEngine that can manage growth in the number
of integer state elements using a variant of the suboptimal
approach of [34]. Meanwhile, PpEngine’s single-epoch integer
resolution has the virtue of being insensitive to cycle slips that
occur between measurement epochs, which are common in the
urban environment.

2) Dynamics Model
Because this paper’s focus is on RTK unaided by any

non-GNSS sensors, the mixed real- and integer-valued state
estimator within PpEngine was configured to ignore all avail-
able inertial measurements and instead rely on a simple
nearly-constant-velocity dynamics model for state propagation
between measurements. The dynamics model assumes roughly
equivalent process noise variance in the along-track and cross-
track directions, but smaller variance (by a factor of 100) in
the vertical direction, in keeping with a land vehicle operating
in a relatively flat urban environment.

3) Robust measurement update
Urban multipath and diffraction cause code and carrier

observables to exhibit large errors with a much higher proba-
bility than even a conservative Gaussian model would predict.
Dealing with measurement error processes such as these,
which have thick-tailed distributions, requires robust estima-
tion techniques; that is, techniques with reduced sensitivity to
measurement outliers.

Outliers are especially problematic for integer fixing in
RTK positioning. By action of the decorrelation adjustment
preceding ILS, a single bad measurement can contaminate
multiple measurements in the decorrelated domain, render-
ing resolution of the associated integers impossible. Partial
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Fig. 4. Flow diagram for the PpEngine exclusion and fixing logic.

ambiguity resolution, as in [36], [37], offers little relief in
such cases because contamination caused by outliers is not
necessarily limited to an identifiable subset of integers. It is
more effective to exclude questionable measurements before
the decorrelation adjustment.

PpEngine implements a multi-level exclusion process, de-
picted in Fig. 4, to mitigate the effects of measurement outliers.
At each measurement epoch, measurements are first screened
on the basis of three quality indicators: carrier-to-noise ratio
C/N0, phase lock statistic sθ, and elevation angle θel. Signals
whose values fall below user-selected thresholds for these
quantities are excluded from all DD combinations.

A second level of exclusion occurs as part of the float
solution. A χ2-type test is applied to all DD measurement
innovations [38], with exclusion triggered if the normalized
innovations squared statistic exceeds a chosen threshold. For
the current implementation of PpEngine, this test is only ef-
fective at excluding anomalous DD code phase (pseudorange)
measurements, since the float states are discarded, and thus
unconstrained, from epoch to epoch. Note that innovations
testing benefits strongly from a correctly integer-constrained
state because the exclusion threshold can be made tighter.
However, with an incorrectly-integer-constrained state, inno-
vations testing may end up excluding the very measurements
necessary to correct the state.

If a set of innovations fails the innovations test, DD mea-
surements (both code and carrier for a particular DD combina-
tion) are excluded one at a time (with replacement). Exclusion
is ordered such that the next DD combination removed is the
one with the next-lowest quality score that has not yet been
removed. A quality score is formed for each DD combination
via a linear combination of scores based on C/N0, sθ, and
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θel. If such N -choose-1 elimination fails to create a subset of
DD measurements that passes the innovations test, exclusion
can proceed to N -choose-m elimination, with m > 1. If a
user-configurable exclusion depth is exceeded, the estimator
state is reset.

The third level of exclusion is based on the integer aperture
test following integer estimation via ILS. This is the standard
data-driven integer fixing process whereby the integer-fixed
solution is selected only on successful validation by some
type of aperture test; otherwise, the float solution is accepted
[24]. The aperture test is configured for a fixed failure rate
(under independent Gaussian errors) of P̄F . If the integer
aperture test fails, N -choose-1 exclusion (with replacement) is
attempted, starting with the lowest-scoring DD combinations
and working up through higher-scoring combinations. N -
choose-m exclusion, with m > 1, is currently not attempted
at this layer of exclusion because testing a large number of
subsets is eventually “doomed to succeed” at passing the
aperture test, causing PF to significantly exceed P̄F even
under benign conditions [37].

