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Abstract— This paper aims to augment terrestrial radion-
avigation systems (TRNS) with autonomous signal-situational-
awareness capability, allowing TRNS operators to detect spoof-
ing and meaconing attacks within their systems. Such a capa-
bility is necessary to address a vulnerability to certain replay
attacks that remains even when TRNS signals are secured
by navigation message encryption and authentication. Two
signal authentication techniques are developed to detect a weak
spoofing signal in the presence of static and dynamic multipath.
Both are shown to be effective in simulations of the varied
operating environments that TRNS will encounter. With au-
tonomous signal-situational-awareness, TRNS gain a defensive
capability that GNSS cannot easily match: a comprehensive
defense against most man-in-the-middle attacks on position,
navigation, and timing services.

I. INTRODUCTION

Global navigation satellite systems (GNSS) struggle to
provide positioning, navigation, and timing (PNT) cover-
age in deep-urban and indoor environments. Current and
upcoming terrestrial radionavigation systems (TRNS) like
Locata [1] and NextNav [2] seek to extend PNT coverage by
placing powerful ranging beacons throughout an urban envi-
ronment. GNSS and TRNS face shared challenges in signal
authentication and anti-spoofing that arise from fundamental
properties of radio systems. Thus, the extensive scholarship
on GNSS vulnerabilities [3], [4] largely applies to TRNS.

As recently outlined in [5], however, TRNS have unique
security challenges: (1) the dynamic range of TRNS signal
power is vastly wider than that of GNSS, allowing would-be
spoofers access to high signal-to-noise ratio (SNR) signals
and complicating spoofing mitigation based on simultaneous
demodulation of spoofed and authentic waveforms [6]; (2)
the angular distributions of spoofed, authentic, and multi-
path signals significantly overlap, rendering angle-of-arrival
techniques based on multi-element antennas [7], [8] less ef-
fective; and (3) TRNS transmitters are physically accessible.

Nevertheless, TRNS also have inherent security advan-
tages. Chief among these is that TRNS transmitters also
function as receivers and can thus (1) accurately characterize
the surrounding signal landscape’s nominal statistics and
thereafter (2) search for anomalies that reveal the presence
of interfering signals. Current development of commercial
TRNS clean-slate designs offers an opportunity to exploit
this advantage of TRNS for enhanced security.
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Related Work in Signal-Processing-Based Spoofing De-
tection Techniques: Several spoofing detection techniques
proposed in the GNSS literature apply advanced signal
processing algorithms to extract signal characteristics for
source verification. Unlike other non-cryptographic spoofing
defenses, these techniques can be readily implemented on
existing GNSS receivers via a firmware upgrade. They can
be divided into two classes, one that detects the inception of
a spoofing attack, and another that performs a brute-force
search for all signals in the landscape for post-inception
detection.

Included in the first class are techniques that look for a
sudden deviation in the received signal characteristics (carrier
amplitude, beat carrier phase, code phase, carrier-to-noise
density ratio, or received power) to detect the onset of a
spoofing attack [9]–[11]. Also included are techniques based
on Signal Quality Monitoring (SQM) that identify anomalous
distortion in the complex correlation function [12], [13].
Multiple signal metrics can be derived by combining ob-
servations of both the received power and the correlation
function distortion [14].

The second class of techniques performs a brute-force
acquisition search for the presence of known signals using
Complex Ambiguity Function (CAF) monitoring [15]. This
approach avoids the problem of missed detection due to the
transient nature of initial spoofing drag-off.

These techniques generally work for GNSS, as it has
signal strength below the noise floor and a narrow dynamic
range of signal power. In contrast, TRNS generally have high
SNR—for quick acquisition in both dense-urban and indoor
environments—and a wide signal power dynamic range.
Analogous to variations in the received signal strength from
low-elevation GNSS satellites in an urban environment, with-
out detailed knowledge of its deep-fading channel model, a
mobile receiver cannot straightforwardly predict the received
signal strength of the authentic signal emanating from a
particular TRNS beacon. Relatedly, when masquerading its
signal as common multipath, a potential spoofer will have a
wide margin to adjust its power in its attempt to overtake a
victim receiver’s tracking loops. In general, because TRNS
operate in a quantitatively distinct regime of parameter space
compared to GNSS (see [16, Subsec. 5.2.3]) it is challenging
for mobile TRNS receivers to directly apply existing GNSS-
targeted techniques for spoofing detection.

