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Abstract—A full analysis of position domain integrity is carried
out for the recently-introduced Generalized Integer Aperture
Bootstrapping (GIAB) technique, a data-driven method for
resolving and validating GNSS carrier-phase integer ambiguities
suitable for high-integrity, safety-critical systems. The analysis
can be extended to all integer aperture (IA) techniques that
are generalized in the sense of allowing partial integer fixing. It
is shown that generalized IA methods produce relative position
(baseline) estimates that suffer from non-negligible biases. Key
conditional distributions of the baseline computed from GIAB-
validated ambiguities are rigorously derived for both full and par-
tial ambiguity resolution. These distributions enable evaluation
of the a posteriori risk from bias in the GIAB baseline estimate.
Compared to EPIC, the state-of-the-art high-integrity algorithm,
GIAB is shown to satisfy tighter integrity requirements for the
same measurement model.
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I. INTRODUCTION

The required navigation performance for carrier-phase dif-
ferential global navigation satellite systems (CDGNSS) has
become more demanding with each new application. Per-
formance is assessed in terms of integrity, accuracy, and
availability, among other metrics. Integrity is specified in terms
of integrity risk IR, the probability that the solution error
exceeds an alert limit AL without warning. Accuracy can
be specified in terms of quantiles of interest, such as 95%
accuracy, which refers to the error volume within which 95%
of solutions fall. Availability is the percentage of time that the
solution satisfies its required integrity and accuracy.

The ground-based augmentation system (GBAS), originally
specified over a decade ago as a landing aid for large runways
on land, calls for vertical ALs of 10 m with IR on the
order of 10−7 per approach. Under zero-mean-error Gaussian
assumptions, this leads to a relatively loose 95% accuracy
requirement of 2 m, which can be met by a float CDGNSS
solution, though the accuracy and integrity were specified in-
dependently. More recent navigation system applications, such
as landing aboard an aircraft carrier and a recent demonstration
of autonomous aerial refueling, have meter-level ALs, IR on
the order of 10−6, and decimeter-level accuracy requirements.
Such a stringent performance specification can only be met by
CDGNSS positioning when the carrier-phase ambiguities are
resolved, i.e. fixed, as integers.

Emerging uses of CDGNSS include fully autonomous oper-
ation of large unmanned aerial vehicles (UAVs) from aircraft
carriers, which will demand IR on the order of 10−7 with

ALs of about 1 m and decimeter-level accuracy. For these
demanding new applications to achieve the required navigation
performance, it will be essential to verifiably control the
risk from incorrect ambiguity resolution by eliminating or
bounding any induced biases in the three-dimensional relative
position, or baseline, solution.

State-of-the-art methods in high-integrity CDGNSS enforce
IR constraints in the position domain by accounting for
baseline biases induced by incorrect integer fixing. Two such
methods are the Geometry Extra Redundant Almost Fixed
Solutions (GERAFS) [1] and the Enforced Position domain
Integrity-risk of Cycle resolution (EPIC) [2]–[5] algorithms.
Both of these rely exclusively on a priori error models to
determine, before the measurements are processed, whether
a fixed solution or a float backup solution will be selected.
This approach is termed model-driven because the solution
selection logic is entirely dependent on the prior error model.
Given conservative error models, because GERAFS and EPIC
attempt to bound IR using the a priori distribution, they are
inherently conservative. Their conservatism arises from the
need to protect against position domain biases induced by a
large number of potentially-incorrect fixes without the benefit
of conditioning on the observed carrier-phase measurements.
The development and validation of such conservative error
models is a separate and significant effort [6].

In contrast to the model-driven approach, data-driven meth-
ods exploit measured data to decide whether to accept the
fixed or float solution. Conditioning selection on the observed
measurements reduces the risk of incorrect ambiguity resolu-
tion. Foremost among data-driven techniques is the integer
aperture (IA) approach [7]. In this approach, the integer
ambiguity vector is first estimated by some means, e.g., integer
bootstrapping (IB) [8] or integer least squares (ILS) [9], after
which a test statistic is computed from the ambiguity residual,
i.e., the difference between the float and fixed ambiguities.
Based on this statistic, a hypothesis test decides whether to
accept or reject the fixed solution.

IA bootstrapping (IAB) is a particularly simple type of IA
estimation in which the integer ambiguities are fixed via IB
and the test statistic is produced by a second application of IB,
this time to a scaled-up version of the ambiguity residual [10].
If the statistic is the zero vector, the fixed solution is selected;
otherwise the float solution is selected. IAB is sub-optimal in
two respects: First, IB does not always find the maximum
likelihood integer ambiguity, as opposed to ILS, which is
guaranteed to do so. Second, IAB fails to maximize the
probability of successfully fixing the ambiguities for a given
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probability of incorrectly fixing them. Although sub-optimal,
IB enjoys a significant advantage: its fixing probabilities
are analytically calculable, which allows the residual scaling
parameter to be set analytically as a function of a desired
probability of incorrect fix, or failure rate, P̄F . Crucially,
this property enables a system to provably satisfy the strict
performance requirements of safety-of-life applications.

A companion paper [11] extends the IAB technique to a
generalized form, called Generalized Integer Aperture Boot-
strapping (GIAB), in which subsets of the full integer ambi-
guity set are considered for resolution if the full set cannot be
fixed confidently. Salient features of GIAB are (1) the prob-
ability of incorrect ambiguity resolution, PF , is analytically
computable, (2) the probability of correctly resolving any of
the considered subsets of ambiguities, PSi , is also analytically
computable, and (3) the integer aperture test thresholds can be
set analytically to bound PF while nearly maximizing PSm

,
where m is the number of integer ambiguities to be estimated.

It was noted in [11] that the conditional distribution of
the integer-constrained baseline estimate produced by GIAB
exhibits non-negligible biases, even when all fixed integers
pass validation. No prior work has characterized these biases
or assessed their effect on integrity risk. Subsequent to the
preliminary version of this paper [12], it was shown that com-
bined estimation-with-exclusion methods exhibit biases when
certain symmetry properties of the test statistic and exclusion
regions are not maintained, even when conditioned on correct
exclusion [13]. This general property was then demonstrated
in receiver autonomous integrity monitoring with exclusion.
This paper shows that, even though GIAB with partial fixing
satisfies the symmetry conditions of [13] and produces a zero-
mean-error baseline estimate, the distribution is multi-modal
without a mode at zero-error. Whereas [13] addressed only
the first moment of the distribution of the combined exclusion-
plus-estimation output, this paper addresses the full probability
density under several conditions and Gaussian assumptions.