If the aperture test is passed before the permissible exclusion
depth is exceeded, the solution is conditioned on the integers
and the integer states are dropped. Otherwise, the integer state
elements are marginalized out as float values. In either case,
the state is propagated to the next measurement epoch via the
dynamics model and the process repeats.

IV. EXPERIMENTAL SETUP

The precise positioning system was evaluated experimen-
tally using data collected on Aug. 1, 2018 during approxi-
mately 2 hours of driving in and around the dense urban center
of Austin, TX.

The rover GNSS receiver is one among several sensors
housed in an integrated perception platform called the Sen-
sorium, pictured in Fig. 5. Although hardly visible in Fig.
5, two Antcom G8 triple-frequency patch antennas are flush-
mounted in the cross-track direction on the Sensorium’s upper
plate, separated by just over 1 meter. The antennas’ signals
are routed to a unified RF front end whose output IF samples
are processed in real time (to within less than 10 ms latency)
by the Sensorium’s onboard computer. The samples are also
stored to disk for post-processing.

Data from both the driver- and passenger-side antennas were
used to produce the PpRx standard navigation solution, but
only data from the driver-side antenna were used in the urban
RTK performance evaluation. No other Sensorium sensors
were involved in the current paper’s results.

The test route, depicted in Fig. 6, runs the gamut of light-
to-dense urban conditions, from open-sky to narrow streets
with overhanging trees to the high-rise urban city center. A
time history of route coordinates, in the form of a Google
Earth KML file, is packaged with the other campaign data
so that readers can explore the route. The route begins with
a 10-minute, and ends with a 4-minute stationary interval in
open sky conditions to allow confident bookending for the
ground truth system. The number NDD of double-difference
signals available to PpEngine at each epoch over the 2-hour
test interval ranged from 1 to 18, with an average of 12.5.

Fig. 5. The University of Texas Sensorium is a platform for automated
and connected vehicle perception research. It includes stereo visible light
cameras, an industrial-grade IMU, an automotive radar unit, a dual-antenna,
dual-frequency software-defined GNSS receiver, 4G cellular connectivity, and
a powerful internal computer.

Fig. 6. Overview of the test route through the urban core of Austin, TX.

V. GROUND TRUTH TRAJECTORY

A trustworthy ground truth trajectory against which to
compare the reported trajectory of the system under test is
indispensable for urban positioning evaluation. The ground
truth generation process of [16] was unsatisfactory for two
reasons. First, it lacked independence, as it drew in part on the
same underlying precise solutions that were to be evaluated.
Second, it was not possible to create a complete ground truth
trajectory even for the moderate urban test route of [16]. Gaps
in the ground truth prevented an accurate determination of PF .

The present work adopts the more traditional approach of
taking the forward-backward smoothed trajectory generated
in after-the-fact processing by a coupled RTK-inertial system
with a tactical-grade IMU as the ground truth [8], [14]. In
particular, an iXblue ATLANS-C mobile mapping INS/GNSS
system, which incorporates a professional-grade Septentrio
AsteRx3 RTK receiver, was used to generate the ground truth
[39]. The ATLANS-C was rigidly mounted to the Sensorium
and attached to the same antenna from which PpEngine
drew observables. A cm-accurate lever arm estimate from the
inertial sensor to the GNSS antenna was determined. Self-
reported 3D accuracy of the ATLANS-C’s smoothed estimate
varied between 2 and 20 cm (1-sigma) along the test route.
Along the light-to-moderate urban portions of the test route,
the ATLANS-C and PpEngine 3D estimates agreed to better
than 5 cm (95%).
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VI. BASELINE SYSTEM PERFORMANCE

The baseline urban RTK system is the PpRx-PpEngine
pipeline configured to maximize PS while respecting PF ≤
¯̄PF for some chosen empirical incorrect fixing probability
bound ¯̄PF . This section discusses the baseline system’s config-
uration and performance. The following section will compare
the baseline system against several alternative configurations
of the PpRx-PpEngine pipeline.

