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Abstract—The purpose of this white paper is to showcase and
summarize our work for a game-theoretic approach to the asset
guarding scenario. While traditional optimal control based solu-
tions exist, a game-theoretic based solution may be able to offer
more insight since the scenario is non-cooperative. We formulate
the asset-guarding scenario as a reach-avoid differential game,
meaning that one player tries to reach a goal while avoiding
the other player. Simultaneously, the other player tries to defend
the goal and catch the first player. This paper explores a game-
theoretic approach for the decision-making through our Quasi-
Nash Optimal (QNO) solution algorithm, as well as for evaluating
the post-game results. The QNO algorithm’s game level perfor-
mance is compared to a proportional navigation based algorithm
and some computation time results are provided. We conclude
that a finer level of discretization with a long time horizon is a
necessary condition for the possibility of any encouraging results.
Furthermore, we show that the computational complexity grows
exponentially in the level of discretization, making our brute force
method intractable.

Index Terms—Pursuit–evasion games, reach-avoid differential
game, game theory.

I. INTRODUCTION

This paper continues work from [1], specifically exploring
the low-level game between just one attacker and one intercep-
tor, henceforth called the evader E and pursuer P respectively.
The two players engage in a pursuit-evasion game, a scenario
in which P pursues E while E evades P. The game extends
to a reach-avoid game with the addition of a target T such
that P wishes to intercept E while simultaneously defending
T, or conversely E wishes to reach T while simultaneously
evading P. With the introduction of T, the scenario could
also be called an asset-guarding game when seen from the
perspective of P. Regardless, a solution for each player is
a set of actions each can take that achieve their respective
goals despite actions taken by the other. Differential game
theory lends itself nicely to such scenarios and is an attractive
approach since well-documented methods exists for finding
saddle-point-like solutions, deviations from which result in a
penalty to the deviating player in a cost sense.

Motivation to apply differential game theory to solve the
reach-avoid scenario comes from solutions to similar problems
like the homicidal chauffeur [2] and other variations of the
pursuit-evasion game that have been completely solved in
a Nash-optimal sense. A game-theoretic approach offers an
easier way to model physical constraints, namely bounds, at
the cost of complexity in the equations leading to only locally
optimal and oftentimes numerical solutions [3]. Other ap-

proaches that rely on more traditional optimal control methods
exist [4], but approximations are necessary for convergence to
be guaranteed, and the algorithm is still computationally de-
manding. For a game-theory based approach there will always
be a solution, since there always exists a Nash equilibrium,
even if it is not a pure solution [5].

Our approach is a Quasi-Nash Optimal (QNO) algorithm,
introduced in Section III-B, that discretizes the control space
of each player and solves for the Nash equilibrium of the
non-zero sum game introduced by the reach-avoid scenario.
Some suboptimal discretization-based solutions exist [6] but
do not extent to stochastic scenarios and require the game
have deterministic dynamics. Our QNO algorithm exploits the
flexibility offered by a game-theoretic approach and is able to
handle stochastic dynamics and costs. Some other solutions
exist that only consider one player’s costs, as is the case with
[7] that considers only the pursuer costs. The QNO algorithm
considers both players’ goals and provides a rational decisions
for both. An algorithm that does not account for E’s goals
while solving for P’s actions may end up assuming irrational
actions by E. For example, a decision for E to head directly
towards P is unlikely to ever be the best or even a good
decision, even if it is possible.

The extension this paper introduces from previous work in
[1] is the focus on one-versus-one games rather than pairing
different sets of P and E. Furthermore, the QNO algorithm’s
implementation was expanded to include 3 dimensions, instead
of just the two-dimensional state space to which the previous
work was limited. Our findings show that the algorithm
has an exponential computational complexity relative to the
discretization parameters. We further show how the discretized
control space resolution impacts the algorithm’s solution qual-
ity, and that small increases in resolution do not provide any
benefit for the 3 dimensional case. Pairing the exponential
complexity with the need for higher discretization makes the
QNO algorithm intractable. We further show that for any
meaningful solution quality, the algorithm has to be allowed
to consider longer time horizons. Any promising trends we
observed for a 2D scenario get buried under the necessity
for a finer level of discretization and a longer time horizon
consideration for the 3D space.