This paper, which extends a preliminary version presented
in [12], makes four novel contributions to the literature: First,
it shows that baseline estimate biases are present in any data-
driven partial ambiguity resolution algorithm that corrects the
float baseline with the validated fixes. Second, it develops
and validates an analytical characterization of several impor-
tant conditional distributions of the GIAB baseline. Third,
it extends the position domain integrity concepts originally
developed for EPIC to data-driven algorithms for use in safety-
of-life applications. Fourth, it validates GIAB’s performance
via Monte Carlo simulation and compares this with EPIC.

II. GENERALIZED INTEGER APERTURE BOOTSTRAPPING

To make this paper self-contained, this section presents a
digest of portions of the companion paper [11]. Proofs of the
companion paper’s results are given therein.

GIAB begins by computing the so-called float solution from
the linearized, short-baseline GNSS measurement model

y = Bb+Aa+ ν (1)

where y ∈ Rn contains the “observed-minus-modeled”
double-difference carrier-phase and, optionally, pseudorange

measurements, b ∈ R3 is the unknown, real-valued correction
to the modeled baseline between GNSS antennas, a ∈ Zm
holds the unknown carrier phase integer ambiguities, B and A
are appropriately-dimensioned measurement sensitivity matri-
ces, and ν ∈ Rn is zero-mean, double-difference measurement
noise with variance Qy .

Applying weighted least squares estimation to (1), with
H = [B A], produces real-valued estimates of b and a:[

b̂
â

]
=
(
HTQ−1

y H
)−1

HTQ−1
y y (2a)

E

([
b̂
â

])
=

[
b
a

]
(2b)

cov

([
b̂
â

])
=

[
Qb̂ Qb̂â
QT
b̂â

Qâ

]
=
(
HTQ−1

y H
)−1

(2c)

The estimates â ∈ Rm and b̂ ∈ R3, called the float ambiguity
and float baseline, ignore the integer constraint a ∈ Zm.

Next, the float ambiguities are decorrelated using the com-
monly accepted LAMBDA method [14], [15]. The decorre-
lated float ambiguity is ẑ = ZT â, and the transformed true
ambiguity is z = ZTa, with Z being the integer-preserving
transformation matrix. Likewise, Qâ and Qb̂â are transformed
as Qẑ = ZTQâZ and Qb̂ ẑ = Qb̂âZ. All integer-related
operations hereafter will be performed in the decorrelated
space, with ẑ referred to as the float ambiguity.

GIAB’s objective is to fix and validate as many of the
ambiguities as possible while ensuring that the probability
that a validated ambiguity is incorrect is less than a specified
level, P̄F . GIAB outputs the number of validated ambiguities,
q ∈ {0, . . . ,m}, and the vector, ž ∈ Zmin(q+1,m), whose first
q elements are the fixed and validated ambiguities, and whose
(q + 1)th element, if q < m, is the first fixed but rejected
ambiguity.

The outputs of GIAB can be mapped to various events
defined in terms of the random variables ž and q. In the
following event definitions, z1:n indicates the vector composed
of the first n elements of the vector z:

F : ž1:q 6= z1:q, q ∈ {1, . . . ,m} (3a)
U : q = 0 (3b)
Si : ž1:i = z1:i, q = i ∈ {1, . . . ,m} (3c)
Zi : ž1:i = z1:i, q = i ∈ {0, . . . ,m} (3d)

CF i : ž1:i = z1:i, i ∈ {1, ...,m} (3e)
Ri+1 : q = i < m (3f)

The failure event F occurs upon validation of any incorrect
integers. The undecided event U occurs when no ambiguity is
fixed. There are m success events Si defined for each possible
number of correctly validated integer fixes from 1 to m. The
event Zi is identical to Si except that it includes the q = 0
(no fixes) case. Note that the null vector ž1:0 is assumed to
be identical to z1:0 so that Z0 = U . The correct fix event
CF i occurs when the first i ≥ 1 integers are fixed correctly,
irrespective of the value of q. The rejection event Ri+1 occurs
when GIAB refuses to fix the (i+ 1)th ambiguity.
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GIAB requires that the variance of the float ambiguity be
decomposed into LDLT form such that

Qẑ = LDLT (4)

where L is a unit-lower triangular matrix and D is
a diagonal matrix. The float ambiguity can be modeled
as the true ambiguity plus zero-mean Gaussian noise,
ẑ = z + ε, ε ∼ N (0, Qẑ). Multiplication by L−1 transforms
ε into a vector whose elements are mutually uncorrelated:
εc , L−1ε, εc ∼ N (0, D). The quantity εc, called the decor-
related float ambiguity error, plays a key role in the analysis
that follows. Again, this assumption depends on the existence
of a validated model for the measurements. If measurements
are taken over multiple epochs, their correlations must be
perfectly known for complete decorrelation. This paper studies
single epoch ambiguity resolution to eliminate time correlation
effects.

GIAB takes as input a vector, β, called the aperture param-
eter vector, that determines the validation threshold for each
ambiguity. β also determines the probabilities of the failure,
success, and undecided events, PF , PSi

, and PU . β is set
as a function of D that ensures PF < P̄F . GIAB can be
represented as the function

[q, ž] = GIAB (ẑ, L,β) (5)

The event probabilities are [11]

PF = PE1 +

m∑
i=2

PEi

i−1∏
j=1

PCj (6a)

PSi
=


m∏
j=1

PCj i = m

PR(i+1)

i∏
j=1

PCj i ∈ {1, . . . ,m− 1}
(6b)

PU = PR1 (6c)

where, with Φ(x) being the standard normal cumulative dis-
tribution function,

PCi = 2Φ

(
βi/2√
di

)
− 1 (7a)

PEi =
∑

ζ∈Z\{0}

(
Φ

(
βi

2 − ζ√
di

)
− Φ

(
−βi

2 − ζ√
di

))
(7b)

PRi = 1− PEi − PCi (7c)

An upper bound on PEi that leads to an interesting upper
bound on PF is obtained by assuming all float ambiguity
errors larger than 1 − βi

2 cause an error, even though some
will actually be rejected:

PEi ≤ 2Φ

(
βi/2− 1√

di

)
(8)

This bound is used to compute the aperture parameter β.
Let r = min{q + 1,m} for notational simplicity. The am-

biguity residual is defined as ε̌ , ẑ1:r − ž. Note that if
ž = z1:r, then ε̌ = ε. Denote the upper r × r sub-matrix of
L as L1:r,1:r. An important quantity, called the sequentially-
constrained ambiguity residual, is defined as ε̌c , L−1

1:r,1:rε̌.