On the other hand, TRNS infrastructural monitors can
fully exploit signal processing techniques for spoofing detec-
tion. Assuming that each has multiple correlators and secure
clock synchronization [17], such monitors can narrowly char-
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acterize all signals in their nominal operating environments,
after which signal anomalies in the surveilled landscape
become apparent. This paper capitalizes on this feature
of TRNS to propose two signal authentication techniques
customized for TRNS monitors. It will be shown that a
spoofing signal—even one with SNR below that of the
authentic signal—can be detected despite the presence of
static and dynamic multipath.

Related Work in TRNS Security: The present work
complements the cryptographic security proposal presented
in [5]. Briefly, [5] proposes a multi-tiered navigation message
encryption (NME) + message authentication code (MAC)-
based navigation message authentication (NMA) scheme.
One can think of [5] as offering a basic level of navigation
security via cryptographic methods. No TRNS should be
fielded without such basic measures.

However, the techniques proposed in [5] are not sufficient
to secure TRNS because the exposed spreading codes of a
high-SNR TRNS signals makes them vulnerable to replica-
tion in a security code estimation and replay (SCER) [18] or
meaconing attack. More generally, NME+NMA cannot fully
protect TRNS against low-latency replay attacks. Even exotic
signal-level security techniques like spreading code authenti-
cation (SCA) [19] or deterministic code-phase dithering [20]
can be rendered ineffective by a spoofer’s ability to access
high-power authentic signals in a TRNS network.

Contributions: To address the gap in TRNS defenses
against low-latency signal replay attacks, this paper proposes
an autonomous signal-situational-awareness (SSA) overlay
capability within a TRNS network. SSA is intended to
augment basic TRNS cryptographic security. While some
spoofers will remain undetectable, SSA gives TRNS oper-
ators a significantly improved chance of catching threats and
alerting users without resorting to costly full-duplex tech-
niques (those requiring bi-directional communication with
users). Note that SSA is not possible for current GNSS space
vehicles in medium Earth orbit, which can neither receive
each other’s signals nor detect low-power ground-based
spoofers. This work seeks to place TRNS SSA on a solid
theoretical and practical footing. First, signal authentication
techniques for SSA are developed based on the prior work in
[14] and [21]. Second, simulations with a theoretical model
of multipath and spoofing signals are used to quantify the
effectiveness of autonomous SSA under some of the myriad
operating conditions encountered by generic TRNS.

II. SIGNAL AUTHENTICATION

This paper adopts a Bayesian binary hypothesis testing
framework for distinguishing between the null hypothesis
H0 for the spoof-free case, and the alternate hypothesis H1

for the spoofing case. The TRNS pre-correlation and post-
correlation signal model for single-spoofer scenarios in a
multipath environment, together with the probability distri-
butions of signal components required to characterize the
detection statistic, have been outlined in [16, Sec. 5.2]. This
section develops the measurement models and formulates the
detection statistics for signal authentication.

Consider a TRNS monitor receiving signals from a trans-
mitting TRNS beacon at a standoff distance d, with its post-
correlation output described by [16, Eq. 5.6]. There will
typically be a significant number NM of multipath compo-
nents evident in the post-correlation function ξk(τ) ending
at time tk = kT , where T is the accumulation interval,
but due to the quasi-static nature of the urban environment,
the variation in ξk(τ) will be small over (tk−1, tk], ∀k.
These variations are caused by (1) thermal noise, (2) time-
varying receiver non-idealities, and (3) urban environment
movement. The first two factors are modeled by additive
white Gaussian noise rN (t), whose contribution to ξk(τ) is
detailed in [16, Sec. 5.2], while the third factor is modeled
as a dynamic multipath component. Revisiting [16, Eq. 5.6],
each multipath component can be further segregated into
static ξMs(k,i) and dynamic ξMd(k,i) components:

NM∑
i=1

ξM(k,i)(τ) =

NM∑
i=1

[
ξMs(k,i)(τ) + ξMd(k,i)(τ)