Section II provides the formulation for the reach-avoid
scenario and describes the game-level evaluation process used
to generate the results in Section IV. Section III describes the
QNO algorithm and offers some insight into the parameters
that affect its computational expense. Finally, Section IV



provides different sets of results, applying the process from
Section II, in addition to some runtime performance results
with our specific setup.

II. PROBLEM FORMULATION

We explore the reach-avoid scenario where E’s goal is to
reach a target T while avoiding capture by P while P’s goal is
to defend a target T while pursuing E. For our reach-avoid
scenario, the vehicle dynamics and cost functions of each
entity are assumed to be known, even though the latter is not
a realistic assumption, yet is common in literature [8]. In the
discrete scenario, a player l ∈ {P,E} can choose an action
to take every ∆t seconds. Each player can choose actions in
correspondence with a policy pi ∈ P for the entirety of the
game, where i enumerates the policies. Imagine a set of reach-
avoid games with identical initial conditions, namely initial
positions and velocities. The only difference between each
scenario in the set is the policy pair pl, p-l ∈ P the players
follow, where -l denotes the opponent of l. Each player can
evaluate the game based on their cost function and form a
set of cost pairs corresponding to the aforementioned set of
scenarios with identical initial conditions. We can use the set
of cost pairs to evaluate which policy should have been chosen
by each player for a set of initial conditions.

A. Dynamics

Players have known position/velocity states xl(k) and con-
trol inputs ul(k) which can be used to propagate the state
forward with known dynamics:

xl(k + 1) = f l(k, xl(k),ul(k),wl(k)) (1)

where wl(k) is noise.

B. Costs

At each time step, a player can evaluate the current system
state using their cost function Cl. The function takes into
account the player’s current state xl(k), the opponent’s state
x-l(k), and both players’ control inputs ul(k−1) and u-l(k−1)
that lead to the current state. In addition to quantifying
the current system state, the cost functions can be parsed
to policies whose solutions are designed to minimize cost
functions.

An addition cost for each player needs to be defined; the
game cost Jl. The new cost serves the purpose of quantifying
the performance of a player over an entire game. There are
two natural definitions for the game cost: win-based and cost-
based. We define the win-based cost Jw,l as quantifying the
win-space of the game. The value of the game cost in the win-
space encapsulates which player won, and how well they won.
Our definition, seen in (2), encodes the winner of the game
in its sign, and the quantification of how well the player won
by the magnitude equaling the number of time steps taken to
win. If a draw is declared by running out a maximum horizon,
the win-space game cost is 0.

Jw,l = Tend

where sign(Tend) =

{
+1 if P catches E
−1 if E reaches T

(2)

We define the cost-based cost Jc,l as quantifying the cost-
space of the game, encapsulating the cost incurred by the
player over the entirety of a game, based on their cost
functions. Naturally, the equation for the cost-space game cost,
seen in (3), is simply a sum of the player’s cost function Cl

evaluated at the taken actions and achieved states of the players
at each time step.

Jc,l =

H−1∑
k=0

Cl(xl(k + 1), x-l(k + 1),ul(k),ul(k)) (3)

C. Game Evaluation

A set of games with identical initial conditions but different
combinations of player policies will generate unique game
costs for each player. Let Jg,l,i,j be such a game cost for player
l where i enumerates P’s policies and j enumerates E’s policies.
The game cost can either be a win-space cost or a cost-space
cost. A game cost pair can then be defined as follows:

Ji,j = (Jgame,P,i,j, Jgame,E,i,j) (4)

A matrix of cost pairs arises from identical initial condition
games played out with all combinations of policy pairs. Such
a matrix can be seen in Table I, which lends itself nicely
as the setup for solving a bimatrix game. Specifically, each
player has a finite set of choices, the policy to be chosen at
the beginning of a game, and their choice of a policy will be
impacted by their opponent’s choice in policy. Such games are
always known to have a Nash-optimal strategy. Once the game
cost pairs are known, an algorithm for finding Nash equilibria
can produce the Nash-optimal choice, which in this case is the
Nash-optimal policy for a specific set of initial conditions.