This vector has a convenient property derived from the chosen
LDLT decomposition: if the first i integer ambiguities GIAB
fixes are correctly fixed (i.e., if ž1:i = z1:i), then the (i+ 1)th
element of ε̌c, denoted ε̌c(i+1), is uncorrelated with the previ-
ous i elements. This property will be exploited later on. GIAB
decides whether to fix the ith ambiguity based on the value
of ε̌ci. It operates in such a way that

|ε̌ci| ≤
βi
2

for i ∈ {1, . . . , q}, q > 0

βi
2
< |ε̌ci| ≤

1

2
for i = q + 1, q < m

(9)

In other words, all i ∈ {1, . . . , q} ambiguities that GIAB
validates have small sequentially-constrained ambiguity resid-
uals ε̌ci, but the (q + 1)th ambiguity, which GIAB refuses
to fix (assuming q < m), has ε̌c(q+1) too large for GIAB to
confidently fix. Note that a rounding operation within GIAB
ensures |ε̌ci| ≤ 1/2.

If the full set of ambiguities is fixed and validated, the float
baseline can be constrained by the float ambiguity residual,
resulting in the so-called fixed baseline estimate:

b̌ = b̂−Qb̂ ẑQ
−1
ẑ ε̌

= b̂−Qb̂ ẑ
(
L−TD−1L−1

)
Lε̌c

= b̂−Qb̂ ẑL
−TD−1ε̌c

= b̂−Qb̂ ẑcD
−1ε̌c

(10)

where Qb̂ ẑc , Qb̂ ẑL
−T .

The distribution of the fully-fixed baseline conditioned on
a particular fixed ambiguity ž = z + ∆z is [16](

b̌ |ž = z + ∆z
)
∼ N

(
b+Qb̂ ẑQ

−1
ẑ ∆z, Qb̌

)
(11)

where Qb̌ , Qb̂ − Qb̂ ẑcD
−1QT

b̂ ẑc
. Thus, when the integer

ambiguity is fixed correctly (∆z = 0), the fully-fixed baseline
has a Gaussian distribution whose mean equals the true
baseline b.

III. PRIOR DISTRIBUTION OF THE GENERALIZED INTEGER
APERTURE BASELINE

Analogous to the float baseline b̂ and the fixed baseline b̌,
a partially-fixed baseline, denoted b̄, can be calculated from
the inputs and outputs of GIAB. The a priori and a posteriori
distributions of b̄ are important performance indicators. This
section derives the a priori distribution of b̄.

Let Qb̂ ẑcj indicate the jth column of the matrix Qb̂ ẑc , and
dj the jth entry on the diagonal of D. Because D is diagonal,
(10) can be written

b̌ = b̂−
m∑
j=1

Qb̂ẑcj
ε̌cj
dj

(12)

The baseline constrained by only the first i ambiguities, written
b̌i, can be calculated by truncating the summation in (12) at
i:

b̌i = b̂−
i∑

j=1

Qb̂ẑcj
ε̌cj
dj

(13)

The event q = i < m implies that GIAB could not fix the
(i+ 1)th ambiguity without violating the specified probability
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of failure. For the moment, let b̄ = b̌q be GIAB’s partially-
fixed baseline solution; alternative assignments for b̄ will be
explored later on. Denote by F c the complement of the failure
event, F , and let fb̄|F and fb̄|F c be the probability density
functions (PDFs) of b̄ conditioned respectively on F and F c.
It follows from the total probability theorem that the prior
(unconditioned) PDF of the partially-fixed baseline b̄ is

fb̄ (ξ) = fb̄|F c (ξ) (1− PF ) + fb̄|F (ξ)PF (14)

Since, by design, PF ≤ P̄F � 1, momentarily neglect the
second term on the right-hand side of (14). This term is not
important for the average performance of the GIAB algorithm,
though it is central to position domain integrity considerations
in Section VII. A detailed expression for fb̄|F c (ξ), from the
first term, is derived along with other conditional PDFs in the
following section.

IV. CONDITIONAL DISTRIBUTIONS OF THE GENERALIZED
INTEGER APERTURE BASELINE

Various conditional distributions of b̄ offer valuable in-
sight into its behavior under partial ambiguity resolution.
This section presents a conceptual overview of the various
distributions, followed by detailed derivations of the same.

A. Conceptual Overview

Consider fb̄|CF i
(ξ), the PDF of b̄ conditioned on GIAB

correctly resolving the first i ambiguities. Note that this
conditioning makes no assumption that GIAB resolved only
i ambiguities; in fact, GIAB may have resolved more than
i—correctly or not. The conditioning on CF i assumes only
that the first i were correctly resolved. One would expect this
conditional PDF to be Gaussian with a mean of b, since,
as (11) indicates, the fully-fixed baseline b̌ conditioned on
∆z = 0 is Gaussian with mean b. Indeed, this turns out to be
the case.

Now consider fb̄|Zi
(ξ) for i < m. The event Zi implies

ž1:i = z1:i but when i < m it further implies that GIAB
refused to fix one or more ambiguities. Thus, conditioning on
Zi when i < m indicates that the magnitude of the (i+ 1)th
sequentially-constrained ambiguity residual ε̌c(i+1) was larger
than βi+1/2. No assumption is made about the particular value
of ε̌c(i+1), only that it was too large to confidently fix the
corresponding integer. In this case will fb̄|Zi

(ξ) be Gaussian
with mean b? The answer is no: fb̄|Zi

(ξ) has mean b but is
not Gaussian. This can be explained by considering (13) and
recognizing that, although ε̌c(i+1) being large has no bearing
on ε̌cj for j ∈ {1, . . . , i} (because these are uncorrelated with
ε̌c(i+1) under Zi), it does imply something about b̂, namely,
that its PDF does not have a mode at b: the most probable
values of b̂ are offset from b.