A. Configuration

PpRx’s carrier and code tracking loops were configured as
detailed in [16]. PpRx was configured to track the following
signal types: GPS L1 C/A, GPS L2C (combined M + L
tracking), Galileo E1 BOC(1,1) (combined B + C tracking),
and SBAS (WAAS) on L1. It was configured to output
observables at 5 Hz.

PpEngine was configured as follows. The master LDRN
reference station, located within 4 km of all points on the test
route, was taken as the reference receiver, producing reference
observables at 5 Hz. The master station’s antenna is a Trimble
Zephyr II geodetic antenna. A single-baseline RTK solution
with a near-zero age of data was performed between the
rover’s primary antenna and the reference station at a 5-Hz
cadence. The following thresholds were applied in the first-
level screening processing within PpEngine: C/N0 ≥ 37.5
dB-Hz, sθ ≥ 0.5, and θel ≥ 15 deg. Signals whose values fell
below any one of these thresholds were excluded from all DD
combinations. Elevation-dependent weighting was applied in
the float solution. The threshold above which float innovation
statistics failed the normalized innovation squared test was
chosen to be 2. Scored N -choose-1 exclusion was applied
for both failed float innovations tests and failed aperture
tests. A depth of 8 signals was allowed for the N -choose-1
exclusion, after which the estimator was either reset or integers
marginalized, according to the flow diagram in Fig. 4. The
difference test of [27], which was found to work as well in
urban environments, was chosen as the integer aperture test.
The test was configured for a fixed failure rate of P̄F = 0.001.
The undifferenced pseudorange and phase measurement error
were taken to be σρ = 0.9 m and σφ = 4 mm, respectively.
The nearly-constant-velocity dynamics model was configured
for a 0.4 m/s deviation in horizontal velocity, and a 0.06 m/s
deviation in vertical velocity over a 1-second interval.

A calibration was carried out of the Sensorium antennas’
phase center variation with elevation angle relative to the
reference antenna. The calibration procedure is similar to the
one presented in [40] except that it works with double instead
of single differences. The calibration succeeded in reducing
the standard deviation of L1 and L2 undifferenced carrier
phase residuals by 11% and 15%, respectively, in open-sky
conditions.

B. Performance

Fig. 7 shows the cumulative distribution function (CDF)
of the horizontal and vertical positioning errors for fixed
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Fig. 7. Cumulative distribution function for horizontal and vertical fixed
position error magnitudes with respect to the ground truth for the baseline
system.
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Fig. 8. Cumulative distribution function for baseline system availability gaps.

(aperture-test-validated) PpEngine solutions. Positioning per-
formance appears excellent, with 95% of horizontal and ver-
tical errors below 14 and 8 cm, respectively. That the vertical
errors are smaller than the horizontal errors is explained by
the vehicle motion’s greater vertical predictability.

Fig. 8 shows the CDF of availability gaps in the baseline
system’s fixed solution. These are intervals during which only
a less-accurate float solution is available. Although the longest
gap was 90 seconds, over 99% of gaps are shorter than 2
seconds, a span that could be easily bridged by a MEMS-
quality inertial sensor with errors smaller than a few cm [6].

The baseline system’s fixed solution availability, PV , was
87.2%. Fixed solutions were considered correctly resolved if
their 3D positions were within 30 cm of the ground truth.
This led to PS = 84.8%, and PF = 2.4%. Note that PF is a
factor of 24 larger than P̄F = 0.1% but may be tolerable for a
larger system that combines stand-alone RTK with inertial and
electro-optical sensing, as the Sensorium of Fig. 5 is intended
to do.

VII. PERFORMANCE DEGRADATION ANALYSIS

This section presents a performance degradation analysis in
which features of the baseline system are removed or altered
one at a time to assess their relative contribution to baseline
system performance. Table I, where PV , PS , and PF are as
defined previously, summarizes the results of the analysis.
Starting with Scenario 2, the following discussion treats each
scenario in turn.