]
(1)

Let l be the number of signal taps sampling ξk(τ) across
the lag window of interest, τw > 0, with the centermost
tap being aligned with τ = 0, the location of the receiver’s
estimate of the authentic signal’s correlation function peak,
and the remaining taps being evenly spaced across τw. The
uniform tap spacing is

∆δ =
τw
l − 1

and the vector of tap locations is

δ =
[
−τw

2
,−τw

2
+ ∆δ, · · · , τw

2
−∆δ,

τw
2

]T
∈ Rl

with δi = − τw2 +(i−1)∆δ representing the ith tap location,
i = 1, · · · , l.

Being complex-valued, the post-correlation function can
be viewed as having in-phase quadrature components:
ξk(τ) = Ik(τ) + jQk(τ). Samples of ξk(τ) at the locations
in δ can be stacked into a single correlation measurement
vector:

qk =
[
Ik (δ1) , Qk (δ1), . . . , Ik(δl) , Qk (δl)

]T ∈ R2l (2)

A hypothesis test for signal anomaly detection can be
formulated in terms of the change in the distribution of
qk due to an additional signal component or components.
Let p0(qk) and p1(qk) be the distribution of qk under the
null (H0, no spoofing present) and alternate (H1, spoofing
present) hypotheses respectively.

The measurement qk can be further dissected into its
individual components:

H0 : qk = q̄ +wk (3a)
H1 : qk = q̄ + µk +wk (3b)

Here, q̄ is the mean of qk under H0, and wk ∼ N (0, P ) is
the measurement noise under both hypotheses, with P =
E[(qk − q̄)(qk − q̄)T] being its covariance. P includes
contributions due to dynamic multipath, thermal noise, and
receiver non-idealities. Under H1, there additionally enters
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a correlation distortion vector µk, which is a function of
the false signal’s code and carrier offsets ∆τDk and ∆θDk
defined relative to the authentic signal’s code and carrier
phase. µk will be further detailed in a later section. The
amplitude of the false signal is given by εDk > 0. In the
case of a successful detection, the false signal’s amplitude
and code and carrier offsets may also be estimated. For a
false detection, estimates of these parameters are specious;
typically, they match those of a strong dynamic multipath
component.

The hypotheses H0 and H1 can be expressed in terms of
probability distributions as follows, where p0(qk) is modeled
as a Gaussian distribution with a mean of q̄ and covariance
P , and p1(qk) has the same distribution but with an unknown
deviation to the mean:

H0 : qk ∼ N (q̄, P ) (4a)
H1 : qk ∼ N (q̄ + µk, P ) (4b)

This model conservatively assumes that P is identical under
both H0 and H1. A spoofing signal can introduce additional
time variation in ξk(τ) due to its own dynamic multipath,
which can inflate P in the positive definite sense. However,
it is impossible to know the increase in the magnitude of P
a priori, so a less-sensitive model of having a constant P is
assumed.

Suppose one subtracts the static components of ξk(τ). This
is analogous to performing nominal signal cancellation in
the correlation domain by removing the component of ξk(τ)
due to the authentic signal and removing the static multipath∑NM

i=1 ξMs(k,i)(τ). Then the correlation deviation function
ξzk(τ) = Izk(τ) + jQzk(τ) can be obtained:

ξzk(τ) = ξSk(τ) +

NM∑
i=1

ξMd(k,i)(τ) + ξNk(τ) (5)

where ξSk(τ) denotes the contribution to ξk(τ) due to the
spoofing signal. Let

zk , qk − q̄

=
[
Izk (δ1) , Qzk (δ1), . . . , Izk(δl) , Qzk (δl)

]T ∈ R2l

be the vector composed of samples of ξzk(τ) at the tap
locations in δ. The model in (4) can now be rewritten as

H0 : zk ∼ N (0, P ) (6a)
H1 : zk ∼ N (µk, P ) (6b)

The model in (6) is a special case of the general Gaussian
problem [22] for which the optimal detection test can be
reduced to

L(zk) = zTkP
−1zk − (zk − µk)TP−1(zk − µk)

H1

≷
H0

ν (7)

where L(zk) is the log likelihood ratio and ν > 0 is the
threshold that yields the chosen probability of false alarm
PF .