Finally, consider fb̄|ε̌c(i+1),Zi
(ξ|ε), which is the PDF of b̄

conditioned on Zi for i < m and on the particular value of
the sequentially-constrained ambiguity residual, ε̌c(i+1), that
caused GIAB to refuse to fix the (i+1)th ambiguity. Somewhat
surprisingly, this PDF turns out to be neither Gaussian nor of
mean b. This key result, unknown in the existing literature,
is critical because fb̄|ε̌c(i+1),Zi

(ξ|ε) informs decision making

about b̄: it is the best indicator of whether a particular b̄ will
be accurate enough for a high-integrity application.

Manipulation in the following subsections leads to detailed
expressions for fb̄|F c(ξ), fb̄|Zi

(ξ), and fb̄|ε̌c(i+1),Zi
(ξ|ε).

B. Finding fb̄|F c

The conditional PDF fb̄|F c , which appears in (14), can be
written in terms of fb̄|Zi

(ξ), the PDF of b̄ conditioned on
successful validation of q = i ambiguities, as follows:

fb̄|F c (ξ) =

m∑
i=0

P (Zi|F c)fb̄|Zi
(ξ)

=

m∑
i=0

P (Zi, F
c)

P (F c)
fb̄|Zi

(ξ)

=

m∑
i=0

PZi

1− PF
fb̄|Zi

(ξ)

(15)

where PZi
is the probability of the event Zi, and where the

final simplification follows from Zi ⊂ F c.

C. Finding fb̄|Zi
(ξ)

The PDF fb̄|Zi
(ξ), which appears in (15), can be expressed

in terms of GIAB’s output ž ∈ Zr, where r = min(m, q+ 1).
When conditioned on Zi with i < m, the first i ambiguities
in ž, are correct, but the (i + 1)th may not be; in other
words, ž = [z1, . . . , zi, zi+1 + ∆z]T for some ∆z ∈ Z.
Recalling that ε̌c , L−1

1:r,1:r(ẑ1:r−ž), and recognizing L−1
1:r,1:r

as unit lower triangular, then given Zi it follows that ε̌c(1:i) =

εc(1:i) , L−1
1:i,1:i(ẑ1:i − z1:i) and that ε̌c(i+1) = εc(i+1) −∆z.

From standard probability theory, the PDF of the difference
ε̌c(i+1) = εc(i+1) −∆z can be expressed in terms of the joint
PDF of εc(i+1) and ∆z, which, in turn can be expressed as
the product of the conditional and marginal PDFs of ∆z and
εc(i+1), respectively:

f ε̌c(i+1)|Zi
(ε) =

∑
k∈Z

fεc(i+1),∆z|Zi
(ε+ k, k)

=
∑
k∈Z

f∆z|εc(i+1),Zi
(k|ε+ k) fεc(i+1)|Zi

(ε+ k)
(16)

This expression can be simplified by noting from (9) that under
Zi the rejected sequentially-constrainted ambiguity residual
ε̌c(i+1) satisfies

βi+1

2
<
∣∣ε̌c(i+1)

∣∣ ≤ 1

2

Expressed another way, the support of ε̌c(i+1) under Zi is

Ai+1 ,

{
ε

∣∣∣∣βi+1

2
< |ε| ≤ 1

2

}
Thus, given that ε̌c(i+1) = εc(i+1) − ∆z ∈ Ai+1, the
conditioning on εc(i+1) = ε+ k in (16) implies ∆z = k. (The
condition |ε| = 1/2 upsets this unique mapping but happens
with probability 0.) Therefore,

f∆z|εc(i+1),Zi
(k|ε+ k) = 1 ∀k ∈ Z, ∀ε ∈ Ai+1
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Fig. 1: The rejection event Ri+1 is triggered when εc(i+1)

falls within the indicated bands. For compactness, βi+1 is
abbreviated as β.

and (16) simplifies to

fε̌c(i+1)|Zi
(ε) =

∑
k∈Z

fεc(i+1)|Zi
(ε+ k) (17)

With these preliminaries, fb̄|Zi
(ξ) can be constructed as the

marginal of the joint PDF of b̄ and ε̌c(i+1), and the latter can
be expressed in terms of a sum of joint PDFs with εc(i+1) by
the same reasoning that led to (17):

fb̄|Zi
(ξ) =

∫
Ai+1

fb̄,ε̌c(i+1)|Zi
(ξ, ε) dε

=

∫
Ai+1

∑
k∈Z

fb̄,εc(i+1)|Zi
(ξ, ε+ k) dε

(18)

D. Finding fb̄,εc(i+1)|Zi
(ξ, ε+ k)

To find fb̄,εc(i+1)|Zi
(ξ, ε+ k), which appears in (18), it is

helpful to express the rejection event Ri+1 in terms of εc(i+1),
as follows:

Ri+1 : εc(i+1) ∈ {ε+ k | ε ∈ Ai+1, k ∈ Z}

Fig. 1 illustrates the bands of εc(i+1) that trigger rejection.
In the context of (18), where conditioning is on Zi with
i < m [the (i + 1)th ambiguity was rejected], Zi is the
intersection of the correct fix event CF i and the rejection event
Ri+1. Accordingly, the PDF fb̄,εc(i+1)|Zi

(ξ, ε) is identical to
fb̄,εc(i+1)|CF i

(ξ, ε) but with two modifications: (1) support of
εc(i+1) is restricted to Ri+1, and (2) a normalization by PRi+1 ,
given in (7c), is applied to ensure the PDF integrates to unity.
Let 1Ri+1

(ε) be the indicator function for the rejection event,
equal to unity for those values of ε that trigger Ri+1, and zero
otherwise. Then the joint PDF is

fb̄,εc(i+1)|Zi
(ξ, ε) =

1Ri+1
(ε)

PRi+1

fb̄,εc(i+1)|CF i
(ξ, ε) (19)

To find fb̄,εc(i+1)|CF i
(ξ, ε) note that, under the event CF i, b̌i

and εc(i+1) are jointly Gaussian:[
b̌i

εc(i+1)

]∣∣∣∣CF i ∼ N ([ ξε
]