Data bit prediction disabled: Eliminating the baseline’s
system’s LNAV and SBAS data bit prediction capability,
described in Section III-D2, has a devastating effect on perfor-
mance. The availability of validated epochs drops by 8 percent
points and PF rises tremendously, from 2.4% to 25%. Clearly,
data bit prediction is a key capability for urban RTK.
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TABLE I
SUMMARY OF PRECISE POSITIONING RESULTS

Scenario Description PV : Validated Epochs (%) PS : Success (%) PF : Failure (%)

1 Baseline system 87.2 84.8 2.4
2 LNAV & SBAS data bit prediction disabled 79.4 54.4 25.0
3 Scalar tracking with adaptive Bθ 87.1 84.1 3.0
4 Scalar tracking with fixed Bθ 86.9 80.7 6.2
5 GPS L2CL tracking 83.2 80.8 2.3
6 Age of data = 200 ms 87.4 85.0 2.4
7 Age of data = 400 ms 87.3 83.8 3.5
8 Age of data = 600 ms 87.2 82.1 5.1
9 Age of data = 1000 ms 87.0 82.0 5.0

10 15 km baseline 86.6 78.9 7.7
11 Sans SBAS 78.6 73.1 5.5
12 Sans GPS L2C (L+M) 83.6 82.5 1.1
13 Sans Galileo E1 (B+C) 77.4 75.9 1.4
14 No scored exclusion 78.8 75.6 3.2
15 No antenna calibration 87.0 82.8 4.2

Scalar tracking with adaptive Bθ: Eliminating vector
tracking, as described in Section III-D4, in favor of scalar
tracking, but retaining carrier tracking loop bandwidth adapta-
tion, has no significant effect on PV but PF increases slightly,
from 2.4% to 3%. Thus, vector tracking appears helpful, but
not critically so.

Scalar tracking with fixed Bθ: Eliminating both vector
tracking and carrier tracking loop bandwidth adaptation has
little effect on availability, but PF rises to 6.2%, indicating
that loop bandwidth adaptation is useful in preventing fixing
errors.

GPS L2CL tracking: For GPS L2C tracking, PpRx jointly
tracks the pilot (CL) and data-bearing medium-length (CM)
codes, wiping off the INAV data symbols modulating the CM
code with symbol value estimates based not on prediction, as
with LNAV, but merely on observation. The rationale for this
strategy is that the CL pilot renders prediction less necessary
than for the GPS L1 C/A signal, which does not enjoy a pilot.
Eliminating joint L2C L+M tracking in favor of pure L2CL
tracking might be thought a more reliable strategy given that
no symbol wipeoff mistakes are ever made when tracking only
the pilot. However, Table I indicates that this leads to a drop
in availability with hardly any improvement in the error rate.
Thus, it appears that joint CL and CM tracking is preferred.

Age of data: Scenarios 6-9 explore the effect of increased
age of reference data, from the baseline age (near zero latency
relative to the rover stream) to 1 second. Little reduction occurs
in PV , but there appears a somewhat steady increase in PF
after 200 ms.

15-km baseline: The baseline system’s distance to the
reference receiver, referred to as the reference-rover baseline,
is no greater than 4 km. For Scenario 10, the LDRN alternate
master station, which sits 15 km from the furthest portion of
the test route, was instead taken as reference. The alternate
master station has a Trimble Zephyr II antenna identical
to the master station’s. A 15-km baseline might still be
considered within the short-baseline regime for standard RTK
[41]. Nonetheless, a slight decrease in PV and a significant
increase in PF is observed, consistent with the argument in
[42] that a dense reference network is helpful in urban settings
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Fig. 9. Cumulative distribution function for horizontal and vertical fixed
position error magnitudes with respect to the ground truth for Scenario 10.

with reduced signal availability. Fig. 9 also shows a significant
degradation in overall fixed position accuracy.