TABLE I: Matrix of cost pairs Ji,j for policy combinations
between P and E used for the bimatrix game solution calcu-
lation, where Np policies are considered

Evader

Pursuer policy 0 policy 1 ... policy Np − 1

policy 0 J0,0 J0,1 ... J0,Np−1

policy 1 J1,0 J1,1 ... J1,Np−1

...
... ... ...

...

policy Np − 1 JNp−1,0 JNp−1,1 ... JNp−1,Np−1

Simulations run by varying the initial conditions and solving
the bimatrix game can count the number of times a policy
appears as a Nash-optimal solution. Over multiple such simu-
lations we can evaluate how much one policy is preferred over
others for each player.



III. QUASI-NASH OPTIMAL ALGORITHM (QNO)

This section describes our game-theory based policy
spawning from [1]. The algorithm is run at each time step to
produce a control input ul(k), when provided a discretized
control space for each party. The control space maps to a
bimatrix non-zero sum game, the solution of which is the
Nash-optimal control input to be chosen at the step. Because
the discretized control space is only a subset of all feasible
actions the player can take, the algorithm is quasi-Nash
optimal, hence the name QNO. Depending on the level
of discretization, the QNO algorithm may have a heavy
computation cost. This fact motivates an exploration of the
algorithm from the perspective of the defending player P,
since they are more likely to be able to offload computation
to the ”edge”. The sections below describe a single-step
horizon implementation first, for better clarity on the process,
and then a K-step horizon extension.

A. Single-step Horizon QNO Algorithm

The QNO algorithm takes in both player states xl(k) and is
also made aware of the dynamics functions for each player f l
as well as their cost functions Cl. Additionally, it takes in a
set of directions Nl with cardinality Nl. Each direction vector
in the set has a magnitude equal to some predefined maximum
value. The set of directions for each player need not be the
same, differentiated by the subscript l specifying the player.

To allow for more variety in the choices each player has,
a number of magnitudes Ml are applied to each direction
nl,i ∈ Nl as fractions of the predefined maximum magnitude.
The result is a discretized control space Ul each player has
at each time step. The elements of Ul corresponding to the
different combinations of magnitudes Ml applied to directions
in Nl. The resulting discretized control space naturally has
cardinality Nl ·Ml. An enumeration of the combinations is
defined below:

ul,i =
(i mod Ml) + 1

Ml
nl,⌊ i

Ml
⌋, i ∈ {0, ..., NlMl − 1}

(5)

Once the discretized control space for each player is deter-
mined, one can imagine the process from here broken down
into 3 parts: trajectory generation, cost calculation and solution
computation.

The trajectory generation portion aims to generate all reach-
able positions for each player. The algorithm achieves this by
propagating the current states of each player xl(k) forward
with the known dynamics for every ul,i ∈ Ul. Each resulting
state is a final state x

′

l,i ∈ X
′

l where the index i matches the
control input used to reach that state:

x
′

l,i = f l(k, xl(k),ul(k),wl(k)) (6)

Once the algorithm establishes a set of reachable final
positions for each player, it evaluates every possible pair of
reachable states in the cost calculation portion. A pairing of
reachable final positions is called a future, and their total
number in the single step horizon case is Nl · N-l. The

evaluation step is twofold, since the players each have different
cost functions corresponding to different goals. This results in
two sets of Nl ·N-l costs, one for each player, corresponding
to each future. The cost as seen by player l for a future from
the pair (x

′

l,i, x
′

-l,j) achieved with controls ul,i and u-l,j is as
follows:

Cl,i,j = Cl(x
′

l,i, x
′

-l,j,ul,i,u-l,j) (7)

where i and j enumerate the control inputs Ul and U-l.
At this stage, the algorithm has two sets of costs that

quantify the desirability of a future, one for each player.
The solution computation portion uses the sets of costs to
generate a bimatrix non-zero-sum game and solves for the
Nash equilibria. The solution is the result of known algorithms
for finding Nash equilibria via dynamic programming. If there
are multiple pure solutions, the risk dominant solution is
chosen as the solution [5], while if no pure solution is found,
we fall back on a set of mixed Nash solutions and draw from
a distribution to select one of them as the QNO output.