;

[
b
0

]
, Qb̌iεc(i+1)

)
(20)

with

Qb̌iεc(i+1)
=

[
Qb̌i Qb̂ẑc(i+1)

QT
b̂ẑc(i+1)

di+1

]
(21)

where Qb̂ẑc(i+1)
is the (i + 1)th column of Qb̂ẑc , introduced

in (10), and

Qb̌i = Qb̂ −
i∑

j=1

1

dj
Qb̂ ẑcj

(
Qb̂ ẑcj

)T
(22)

is found by exploiting the independence of each element of
εc. Then the conditional mean error of b̄ = b̌i, given CF i and
εc(i+1) = ε+ k, follows from the standard expression for the
Gaussian conditional mean:

µk(ε) , E
[
b̄− b

∣∣εc(i+1) = ε+ k,CF i
]

= Qb̂ẑc(i+1)

(
ε+ k

di+1

)
(23)

Its covariance is found by extending the summation in (22) to
(i+ 1):

cov
(
b̄
∣∣εc(i+1) = ε+ k,CF i

)
= Qb̌i+1

(24)

Hence the partially-fixed baseline b̄, when conditioned on
εc(i+1) and CF i, is Gaussian distributed and biased away from
the true baseline b by µk(ε):

fb̄|εc(i+1),CF i
(ξ|ε+ k) = N (ξ; b+ µk(ε), Qb̌i+1

) (25)

Then, recognizing that εc ∼ N (0, D) implies

fεc(i+1)|CF i
(ε) = N (ε; 0, di+1) (26)

and factoring the joint PDF in (19) into its conditional-times-
marginal form yields this subsection’s desired PDF:

f b̄,εc(i+1)|Zi
(ξ, ε+ k) =

1Ri+1
(ε)

PRi+1

N (ξ; b+ µk(ε), Qb̌i+1
)N (ε+ k; 0, di+1)

(27)

Moreover, substituting (27) into (18), yields fb̄|Zi
, and substi-

tuting (18) into (15) yields a detailed expression for fb̄|F c :

fb̄|F c (ξ) =
PSm

1− PF
N (ξ; b, Qb̌m)

+

m−1∑
i=0

PZi/PRi+1

1− PF

×
∑
k∈Z

∫
Ai+1

N (ξ; b+ µk(ε), Qb̌i+1
)N (ε+ k; 0, di+1)dε

E. Finding fb̄|ε̌c(i+1),Zi
(ξ|ε)

After the foregoing steps, one can find the important PDF
fb̄|ε̌c(i+1),Zi

(ξ|ε) starting with

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

fb̄,ε̌c(i+1)|Zi
(ξ, ε)

fε̌c(i+1)|Zi
(ε)

(28)

Substituting the integrand of (18) for the numerator and (17)
for the denominator yields

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

∑
k∈Z fb̄,εc(i+1)|Zi

(ξ, ε+ k)∑
j∈Z fεc(i+1)|Zi

(ε+ j)
(29)

Now substituting (27) and (26), where the normalization for
the rejection event cancels out, and constraining ε ∈ Ai+1 to
eliminate the indicator functions, yields

f b̄|ε̌c(i+1),Zi
(ξ|ε) =

=

∑
k∈ZN (ξ; b+ µk(ε), Qb̌i+1

)N (ε+ k; 0, di+1)∑
j∈ZN (ε+ j; 0, di+1)

(30)
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This PDF can be interpreted as a mixture of Gaussian densities
with different means but equal variances. The mixture prob-
abilities are in fact the conditional probabilities that ∆z = k
given the sequentially-constrainted ambiguity residual ε̌c(i+1)

and the event Zi:

pk(ε) , P (∆z = k|ε̌c(i+1) = ε ∈ Ai+1, Zi)

=
N (ε+ k; 0, di+1)∑
j∈ZN (ε+ j; 0, di+1)

, ε ∈ Ai+1
(31)

Simplifying (30) with the mixture probability notation of (31)
yields, for ε ∈ Ai+1,

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

∑
k∈Z

pk(ε) · N (ξ; b+ µk(ε), Qb̌i+1
) (32)

F. Discussion

Two important observations can be drawn from the fore-
going conditional distributions. First consider (32). Note that
pk(ε) and µk(ε) are evaluated only for ε 6= 0, since ε ∈ Ai+1,
which does not contain the origin. From (23), one observes
that, for ε 6= 0 and assuming Qb̂žc(i+1)

is nonzero, the bias
µk(ε) is nonzero for any value of k ∈ Z. Thus, the means
of the Gaussian PDFs that get summed in (32) are all shifted
away from the true baseline b. It is possible for a weighting
function pk(ε) to be chosen to counteract this shifting and
thereby restore symmetry in fb̄|ε̌c(i+1),Zi

(ξ|ε), but the actual
weighting that applies, given by (31), does not do this. As a
result, fb̄|ε̌c(i+1),Zi

(ξ|ε) is asymmetric about b with respect to
ξ.

To be explicitly clear, the PDF of the partially-fixed baseline
b̄ = b̌q that results from correction of the float baseline b̂
with GIAB-produced ε̌cj , as in (13) with i = q < m, when
conditioned on ε̌c(i+1) = ε ∈ Ai+1, will not have a mean
coincident with the true baseline b even when all validated
ambiguity fixes are correct.

The second important observation is that, for i < m,
fb̄|Zi

(ξ) given by (18) is symmetric about b but lacks a mode
at b. To see this, note that fb̄|Zi

(ξ) can be written

fb̄|Zi
(ξ) =

∫
Ai+1

fb̄|ε̌c(i+1),Zi
(ξ|ε)fε̌c(i+1)|Zi

(ε) dε (33)

with fb̄|ε̌c(i+1),Zi
(ξ|ε) given by (32) and fε̌c(i+1)|Zi

(ε) by (17).
The first of these, fb̄|ε̌c(i+1),Zi

(ξ|ε), is symmetric about b when
integrated over ε because both pk(ε) from (31) and µk(ε)
from (23) are symmetric about the origin with respect to ε
when summed over all k ∈ Z. The second, fε̌c(i+1)|Zi

(ε),
is symmetric about the origin with respect to ε because the
summand fεc(i+1)|Zi

(ε+ k) of (17), with ε restricted to Ai+1,
is simply a normalized version of fεc(i+1)|CF i

(ε+k) from (26).
Thus, since fεc(i+1)|CF i

(ε+ k) and Ai+1 are symmetric with
respect to ε, so is fε̌c(i+1)|Zi

(ε). Taken together, these facts
imply that fb̄|Zi

(ξ) is symmetric about b. Critically however,
the support Ai+1 does not contain the origin, so µk(ε) 6= 0
for all ε ∈ Ai+1 and all k ∈ Z. This implies that, although
fb̄|Zi

(ξ) with i < m is symmetric about b, it does not have
a mode at b.