This paper tackles the detection problem using two dif-
ferent techniques, an Anomaly Test (AT), which simply
measures the fit of the observation zk to the H0 distribution
by considering only the first term of (7), and a Generalized
Likelihood Ratio Test (GLRT), which estimates µk from the
observations zk to form the full detection statistic L(zk) for
the hypothesis test. These two techniques are elaborated in
the following subsections.

A. Anomaly Test (AT)

Consider the optimal test in (7), which can be simplified
by evaluating just the likelihood of the p0(zk) distribution:

L∗AT(zk) = zTkP
−1zk

H1

≷
H0

ν∗AT (8)

where ν∗AT > 0 is the threshold that yields the chosen PF
given the p0(zk) distribution.

This technique can be used to detect any changes from the
nominal signal landscape due to the presence of RFI. Due
to its low computational needs, it is favorable for round-the-
clock surveillance of the signal landscape. However, it does
not glean any insight into the characteristics of the spoofing
signal, unlike the GLRT detector, which will be elaborated
in the next subsection.

B. Generalized Likelihood Ratio Test (GLRT)

The set of correlation distortion parameters
{εDk,∆τDk,∆θDk} is first estimated using a modified
maximum-likelihood (ML) technique proposed in [23]. The
estimator derived from this ML technique can detect any
anomalous signal over a wide range of spoofing-to-authentic
code offsets. This subsection details the adaptation of this
estimator for TRNS spoofing detection.

The complex-valued ith tap of the correlation distortion
function at time index k, ξDk(τ) , IDk(τ) + jQDk(τ) is
expressed in terms of its amplitude εDk, code phase offset
∆τDk and carrier phase offset ∆θDk as

ξDk(δi) = εDkR(δi −∆τDk) exp(j∆θDk) + ξNk(δi) (9)

The correlation distortion vector µk is similarly obtained
by stacking the correlation distortion function from multiple
taps:

µk =
[
IDk (δ1) , QDk (δ1), . . . , IDk(δl) , QDk (δl)

]T
(10)

The estimation of the correlation distortion’s code phase
offset can be separated from the estimation of its amplitude
and carrier phase offset by exploiting the linear relationship

ξDk = H(∆τDk, δ)εDk exp(j∆θDk) (11)

where ξDk = [ξDk(δ1), · · · , ξDk(δl)]
T and the observation

matrix H(∆τDk, δ) is

H(∆τDk, δ) =

R(δ1 −∆τDk)
...

R(δl −∆τDk)

 (12)
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A coarse search is first performed by setting the code phase
estimate ∆τ̂Dk = δi for i = 1, · · · , l and solving for the ML
estimate of εDk exp(j∆θDk) for each candidate ∆τ̂Dk:

ε̂Dk exp(j∆θ̂Dk) =[
HT(∆τ̂Dk, δ)Q−1H(∆τ̂Dk, δ)

]−1
HT(∆τ̂Dk, δ)Q−1ξzk

(13)

where Q is the l × l Toeplitz matrix that accounts for the
correlation of the complex Gaussian thermal noise among
the taps [24], and ξzk = ξzk(δ) is the vector of correlation
deviation function from all signal taps. The (a, b)th element
of Q is Qa,b = R(|a− b|∆δ), where ∆δ is the tap spacing.

The cost Jk corresponding to each set of estimates{
âDk,∆τ̂Dk,∆θ̂Dk

}
is calculated as

Jk = ‖ξzk −HT(∆τ̂Dk, δ)ε̂Dk exp(j∆θ̂Dk)‖2Q (14)

where the norm is defined such that ‖x‖2Q = xTQ−1x.
The cost Jk is proportional to the negative log-likelihood
function, so the set with the minimum cost is the ML
estimate.

A bisecting search is then performed to obtain a refined
code phase estimate using linear interpolation. At each
bisection point, new amplitude and carrier phase estimates
are determined by re-evaluating (13). The process is repeated
until Jk converges, and the resulting estimates are accepted
as the maximum-likelihood estimate

{
ε̂Dk,∆τ̂Dk,∆θ̂Dk

}
.