B. K-step Horizon QNO Algorithm

The process described so far was for a one step time
horizon. Looking only one step ahead is limiting since the
QNO algorithm is highly sensitive to the cost function of
the players. Even in traditional optimal control solutions for
path planning the length of the horizon directly affects the
guarantees the algorithms make. For our specific scenario,
imagine a game where P and E start at about the same distance
away from T and relatively near each other. If P were to choose
a proportional navigation based policy, the trajectory P would
take is a path towards T, ever so slightly closing the distance
to E, assuming E is a rational player that is striving to reach
the goal. Depending on the distance between the two, this may
cause E at some point to prioritize not getting caught and to
deviate from a path directly towards T. From the perspective
of P, this is a positive result since they successfully deter E
from reaching the goal.

Now imagine the same game, but where P chooses the
one step QNO algorithm, which uses the costs described in
(7). As far as the algorithm is aware, nothing exists past the
first step. In a game-theoretic sense it aims to to minimize a
cost, and ends up choosing a direction much more towards
E compared to the proportional navigation policy scenario.
Depending on the distance between the two and the exact
direction, this might cause P to be unable to catch or even
deter E later on in the game, effectively closing the window
of opportunity for future decisions. If longer trajectories could
be evaluated, the algorithm would have a chance to plan
ahead and make decisions that might not result in single-
step cost minimization, but that would result in a trajectory-
cost minimization. A nice analogy can be found in chess.
Oftentimes, when analyzing games, the chess engine may find
a sequence of moves that result in a forced win. If the engine
is not allowed to see far enough ahead, it may not opt for the
initial moves that lead to a forced win.

An extension to single-step version that implements a time
horizon begins with the introduction of a new QNO parameter,



K, corresponding to the look ahead horizon. Extending to
allow for a horizon only alters the trajectory generation and
cost calculation steps. A player still has the same control input
options Ul, but now can chain K of them together to form
a trajectory. The final number of reachable states grows to
(Nl ·Ml)

K .
A brute force way of altering the trajectory generation

process is to produce all control input chains, resulting from
permutations of all control input options, and to use those
chains to propagate the initial position forward with the
dynamics. While this is a valid process, it is inefficient for
larger K since many chains will share early states. A better
solution is to use dynamic programming and branch out the
propagation at each time step with the (Nl · Ml) choices,
reducing the number of dynamics propagations required. The
branching approach is illustrated in Fig. (1). It is imperative to
save the intermediate reached states and control inputs used to
reach them for each final state x

′

l,i. All the intermediate future
states x

′

l,i(k+kstep) and controls ul,i(k+kstep) are used in the
cost generation step. The future state x

′

l,i(k+K) corresponds
to the final state x

′

l,i.
Altering the cost calculation step also has a brute force and

dynamic programming implementation. Since many combina-
tions of joint trajectories for P and E share common earlier
states, one can have a branching implementation for cost
calculation as well. We have not implemented branching for
cost calculation, but the computation savings are likely worth
the change. Regardless, the costs for each future boils down
to the trajectory cost, which is the sum of the costs at each
intermediate step. For a pair of final reachable states x

′

l,i and
x
′

−l,j the cost is as follows:

Cl,i,j =

K∑
kstep=1

Cl(xl,i(k + kstep), x-l,i(k + kstep),

ul,i(k + kstep − 1),u-l,i(k + kstep − 1))

(8)

Algorithm 1 shows the higher level pseudocode, where d ∈
{2, 3} specifies between 2D and 3D. The generateTraj
and calculateCosts functions correspond to the trajec-
tory generation and cost calculation methods described in
earlier sections. The mixedSolution function refers to the
Lemke-Howson algorithm [9] which is a popular algorithm
used to find mixed Nash solutions, that solves for a set
of mixed solutions and provides probabilities for choosing
each one. After the algorithm generates the trajectories and
evaluates P and E trajectory pairs by calculating a cost, it
solves the resulting bimatrix game and outputs the appropriate
solution.