The above two observations can be understood intuitively as
follows: GIAB’s refusal to fix the (i+1)th ambiguity indicates

the float ambiguity ẑ is biased away from z, which implies
the float baseline b̂ is biased away from b. If GIAB with
b̄ = b̌i fixes only i = q < m ambiguities, the correction to
the float baseline given by (13) is incomplete, leaving some
residual bias in b̄. When b̄ is conditioned on the particular
value ε̌c(i+1) = ε ∈ Ai+1 under Zi, the bias manifests as
an ε-dependent shift of the mean away from b. When b̄ is
conditioned only on Zi, the bias manifests as a symmetric
exodus of probability density away from b, leaving no mode
at b. Figures of these distributions will be presented in the
next subsection.

Note that the above reasoning is not unique to GIAB: the
conditional PDF of b̄ will behave similarly for any data-driven
partial ambiguity resolution algorithm that corrects the float
baseline with the validated fixes.

V. GIAB VARIANTS

The foregoing conditional PDFs and discussion assume
b̄ = b̌i with i = q, which, according to (13), implies
the float baseline b̂ is only corrected by the q sequentially-
constrained ambiguity residuals ε̌c(1:q) that pass validation
(those satisfying |ε̌ci| ≤ βi/2). If q < m, the next sequentially-
constrained ambiguity residual, ε̌c(q+1), is ignored, which
means that the component of b̂ that might have been corrected
by ε̌c(q+1) is left unchanged at its float value. This approach,
hereafter called float GIAB, is the typical practice in the
existing literature on partial ambiguity resolution. However,
the existing literature’s calculation of integrity risk IR does
not appear to recognize that b̄ = b̌q is biased as described
above [17]–[19].

Setting b̄ = b̌q (thus ignoring ε̌c(q+1)) is of course not
the only way to handle the first ambiguity that fails vali-
dation. This paper considers three variants of GIAB, each
distinguished by its treatment of the (q + 1)th ambiguity.
The first is float GIAB, described above. The second, called
MAP GIAB by analogy to maximum a posteriori (MAP)
estimation, applies the most likely fix candidate, which, given
GIAB’s operation as defined in [11], is equivalent to choosing
b̄ = b̌q+1 for q < m. While not strictly MAP in the sense
of integer least squares, the MAP GIAB solution is MAP
conditioned on the correctness of the validated fixes. The PDF
fb̄|ε̌c(i+1),Zi

(ξ|ε) for b̄ = b̌q+1 is the same as that of the float
variant (for which b̄ = b̌q), except that all µk(ε) are shifted
by the (i+ 1)th correction in (13), namely −Qb̂ẑc(i+1)

ε̌c(i+1)

di+1
.

Recalling that εc(i+1) = ε̌c(i+1) + ∆z, one notes that the
additional correction removes the fractional part from εc(i+1),
leaving

µk(ε) = Qb̂ẑc(i+1)

k

di+1
(MAP GIAB) (34)

which is zero if ∆z = k = 0. [The argument ε in µk(ε) is
retained for functional consistency with (23).] Thus, for b̄ =
b̌q+1, the conditional PDF fb̄|ε̌c(i+1),Zi

(ξ|ε) is unbiased about
b if the non-validated fix is correct. MAP GIAB monitors the
effect of incorrect fixes on IR by calculating each alternate
fix’s probability and position domain bias. This approach is
similar to the concept of position domain integrity (PDI) in
the EPIC and GERAFS algorithms.
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The third variant of GIAB, called MMSE GIAB by analogy
to minimum mean squared error (MMSE) estimation, com-
putes a weighted average of the MAP GIAB baseline solution
and the alternative fixed solutions. Because the baseline cor-
rections are applied linearly, MMSE GIAB’s partially-fixed
baseline b̄ can be written

b̄ = b̌i −Qb̂ẑc(i+1)

ε+
∑
j∈Z pj(ε)j

di+1
(MMSE GIAB) (35)

Just as with MAP GIAB, MMSE GIAB is only MMSE in
a conditional sense with the additional approximation that
the third most likely and subsequent fixes at i = q + 1
are negligible. This baseline solution is analogous to the
Sequential Best Integer Equivariant (BIE) estimator of [20]
and related estimators [21], [22], with the difference that
MMSE GIAB limits the number of fixes considered by sizing
the aperture according to [11].

The ideal corrected baseline, which has a zero-mean-error
PDF if ∆z = k, is

b̄ideal = b̌i −Qb̂ẑc(i+1)

ε+ k

di+1
(36)

The bias in the MMSE solution is thus

µk(ε) = b̄− b̄ideal (MMSE GIAB)

= Qb̂ẑc(i+1)

k −
∑
j∈Z jpj(ε)

di+1

= Qb̂ẑc(i+1)

∑
j∈Z(k − j)pj(ε)

di+1

(37)

where the last equality makes use of
∑
j∈Z pj(ε) = 1.

For small values of ε, p0(ε)� pj(ε), ∀j 6= 0, meaning that
the MAP fix is much more likely than the alternatives, in which
case the MMSE and MAP GIAB baselines will differ only
slightly. At the other extreme, in the zero-probability event
that |ε̌c(i+1)| = 1/2, the MMSE and float GIAB baselines are
equivalent.

