

Wireless Networking & **Communications Group**

THE PROBLEM

GPS signals are insufficient for deep urban canyon and indoor navigation as they attenuate **30–50 dB**.

GPS receivers can't acquire or track indoors with a $C/N_0 \approx 7 \text{ dB-Hz}.$

SOLUTION: EXPLOIT SOPS

Ambient signals of opportunity (SOPs) may enhance and assist conventional navigation techniques.

POTENTIAL SOPS

GNSS GPS, GLONASS, Galileo

Other SVs Iridium

Cell CDMA, GSM, 4G LTE

Misc. Wi-Fi, HDTV AM, FM

Tightly-Coupled Opportunistic Navigation for Deep Urban and Indoor Positioning ZAK KASSAS, KEN PESYNA, JAHSHAN BHATTI, AND TODD HUMPHREYS

DESIRABLE CHARACTERISTICS

- Known or predictable timing offset
- Stable transmitter clock
- Known or predictable location
- High received signal power
- Wide bandwidth
- Continuous carrier
- Known signal structure

SOP COMPARISON

SOP	Signal	Freq.	Tx	Tx
	Power	Stability	Pos.	timing
	(dBW)		known?	offset
				known?
GNSS	~ -150	10^{-12}	\checkmark	\checkmark
CDMA	~ -110	10^{-10} -	Not	Rough
		10^{-11}	always	sync.
				$\sim \mu \mathrm{sec}$
Iridium	~ -130	10^{-10} -	~100m	×
		10^{-11}		

TCON ARCHITECTURE

Signals of Opportunity GNSS HDTV Cellular Joint Signal SOP Conditioning Processing Central Estimator Single Driving Clock

TCON ATTRIBUTES

Tightly-Coupled

Signals are downmixed and sampled with the same clock and signal observables are fused at the carrier phase level allowing absolute time correspondence at the nanosecond level

Opportunistic

Receiver continuously searches for signals from $\phi_I(t_R) =$ which to extract navigation and timing information. The receiver employs on-the-fly signal characterization to estimate:

Collaborative The receiver may collaborate with other receivers through an SOP characterization database (SCD). The database delivers upon request SOP characterizations and associated probability distributions.

 $\boldsymbol{x}_{\mathrm{rec}} =$

Dynamics Model:

 $\boldsymbol{x}(k+1)$

i) GPS Carrier Phase

 $\phi_G(t$

 ϕ_C

• Clock stability

- Clock offset
- Carrier-to-noise ratio C/N_0
- Transmitter location

CENTRAL ESTIMATOR

State Vector:

$$= \begin{bmatrix} \mathbf{r} \\ \delta_t \\ \dot{\mathbf{r}} \\ \dot{\mathbf{k}} \\ \dot{\delta}_t \end{bmatrix}, \ \mathbf{x}_{\text{SOP}} = \begin{bmatrix} \mathbf{r}_{\text{SOP}} \\ \delta_{t,\text{SOP}} \\ \dot{\delta}_{t,\text{SOP}} \\ \gamma_{\text{SOP}} \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \mathbf{x}_{\text{rec}} \\ \mathbf{x}_{\text{SOP},1} \\ \vdots \\ \mathbf{x}_{\text{SOP},N} \end{bmatrix}$$

1) =
$$\boldsymbol{\Phi}(k)\boldsymbol{x}(k) + \boldsymbol{\Gamma}(k)\boldsymbol{w}(k), \boldsymbol{w}(k) \sim \mathcal{N}[\boldsymbol{0}, \mathbf{Q}(k)]$$

Observation Model:

$$t_R) = \frac{1}{\lambda} ||\underline{\mathbf{r}(t_R)} - \mathbf{r}_{SV}(t_R - \delta t(t_R) - \delta t_{TOF})||$$

+ $\frac{c}{\lambda} [\underline{\delta t(t_R)} - \delta t_{SV}(t_R - \delta t(t_R))] + \underline{\gamma_G}$
+ $\epsilon_{iono}(t_R) + \epsilon_{tropo}(t_R) + \nu_{\phi_G}(t_R)$

ii) CDMA Carrier Phase

$$\begin{aligned} \mathbf{r}(t_R) &= \frac{1}{\lambda} || \underline{\mathbf{r}}(t_R) - \underline{\mathbf{r}}_{\underline{C}} || + \frac{c}{\lambda} [\underline{\delta t(t_R)} \\ &- \underline{\delta t_C}(t_R - \delta t(t_R))] + \underline{\gamma_C} + \nu_{\phi_C}(t_R) \end{aligned}$$

iii) Iridium Carrier Phase

$$= \begin{cases} \frac{1}{\lambda} || \underline{\mathbf{r}}(t_R) - \mathbf{r}_I(t_R - \delta t(t_R) - \delta t_{TOF})|| \\ + \frac{c}{\lambda} [\underline{\delta t}(t_R) - \underline{\delta t_I(t_R - \delta t(t_R))}] + \underline{\gamma_I} \\ + \frac{1}{M} \underline{\eta}(t_R - \delta t(t_R) - \delta t_{TOF}) + \epsilon_{iono}(t_R) \\ + \epsilon_{tropo}(t_R) + \nu_{\phi_I}(t_R), & \text{within a burst} \\ 0, & \text{between bursts} \end{cases}$$

REFERENCES

[1] K. Pesyna, Z.M. Kassas, J. Bhatti, T. Humphreys. "Tightly-Coupled Opportunistic Navigation for Deep Urban and Indoor Positioning," ION 2011