This estimate, with an example shown in Fig. 1, can corre-
spond to the signal characteristics of the dynamic multipath,
or spoofing signal, depending on their relative signal ampli-
tude and code offset.

The maximum-likelihood estimate of ξDk(τ) can be com-
puted as

ξ̂Dk(τ) , ÎDk + jQ̂Dk (15)

= ε̂DkR(−∆τ̂Dk + τ) exp(j∆θ̂Dk) (16)

from which the correlation distortion vector

µ̂k =
[
ÎDk (δ1) , Q̂Dk (δ1) , . . . , ÎDk (δl) , Q̂Dk (δl)

]T
is obtained to evaluate the optimal test (7).

Since both p0(zk) and p1(zk) are assumed to have the
same covariance, (7) can be reduced to

L′(zk) = µ̂T
kP
−1zk

H1

≷
H0

ν′ (17)

where ν′ > 0 is the threshold that yields the chosen PF
based on the distribution of L′(zk) under H0.

Analysis can be further simplified by letting za,k =
R−Ta zk and µa,k = R−Ta µk, where Ra is the Cholesky
factorization of P . The optimal test then becomes

L∗GLRT(za,k) = µ̂T
a,kza,k

H1

≷
H0

ν∗GLRT (18)

which implies a correlation-and-accumulation structure, with
ν∗GLRT being the threshold derived from the H0 distribution
using a chosen PF .

Fig. 1: The measured correlation distortion function ξDk(τ)
(dashed black) and its ML estimate ξ̂Dk(τ) (solid black)
from an example scenario, shown in their in-phase compo-
nents. The dotted black line corresponds to the delay of the
authentic signal τA. Note that ξ̂Dk(τ) has a closer match
to ξSk(τ) (red) than to ξMk(τ) (magenta), which implies
that the estimated correlation distortion function is a good
representation of the spoofing signal’s correlation function.

This technique is sub-optimal, as the quality of the de-
tector depends on the quality of the estimated parameters
{εDk,∆τDk,∆θDk} from ML estimation. Nonetheless, it
is effective in discerning H1 from H0 for TRNS spoofing
detection.

III. SIMULATIONS

The AT and GLRT spoofing detectors were tested in
simulation under different scenarios. The following subsec-
tions outline the simulation setup, and the performance of
the detectors under different operating conditions (different
transmitter power level and receiver sensitivity range).

A. Simulation Setup

In order to have indoor positioning capability, the transmit
power and spatial distribution of TRNS beacons have to
compensate for high signal energy absorption by building
materials, while minimizing infrastructure cost and near-far
interference. Fig. 2 represents a small subset of a dense mesh
deployment of TRNS beacons with a spacing of 10 km.
The worst case scenario of spoofing is considered in all test
cases, where a zero-latency spoofer was placed along the
line-of-sight path between a pair of transmit and listening
beacons. In each run, the spoofer power was set to reflect the
spoofing power ratio (i.e. ratio of the spoofing power versus
the authentic signal power) at the receiving beacon. A path
loss exponent α of 3 was used to reflect a generic urban
environment of the TRNS beacons [25]. The monitoring
receiver’s antenna experiences an ambient temperature T of
290 K, and has a front-end bandwidth B of 20 MHz. 10000
runs were conducted during the calibration phase using H0

distribution, which is made up of 1 authentic signal, 8 static
multipath and 1 dynamic multipath. Each post-correlation
function ξk(τ) is computed across a correlation window
of 20 chips from 1 ms of signal accumulation. The test
statistics collated during calibration were used to compute the
thresholds for each detector, based on a probability of false
alarm PFA of 1 in 1000. 2000 runs were then conducted
during the trial phase, with an additional spoofing signal
in the landscape, to determine the probability of detection
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Fig. 2: Simulation setup used for all test cases. The trans-
mitting beacon and the spoofer are located 10 km and 2 km
away from the monitoring beacon respectively. The top plot
shows the amplitude of the authentic and spoofing signals
over a 10 km by 4 km grid, both of which are above the
noise floor of the receiver.