Analysis has shown that when PCi+1
> 0.7, which is attain-

able for even relatively weak models, neglecting all but the two
most likely fix candidates for the (i + 1)th ambiguity raises
the integrity risk by less than PEi+1

for all values of di+1.
This makes the third most likely fix, and all less likely fixes,
negligibly likely. In particular, when PCi+1 > 0.7 the three
highest values of pk(ε) are p0(ε) > p−sgn(ε)(ε)� psgn(ε)(ε).
Neglecting all but the two most likely fixes, the partially-
fixed baseline b̄ for each of the three GIAB variants can be
approximated by the following conditional PDF, with µk(ε)
given by (23), (34), or (37), as appropriate:

fb̄|ε̌c(i+1),Zi
(ξ|ε) ≈

∑
k∈{0,−sgn(ε)}

pk(ε)·N (ξ; b+µk(ε), Qb̌i+1
)

(38)
The PDFs of (38), (18), and (15) are illustrated in Figs.

2, 3, and 4, respectively. The PDFs have been shifted so the
horizontal axis’s origin coincides with the component value of
the true baseline b. Note that the MMSE GIAB PDF in Fig.
2 lies between those of the MAP and float variants. Note also
that the float GIAB PDF in Fig. 3 is bimodal, with both modes
shifted away from zero, whereas both MAP and MMSE GIAB
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Fig. 2: A single component of fb̄|ε̌c(i+1),Zi
(b+ ξ|ε) from (38)

for float, MAP, and MMSE GIAB for q = i < m and a
large ambiguity residual ε. Because the distributions differ
only by the variant-specific bias µk(ε), the three PDFs are
merely shifted versions of each other, with that of MMSE
GIAB between those of float and MAP GIAB.
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Fig. 3: A single component of fb̄|Zi
(b+ ξ) for float, MAP,

and MMSE GIAB with q = i < m, plotted with a log-scaled
vertical axis. Float GIAB has a symmetric, bimodal PDF.
MAP GIAB has a symmetric PDF with a dominant, zero-mean
central mode and heavy tails due to incorrect fixes. MMSE
GIAB has a lower probability of large errors than does MAP
GIAB at the expense of a slight increase in the probability
of moderately-sized errors. In the lightly-shaded region, MAP
GIAB has higher density than MAP GIAB, and vice versa in
the darker region.

have strong modes at zero but wider tails. Finally, observe
from Figs. 3 and 4 that MMSE GIAB has narrower tails than
MAP GIAB. This is because MAP GIAB does not change its
baseline estimate for large residuals like MMSE GIAB does.

VI. VALIDATION OF BASELINE DISTRIBUTIONS

In recognition of the possibility that the previously-derived
conditional PDFs of b̄ suffer from some error in reasoning or
probabilistic book-keeping, extensive Monte Carlo simulations
were conducted to cross-check the analytical expressions. A
float solution model was chosen with eight satellites above
a 5◦ mask. The simulation was initialized by computing
the decorrelating Z-transform and setting the integer aperture
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Fig. 4: A single component of fb̄|F c (b+ ξ) for float, MAP,
and MMSE GIAB, plotted with a log-scaled vertical axis. Float
GIAB has strong but narrow tails. Its central mode results
from the probability of fixing all m ambiguities. MAP and
MMSE GIAB both have a strong central mode and tails that
are wider but lower than those of float GIAB. MMSE GIAB
has smoother and narrower tails than MAP GIAB.

according to the optimization described in [11]. A total of
4× 108 Monte Carlo samples were then drawn from the float
distribution described by (2) to generate the float solution
errors, including the float baseline and float ambiguities. To
save computation time, rather than using sampling in the
measurement domain and computing float solutions, the float
solution was sampled directly since the float solution is well
validated. Multiple models of varying strength were evaluated,
but only a single model is presented here to save space. Each
sample float ambiguity vector was then Z-transformed and fed
through the GIAB algorithm. All GIAB outputs were logged,
including the number of correctly fixed samples, the number
of incorrectly fixed samples, and the partially-fixed baseline
error tabulated by q.

Appropriate histograms of the simulated outcomes were
then compared with the analytical PDFs for fb̄|F c(ξ), fb̄|Zi

(ξ),
and fb̄|ε̌c(i+1),Zi

(ξ|ε) and for float, MAP, and MMSE GIAB.
Fig. 5 shows excellent agreement between the empirical (sim-
ulated) and analytical fb̄|F c(ξ) for MAP GIAB. Similarly
good agreement was found with the other two distributions
and the other two GIAB variants. The model underlying Fig.
5 is relatively strong: its integer bootstrapping probability of
correct fix is 1 − 2 × 10−5 for a specified failure probability
P̄F = 10−8. Several weak models and other strong models
were also studied, all of varying geometry. Each case showed
excellent agreement with the derived PDFs.

VII. DATA-DRIVEN POSITION DOMAIN INTEGRITY

The defining characteristic of high-integrity CDGNSS tech-
niques appropriate for safety-of-life systems is their ability to
strictly bound the probability of large position domain errors
(errors in the estimate of the baseline vector b) even in the
event of incorrect fixes. This is the essence of position domain
integrity (PDI). For each component of b, the risk R that the
component’s error exceeds the AL must be monitored. Let
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Fig. 5: A single component of fb̄|F c (b+ ξ) for the theoretical
PDF of MAP GIAB (dashed line) and the empirical (simu-
lated) histogram (solid line), plotted in log scale for m = 7,
P̄F = 10−8, and a Monte Carlo sample size of 4× 108. The
underlying model has an IB probability of correct fix equal to
1−2×10−5. As the PDFs are symmetric about zero, only the
positive portion is shown. Clearly, there is strong agreement
between the analytical and simulated distributions. Note that
because the plot’s vertical axis is log scaled, small differences
are exaggerated at low probabilities.

b represent a particular component of b and b̄ its estimate,
whether fully or partially fixed. Then R is defined as

R , P
(∣∣b̄− b∣∣ > AL

)
(39)

If R > ĪR, where ĪR is a specified integrity risk, an alert must
be raised.