IV. SIMULATIONS AND RESULTS

The simulations are a result of a C++ implementation of the
algorithm. For a set of input parameters corresponding to the
initial positions of P and E, as well as parameters dictating the
discretization level of the QNO algorithm, a set of 4 games
are played. The games consist of combinations of scenarios
where P and E chose their policies to be the QNO algorithm
or a proportional navigation based solution we will refer to as

Algorithm 1: QNO(xl(k), x−l(k),Ul,U−l)

Input : xl(k), x-l(k) ∈ R2d

ul,i ∈ Rd ∀ul,i ∈ Ul

f l : (R2d,Rd)→ R2d

Cl : (R2d,R2d,Rd,Rd)→ R
Output: u∗

l (k) ∈ Ul ⊂ Rd

1 [X ′

l ,X
′

−l] ← generateTraj(xl(k), x-l(k),Ul,U-l)

2 C ← calculateCosts(X ′

l ,X
′

−l)
3 [u∗

l ] ← solveBimatrix(C)
4 if card([u∗

l ]) == 1 then
5 return u∗

l
6 else
7 if card([u∗

l ]) > 1 then
8 return riskDominant([u∗

l ], C)
9 else

10 [[u∗
l ], [p]] → mixedSolution(C)

11 u∗
l → drawFromDistr([u∗

l ], [p])
12 return u∗

l
13 end
14 end

Velocity Matching (VM) [10]. The simulation allows for the
collection of the game cost of each game at which point the
process described in Section II-C can be applied. Below are
the details of the simulations along with results.

A. Simulation details

All simulations operate by evaluating the players policies
and propagating their states forward in discrete time. The
simulation time step chosen was ∆t = 1. The algorithm allows
for a 2D or 3D state space, specified by d ∈ {2, 3}.

The dynamics used to propagate the players forward, as well
as the dynamics provided to the QNO algorithm itself was a
simple double integrator. The algorithm itself is not tied to a
specific dynamics function, so a more complex model could
easily be passed through.

x(k + 1) =

[
I ∆t · I
0 I

]
x(k) +

[
(∆t)2 · I
(∆t) · I

]
u(k) (9)

where x(k) ∈ R2d, u(k) ∈ Rd, I ∈ Rd×d and is the identity
matrix and 0 ∈ Rd×d and is the zero matrix.

The cost function used to tally up the cost-space game cost,
as well as provide a trajectory evaluation method for the QNO
algorithm is a typical quadratic cost in the state and control.
Let e ≜ xl − x-l, and et ≜ x[0:d−1],E − xtarget where the
subscript [0 : d− 1] picks out the position portion of the state
and the E denotes the state belonging to E. The cost for each
player is as follows:

CP = e⊤QP e− e⊤t Qtet

CE = −e⊤QEe + e⊤t Qtet
(10)

The matrices Ql and Qt are diagonal matrices that need not
be the same. Additional costs can be added to these, for
example, if we wish to reduce maneuverability for E, as is
usually done in literature with the addition of also increasing
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Fig. 1: Branching trajectory generation process where each final state x
′

l,i is generated by propagating the initial state xl(k)
using different chains of control inputs (ul,i(k),ul,j(k + 1)...ul,k(k + K − 1)) chained together, where i,j,k enumerate the
options for player l.

the maximum velocity E can reach, we can easily do this by
adding a quadratic cost to the control input. Some additional
costs acting as soft constraints can also be added to penalize
or reinforce proximity between the players, between E and the
target, or between the players and some obstacles.

Moving forward, when referring to a player using the QNO
algorithm as their policy, the set of control input directions
is always a radially uniform set in 2D space, and mostly
spherically uniform set in 3D space using the method from
[11]. This allows a parameterization of the algorithm on a
high level where it can be described by three values: (1) N ,
the number of the aforementioned uniformly spaced directions,
(2) M the number of magnitudes for each direction and (3)
K, the look ahead horizon.

In addition to the N ·M uniformly spaced choices at each
step, the algorithm also considers a zero control input and M
magnitude weighted variations of the VM solution direction.
The total number of evaluated trajectories at each step for the
QNO algorithm is then equal to ((N + 1) ·M + 1)K .

B. Result collection process

As illustrated in Section II-C, a post-game bimatrix game
with the policy choice for each player can reveal the Nash-
optimal policy. For our simulations we gave each player
only 2 choices: our QNO algorithm and the VM algorithm.
The resulting cost matrix formed for the bimatrix game is
illustrated in Table II. The game costs referenced in the tables
are either in the win-space or the cost-space as described in
II-B.