Value of additional signals: Scenarios 11-13 explore the
degradation that occurs when all signals of a particular type
are eliminated from the RTK solution. Curiously, dropping
L2C and Galileo from consideration significantly reduced PF ,
likely due to the misfortune that both groups were composed
primarily of low-elevation satellites (below 30 degrees) during
the test run. By contrast, one notes a significant increase in
PF as the 4 available SBAS satellites are removed from con-
sideration. Clearly, data-wiped SBAS signals offer significant
strength to the solution.

Scored Exclusion: Scenario 14 removes the scored ex-
clusion strategy described in Section III-E3 by setting the
exclusion depth to 0. This caused a noticeable reduction in
PV and a slight increase in PF .

Antenna calibration: Scenario 15 indicates that lack of
rover antenna calibration has no discernible effect on PV , but
increases PF significantly. The effect would no doubt be larger
for lower-quality rover antennas.

VIII. PERFORMANCE COMPARISON

To further assess its performance, the PpRx-PpEngine sys-
tem was compared against three alternative systems: (1) A
high-end commercial RTK system: a Septentrio AsteRx3
receiver attached to the same GNSS antenna as the PpRx-
PpEngine system, with RTK solutions produced by Septen-
trio’s RTK engine, taking reference data from the CORS
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TABLE II
COMPARISON RESULTS

System Availability (%) PF : Failure (%) d95h (cm)

PpRx-PpEngine 77 0.7 7.5
Commercial RTK 61 0.8 8.6
CSRS-PPP 74 N/A 154
ECPP 100 N/A 275

station TXAU, which sits less than 5.4 km from the furthest
portion of the test route; (2) a state-of-the-art PPP solution
from the CSRS-PPP service [43] (version v2.26.0 from March
2019) based on observables produced by the same receiver as
in (1) processed in a “batch kinematic” mode; and (3) the so-
called enhanced code phase positioning (ECPP) solution [3]
from PpRx, which draws on precise orbit and clock models
from the IGS [44], a WAAS ionospheric model, and RF signals
from both passenger- and driver-side Sensorium antennas.

Note that the receiver in (1) and (2) is the very receiver used
to generate the ground truth trajectory, but for this comparison
its data were processed without aiding from the ATLANS-C
IMU. Also, to ensure a fair comparison, PpEngine exclusion
and validation tests were tightened (at the expense of solution
availability) until its probability of incorrect fix, PF , was less
than that of the commercial RTK system.

Table II shows the comparison results in terms of solution
availability (equivalent to PV for the PpRx-PpEngine and
Septentrio RTK systems), PF (which applies only to the PpRx-
PpEngine and Septentrio RTK systems, as the other two do not
attempt integer fixing), and d95h, the horizontal 95th percentile
positioning error. Significantly, PpRx-PpEngine enjoys a 16%
availability advantage over the commercial RTK system, and
neither the CSRS-PPP nor the ECPP solutions are close to
sub-30-cm accuracy.

IX. CONCLUSIONS

A real-time kinematic (RTK) positioning system tailored for
urban vehicular positioning has been described and evaluated.
To facilitate performance comparison against similar systems,
the system was tested without any benefit of aiding by inertial
or electro-optical sensors. Over nearly 2 hours of urban testing,
including multiple passes through Austin’s dense urban center,
the system achieved an 85% probability of correct integer
fix for a 2.4% probability of incorrect fix, resulting in 3D
positioning errors smaller than 17 cm (95%). A performance
sensitivity analysis revealed that navigation data bit prediction
on fully-modulated GNSS signals is key to high-performance
urban RTK positioning, and that a dense reference network,
carrier tracking bandwidth adaptation, and rover antenna cali-
bration each offer a significant integrity benefit. A comparison
with existing unaided systems for urban GNSS processing
indicates that the proposed system has a significant advantage
in availability and/or accuracy.
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