PD of the spoofing signal at each spoofing power ratio. The
distributions of all the signal components were outlined in
[16, Subsec. 5.2.2].

B. Detector Comparison
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Fig. 3: Simulation results for AT and GLRT detectors,
without dynamic multipath (No DM) and with dynamic
multipath (DM). For discussion on the long-tail distribution
on the right, see Subsection III-B. While the DM curve of
GLRT appears similar to that of AT, it exhibits differences
at the 5% level in the vicinity of the threshold.

Fig. 3 shows the performance of the AT and GLRT
detectors, respectively, at a beacon transmit power of 30W.
This power is sufficient to compensate for propagation and
absorption losses over a 10 km spacing between beacons, as
anticipated by a TRNS provider like NextNav. Each detector
is simulated both with and without a dynamic multipath
component. In each of these 4 cases, the condition under
which the detector is trained and the condition under which it
is evaluated is the same. It is no surprise that the confounding
influence of dynamic multipath reduces the performance of
each detector. Absent dynamic multipath, the GLRT exhibits
a sensitivity advantage of roughly 5 dB. Under dynamic
multipath, neither detector exhibits a significant advantage:

the GLRT’s 50% sensitivity threshold is 0.13 dB better (i.e.
lower) than that of the AT.

In the dynamic multipath cases, each detector exhibits a
sharp threshold and a long tail of false negatives. The region
to the left of the threshold is dominated by noise. In this
regime, PD improves with increasing spoofing power ratio as
the spoofing power approaches the noise floor at the receiver.
To the right is the multipath-dominated region. Here, a false
negative rate of 10% narrows towards zero with increasing
spoofing power ratio. This occurs because, as discussed in
[16, Subsec. 5.2.2], the spoofer’s simulated code phase may
coincide with the window of correlator output taps that are
effectively desensitized by dynamic multipath. Due to the
particular parameters used, this occurs 10% of the time. At
high enough spoofing power ratio, this desensitization no
longer prevents detection.

C. Different Levels of Transmitter Power
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Fig. 4: Simulation results of the GLRT detector under
different transmitter power level.

Fig. 4 shows the detection performance of the GLRT
detector under different authentic transmitter power levels.
Each simulated detection has access to only 1 ms of signal.
Considering transmit power levels running upwards from
−70 dBW, detection performances improve at all spoofing
power ratios until the detector exhibits a saturation effect at
a transmit power level of 10 dBW. Note that the spacing
between adjacent curves is not uniform with transmit power
level.

In order to interpret the saturation and non-uniform spac-
ing effects, one may recast these observations in terms of
received power (not spoofing power ratio) versus transmitted
power. However, in order to do this, one must choose a single
point on the PD curve to summarize detector performance
at a particular transmit power level. In Fig. 5, this point is
arbitrarily chosen to be the 50% detection threshold. That
is, at any given transmit power level, Fig. 5 shows the
received power corresponding to a 50% rate of detection of
the spoofer by the TRNS monitor.

Fig. 5 suggests that the saturation and non-uniform spacing
phenomena in Fig. 4 indicate the presence of 3 quantitatively
distinct regimes, in order from right to left:
• Region I: Quantization noise power PQ dominates over

thermal noise PN at the receiver, where PN = SnnB
is the noise power over a channel bandwidth B and
Snn being the noise spectral density. Furthermore, the
sensitivity threshold PI is greater than PN .
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• Region II: Thermal noise dominates over quantization
noise and the detection threshold is comparable to the
thermal noise level, PI ≈ PN .

• Region III: Thermal noise still dominates and the spoof-
ing signal is only detectable post-correlation (PI �
PN ).

Naturally, if PI > PA, then we are “in clover”: detection is
not challenging!
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Fig. 5: Simulation results of the GLRT detector under differ-
ent transmitter power, showing the 50% detection sensitivity
curve with 3-bit quantization.