For a single set of games made unique only by the initial
conditions of P and E, namely their initial positions and
velocities, a Nash-optimal policy exists. The table of costs
for this set of games is illustrated in Table II where the costs
are either in the win-space or cost space. The win-space costs

TABLE II: Matrix of cost pairs for QNO vs VM policies used
for the bimatrix game solution calculation

E

P QNO VM

QNO J0,0 J0,1

VM J1,0 J1,1

end up forming a zero-sum game. By our definition of the
win-space game cost, if a single game takes H time steps to
finish, then the game cost pair is Jgame = (H,−H), where
the positive sign indicates the winner and the opponent has
a cost equal in magnitude but opposite in sign. Additionally,
the tuple is just zero if there is a tie. This will always lead
to zero-sum games. In contrast, the cost-space costs end up
forming a non-zero-sum bimatrix game resulting from a pair
of costs that are calculated by summing up the single step cost
introduced by taken actions and achieved positions throughout
the game. In either case, we can solve for a Nash equilibrium.
To increase the effectiveness of the simulation, multiple such
sets of games simulations have to be played to evaluate the
Nash-optimal policy.

In order to diversify our results, we ran multiple such
simulations of sets of games. The input to our simulator is
a given set of input parameters (NP ,MP ,KP , NE ,ME ,KE)
corresponding to the number of directions, number of mag-
nitudes and horizon length for P and E when they use the
QNO algorithm. Next, the simulator iterates through different
starting positions for P on a grid that ranges from -10 to 0 with
steps of 0.25 in the x direction and 2 to 5 in steps of 0.25 in
the y direction. The initial position of E was constant at (-
10,0) and T was at (0,0). For 3D simulations the three entities
P, E and T were all placed at the same height. The simulation



results in 533 sets of games, where each set is 4 games with
the same initial conditions but varying policies. Thus, for a
specified discretization level for our QNO algorithm we can
determine how often it is considered Nash-optimal compared
to VM by tallying up how often each appear as a Nash
equilibrium. To explore how the level of discretization plays
a role in the QNO performance, multiple such simulations
of 533 sets of games were run for varying input parameters
(NP ,MP ,KP , NE ,ME ,KE).

C. Win Space Results

The results in Table III present in each row the number of
times the QNO algorithm and VM algorithm appear as Nash
equilibria for the 533 sets of games for a given set of input
QNO parameters. The parameters for E were kept constant
at (N,M,K) = (8, 2, 1). The inputs parameters for P were
varied such that each increase in a parameter value resulted in
the trajectories from a lower valued simulation being a subset
of the larger valued parameters. For instance, for N = 16, 8
of the directions P can head in are the same directions for the
N = 8 case. The motivation behind this was to find out if an
increase in the discretization control space would improve or
at least not deteriorate the results.

The results in Table III don’t reveal any discernible patterns
between the level of discretization and the number of wins for
the QNO algorithm. Additionally, the number of times the
QNO algorithm is in the Nash-optimal set of solutions is far
below that of the VM algorithm. After inspecting individual
games to gain insight into the choices being made, the scenario
explained in Section III-B for the horizon heavily affecting
the choices was on display. Specifically, our QNO algorithm
would cause P to mostly favor going toward E early on, putting
P in a position where it was impossible to catch E later on or
even position himself in a way where E would later be deterred
from going for the target. By comparison, the VM policy
would cause P to match E’s velocity while slowly closing
in, and in many scenarios eventually getting close enough to
deter E from attempting to go for the target.

D. Cost Space Results

Switching over to the cost-space evaluation yields very
different results. Running grid simulations with the same
(NP ,MP ,KP , NE ,ME ,KE) parameters but playing the bi-
matrix games with the cost space costs yields more favorable
results, as seen in the 2D results in Table IV. First, we
observe the overall number of times the QNO algorithm is
favored is much higher than the number of times VM is
preferred. Additionally, we see a clear increase in preference
for our QNO algorithm as the horizon is increased. The first
observation is a logical result of the underlying mechanics
between the two algorithms. The QNO algorithm, by design,
minimizes the cost, even if the minimization is in a Nash-
optimal sense. In contrast, the VM algorithm has no notion of
cost. The second observation is rational since as we increase
the horizon we allow for more reachable states to be evaluated.
For low valued horizons, the QNO algorithm is sensitive to

TABLE III: Table of win-space grid results for 2D games
where the tuples (A,B) indicate the value for P as A and the
value for E as B. The number of times QNO and VM for the
input parameters is displayed under their respective columns

(NP , NE) (MP ,ME) (KP ,KE) QNO VM

(4,8) (1,2) (1,1) 139 516

(8,8) (1,2) (1,1) 152 510

(16,8) (1,2) (1,1) 130 516

(4,8) (2,2) (1,1) 133 522

(8,8) (2,2) (1,1) 155 519

(16,8) (2,2) (1,1) 137 514

(4,8) (1,2) (2,1) 148 503

(8,8) (1,2) (2,1) 153 516

(16,8) (1,2) (2,1) 135 510

(4,8) (2,2) (2,1) 151 510

(8,8) (2,2) (2,1) 154 524

(16,8) (2,2) (2,1) 134 513

TABLE IV: Table of cost-space grid results for 2D games
where the tuples (A,B) indicate the value for P as A and the
value for E as B. The number of times QNO and VM for the
input parameters is displayed under their respective columns

(NP , NE) (MP ,ME) (KP ,KE) QNO VM

(4,8) (1,2) (1,1) 416 117

(8,8) (1,2) (1,1) 399 134

(16,8) (1,2) (1,1) 386 147

(4,8) (2,2) (1,1) 409 124

(8,8) (2,2) (1,1) 392 141

(16,8) (2,2) (1,1) 387 146

(4,8) (1,2) (2,1) 427 106

(8,8) (1,2) (2,1) 431 102

(16,8) (1,2) (2,1) 438 95

(4,8) (2,2) (2,1) 432 101

(8,8) (2,2) (2,1) 418 115

(16,8) (2,2) (2,1) 440 93

the cost function and will make drastically different decisions,
somewhat explained in the chess analogy in Section III-B.

The results in Table V originate from running the same
sets of simulations, but allowing for a 3D control space. The
increase in preference resulting from an increase in the horizon
K that was observed in the 2D case is now gone. We speculate
that the observed phenomenon is a result of having a very
coarse set of options in the 3D space, so an increased horizon
will not provide as much of, if any, boost in preference.

E. Timing Results

In order to give a sense of the time duration of the simula-
tions, as well as the improvement of using dynamic program-



TABLE V: Table of cost-space grid results for 3D games
where the tuples (A,B) indicate the value for P as A and the
value for E as B. The number of times QNO and VM for the
input parameters is displayed under their respective columns

(NP , NE) (MP ,ME) (KP ,KE) QNO VM

(4,8) (1,2) (1,1) 469 64

(8,8) (1,2) (1,1) 440 93

(16,8) (1,2) (1,1) 446 87

(4,8) (2,2) (1,1) 471 62

(8,8) (2,2) (1,1) 431 102

(16,8) (2,2) (1,1) 438 95

(4,8) (1,2) (2,1) 467 66

(8,8) (1,2) (2,1) 452 81

(16,8) (1,2) (2,1) 460 73

(4,8) (2,2) (2,1) 472 61

(8,8) (2,2) (2,1) 430 103

(16,8) (2,2) (2,1) 436 97

ming, we provide timing results in Tables VI-X. The machine
running the simulations had an Intel Xeon Gold 6226R 64-
core CPU. The code written in C++ utilized multithreading
to facilitate parallel generation of trajectories, calculation of
costs and Nash-optimal solution finding. The timing results
we collected are of multiple runs for varying N and K inputs
but with a constant M = 1 input. The time mentioned is an
average over multiple single step runs, where our algorithm
is called every step. A naive implementation of our algorithm
results in long simulation times compared to a more thoughtful
approach. The naive implementation timing is presented in
Tables VI-VIII. These results indicate that most of the time
at each step is spent generating the costs and then next is
in generating the trajectories. This is not surprising since the
algorithm squares the number of operations it must complete
for the cost in a one-step horizon scenario by weaving both
player’s trajectories to generate possible futures.