Receiver Front-End Details: The boundary between
Regions I and II is sensitive to the behavior of the pro-
grammable gain amplifier (PGA) in the monitoring receiver.
One common model for a quantizing receiver is to build a
variable attenuator followed by a fixed-gain amplifier before
the signal reaches the analogue-to-digital converter (ADC).
In order to avoid saturating the ADC, that is, exceeding its
input voltage range, the variable attenuator is commanded
to reduce the power from the antenna according to the
statistics of the ADC output in a feedback loop. In Fig. 4,
the PD curves begin “stacking up” when the transmit power
becomes high enough to enter Region I: that is, when
additional transmit power must be exactly offset by increased
attenuation in the receiver. In this regime, thermal noise is
negligible compared to quantization noise, which tracks with
transmitter power. Thus, in Region I, the slope of the 50%
detection curve in Fig. 5 is unity. Increasing the transmitter
power in Region I does not improve PD because the variable
attenuator is forced to further suppress the incoming signal
by the same amount, leading to no net increase in sensitivity.

In Region II, there is no suppression of the incoming
signal by the variable attenuator, as all received signals
are within the sensitivity range of the ADC at full PGA
gain. Assuming as in Section II that cancellation of the
authentic signal and the static multipath components at the
monitoring receiver may be considered perfect in this regime,
the detector need only distinguish the spoofing signal from
thermal noise and dynamic multipath. So long as the dynamic
multipath remains relevant (i.e. comparably strong to the
spoofed signal), it will prevent the receiver from identifying
spoofing signals that are below the noise floor. resulting in

a relatively flat 50% detection curve.
In Region III, both the spoofing signal and dynamic

multipath have processing gain advantage over thermal noise
from despreading. The detector in this regime has to only
differentiate the spoofing signal from dynamic multipath,
with this sensitivity decreasing with lower transmit power
level, resulting in the 50% detection curve having a slope
less than unity.

D. Receiver Sensitivity Range
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Fig. 6: Simulation results of the GLRT detector with different
ADC bit depth, for a 0 dBW (top) and 40 dBW (bottom)
transmitter located at 10 km away from a listening beacon.

Fig. 6 shows the detection performance of the GLRT de-
tector with different ADC bit depths for two distinct transmit
power levels, and Fig. 7 shows these data recast in terms of
RX power at the 50% detection threshold versus authentic
signal TX power. One may infer that the sensitivity threshold
does not improve with bit depth at low transmit power levels.
With regards to the regions discussed in Subsection III-C,
these plots reveal two trends. First, a larger ADC bit depth
results in a lower quantization noise level in Region I due
to lower suppression by the variable attenuator. Second, the
dividing line between Regions I and II moves rightward with
increasing bit depth. That is, the thermal noise dominates
up to a higher transmit power level. Quantization is not the
performance-limiting factor in Region III.

IV. CONCLUSION

This paper proposes the addition of signal-situational-
awareness (SSA) capability to the TRNS network, to
augment cryptographic NME+NMA scheme in countering
against SCER and meaconing attacks. Two signal authenti-
cation techniques are proposed for SSA that allow TRNS
operator to detect weak signal spoofing in the presence of
multipath without the use of costly full-duplex techniques.
The first technique, the Anomaly Test, compares the current
observations against an empirical model of typical (nominal)
observations, and has an advantage in simplicity and perfor-
mance. The second technique searches for the spoofing signal
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Fig. 7: Simulation results of the GLRT detector under differ-
ent transmitter power, showing the 50% detection sensitivity
curve with different levels of quantization. The boundary
between Regions I and II varies with depth and is shown
for 6-bit quantization.

and compares the observations against a reconstruction of
the most likely spoofer: the Generalized Likelihood Ratio
Test (GLRT) technique. The GLRT method performs as
well or better than the Anomaly Test in all considered test
conditions. The GLRT exhibits a sensitivity advantage of
5 dB over the Anomaly Test in the absence of dynamic
multipath, which drops to 0.13 dB in the presence of dynamic
multipath. In addition, the GLRT has a 50% spoofer detection
threshold up to −74 dB with high transmit power level
and 6-bit ADC quantization. Simulations of both detectors
under various operating conditions encountered by a generic
TRNS quantify their performance. Terrestrial radionavigation
systems will benefit not only from techniques designed to
secure traditional GNSS, but also from the exploitation of
novel opportunities for signal situational awareness arising
from the proximity and mutual audibility of the transmitting
beacons, rendering TRNS more resilient against man-in-the-
middle attacks.
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