TABLE VI: Average amount of time spent generating the
trajectories in seconds every time the QNO algorithm was
called before dynamic programming was implemented

(N,M)

K (4,1) (8,1) (12,1) (16,1)

1 0.000436344 0.000674818 0.00111598 0.001655075

2 0.002432344 0.012562684 0.025786873 0.053640283

3 0.021051202 0.335350438 2.904580784 13.9333651

A more thoughtful implementation of our algorithm is to
employ dynamic programming as explained in Section III-B
and visualized in Fig. 1 and also take better advantage of multi-
threading. Specifically, dynamic programming was applied to
the trajectory generation portion, and fewer groups of costs
calculation processes containing more trajectory evaluations
were applied to the cost calculation portion. The results can

TABLE VII: Average amount of time spent generating the
costs in seconds every time the QNO algorithm was called

(N,M)

K (4,1) (8,1) (12,1) (16,1)

1 0.00023839 0.00040022 0.0005333 0.00063889

2 0.00388566 0.02099905 0.0693917 0.17506116

3 0.2248238 3.43904 22.362425 -

TABLE VIII: Average amount of time spent finding the pure
Nash equilibria in seconds every time the QNO algorithm was
called

(N,M)

K (4,1) (8,1) (12,1) (16,1)

1 0.000017 0.000029 0.000055 0.000074

2 0.000393 0.002317 0.007777 0.0205353

3 0.019514 0.298176 1.83446 -

be seen in Table IX and Table X. As an example of the
improvement, trajectory generation saw a slightly over a 100x
improvement and cost generation saw a slightly under 100x
improvement for N = 12,M = 1 and K = 3.

TABLE IX: Average amount of time spent generating the
trajectories in seconds every time the QNO algorithm was
called after dynamic programming was implemented

N

K 4 8 12 16

1 0.000148 0.000232 0.00027 0.000281

2 0.000621 0.00155 0.002578 0.004264

3 0.004407 0.015199 0.027121 -

TABLE X: Average amount of time spent generating the costs
in seconds every time the QNO algorithm was called after
multithreaded improvement was implemented

(N,M)

K (4,1) (8,1) (12,1) (16,1)

1 0.00000479 0.000101277 0.000119691 0.000151286

2 0.0003455 0.001145455 0.002998007 0.005515714

3 0.0024887 0.030378912 0.29084049 2.28505729

While our results only explored up to 2 steps of look
ahead, the timing results make it clear why increasing the
look ahead makes it intractable. Even with our algorithmic
improvements, the calculations for a single step with a 3-
step time horizon and 12 directions for acceleration lead to
a little over 2 seconds of computation. Any increase in K is
an exponential increase in computation, and any increase in
N or M is expensive as well depending on their exponent K.
The results show that our brute force QNO algorithm leads
to an exponential growth in computational complexity as the
control space discretization is finer. Moreover, in order to get



improvement in the game-wise performance, we need a longer
look ahead horizon. The resulting myopic algorithm fails to
outperform simple proportional navigation, at least in a win-
space sense, which arguably matters more than the cost-space
sense.

V. CONCLUSIONS

The game-theoretic evaluation of a game provides an in-
teresting lens to view the performance of algorithms for the
reach-avoid scenario. Depending on the type of cost inspected
and the underlying metric each policy uses for self-evaluation
we can get widely different results.

Additionally, the discretization required to make any em-
pirical observations about our QNO algorithm performance
is relatively high, a fact that is exacerbated when using our
QNO algorithm in a 3D control space. The high level of
discretization naturally exponentially increases the compu-
tation cost when a longer than one step time horizon is
evaluated. A longer time horizon is a necessary condition for
better performance in terms of preference as a policy, a fact
shown in the 2D results and an idea that is well known in
more traditional optimal control solutions for the scenario.
To summarize, we show that the computational cost for our
algorithm makes it an intractable method to realistically solve
the reach-avoid scenario, and that the method is sound in a
cost sense but that a cost win or loss does not always reflect
a win or loss in the traditional sense.
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