A. Position Domain Integrity in EPIC

The EPIC algorithm protects solution integrity by evaluating
the a priori conditional IR for the case that the ambiguities are
fixed correctly and for s cases of incorrect fix. This subsection
is a brief, but needed, summary of relevant prior work. [2],
[4]. EPIC produces tighter bounds on IR than GERAFS for
any error model, so EPIC is considered to the exclusion of
GERAFS in this paper. Define E0 as the event that the chosen
ambiguity fix is correct, and Ek as the event that the kth
alternative fix is correct. Let Rk = P

( ∣∣b̄− b∣∣ > AL
∣∣ Ek) ≤ 1

be the conditional risk of excess error given the event Ek. The
total risk is then

R =

s∑
k=0

RkP (Ek) +

∞∑
k=s+1

RkP (Ek) (40)

Define E∞ as the event that the correct fix was neither the
chosen fix nor among the s alternative fix candidates; i.e.,

E∞ ,
∞⋃

k=s+1

Ek =

(
s⋃

k=0

Ek

)c
(41)

where (·)c indicates the set complement.
A bound on the risk of excess error can be derived by

conservatively assuming that any incorrect fix not among the
s considered will cause excess error, i.e., assuming Rk =
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1,∀k > s. This leads to the bound used by EPIC to monitor
risk of excess error:

REPIC ≤ P (E∞) +

s∑
k=0

RkP (Ek)

≤ 1−
s∑

k=0

P (Ek) +

s∑
k=0

RkP (Ek)

≤ 1−
s∑

k=0

(1−Rk)P (Ek)

(42)

In the EPIC algorithm, the event probabilities are the a
priori fixing probabilities for IB:

P (Ek) =
m∏
j=1

(
Φ

(
1
2 − L

−1
j ∆zk√
dj

)
− Φ

(
− 1

2 − L
−1
j ∆zk√
dj

))
(43)

where ∆zk is the kth candidate fix ambiguity error vector and
L−1
j is the jth row of the matrix L−1. Assuming zero-mean

Gaussian measurements, the conditional PDI risk for excess
error in a particular direction is

Rk = Φ

(
AL− µk

σb̄

)
− Φ

(
−AL− µk

σb̄

)
(44)

where µk is the desired component of the bias in (11) for fix
error vector ∆zk, and σ2

b̄
is the variance of that component.

B. Position Domain Integrity in GIAB

Position domain integrity in the GIAB framework enjoys a
key advantage over that for EPIC, namely, that GIAB’s event
probabilities and baseline distributions are a posteriori rather
than a priori. Conditioning on the observed measurements
allows GIAB to satisfy the same ĪR as EPIC but with
tighter margins. This subsection develops a PDI strategy for
GIAB based on the posterior baseline distributions derived
previously.

It is important to understand the subtle distinctions in
the probabilities of incorrect fix under various conditions. If
GIAB’s results were only deemed critical in an average sense,
then protection based on the a priori probability of failure
would be sufficient. This is the probability PF = P (F ) =
P (ž1:q 6= z1:q, q > 0) of validating any incorrect ambiguity.
GIAB manages PF by design, since its aperture vector β is
chosen to satisfy PF ≤ P̄F ,

But safety-of-life systems are concerned not only with
average behavior but also with each estimation epoch’s poten-
tial for dangerously large errors. Employing a measurement-
conditioned distribution allows a clearer assessment of the
risk at each epoch. Thus, one might wish to make the
posterior distribution in (38) the basis for PDI monitoring.
But this distribution is conditioned on the event Zi, requiring
P (Zi|q = i) = 1−P (F |q = i) be known for operational use.
Consider P (F |q = i), which can be written

P (F |q = i) =
P (F, q = i)

P (F c, q = i) + P (F, q = i)
, i > 0 (45)

The first term in the denominator may be recognized as the
probability of correctly validating the first i ambiguities, or

PSi
. The other term, P (F, q = i), is the probability that one

or more of i validated ambiguities are incorrect. Since the
event (F, q = i) is a subset of the failure event F , it must
have a lower probability; thus P (F, q = i) = αPF , where
0 < α < 1 for i > 0. Then

P (F |q = i) =
αPF

PSi + αPF
≈ αPF

PSi

, i > 0 (46)

where the conservative approximation follows from PSi �
PF , which is typical for high-integrity systems. For q = m and
a strong model, PSm

is very close to unity, so P (F |q = m)
remains close to PF . However, for q = i < m and a strong
model, PSi

might itself be quite small, say, less than 10−3,
making P (F |q = i) orders of magnitude larger than PF . In
other words, for a strong model, conditioning only on q < m
makes an incorrect fix in the q validated ambiguities appear too
likely. This would almost certainly cause IR > ĪR, triggering
an alert and rendering the solution useless.

A more precise assessment of position integrity in such a
situation requires a different approach, one based on exami-
nation of the full a posteriori probabilities of both the correct
fix and a large number of potential incorrect fixes. Denote the
posterior fixing probability as

P (Eζ |ε, i ) , P (∆z = ζ|ε̌c = ε, q = i) (47)

Note that, unlike (31), this expression is not conditioned on
Zi; i.e., it does not assume that validated fixes are correct.
As argued earlier, under Zi, only two alternative fixes need be
considered to approximate the conditional baseline distribution
as (31). But in operation, one does not know whether Zi holds,
and so must consider two alternatives for each ambiguity,
assuming at each stage that the preceding ambiguities were
fixed correctly. Since GIAB’s output ž contains r ambigui-
ties, at least 2r − 1 alternatives must be evaluated, or their
probabilities, as determined by (47), bounded rigorously.

It is straightforward to derive an expression for P (Eζ |ε, i ).
Let {ζk} be an ordered, indexed set of all members of Zr, with
ζ0 , 0. Then by the definition of conditional probability,

P (Eζk |ε, i) (48)

= lim
dε→0

P (ε− dε < ε̌c ≤ ε,∆z = ζk|q = i)∑
ζ∈Zr P (ε− dε < ε̌c ≤ ε,∆z = ζk|q = i)

Noting that the measured random variable ε̌c ∈ Rr and the
fixing error ∆z ∈ Zr are related to the zero-mean Gaussian
random variable εc(1:r) , L−1

1:r,1:rε1:r ∼ N (0, D1:r,1:r) as

εc(1:r) , L−1
1:r,1:rε1:r = L−1

1:r,1:r(ẑ1:r − z1:r)

= L−1
1:r,1:r(ẑ1:r − (ž −∆z))

= L−1
1:r,1:r(ε̌+ ∆z)

= ε̌c + L−1
1:r,1:r∆z

(49)

and noting that the additional conditioning on the event q = i
in (48) restricts the support of ε̌c, but that this only affects the
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normalization of the PDF, not its form, then by recognizing
equivalent events, (48) can be rewritten as

P (Eζk |ε, i) =
N
(
ε+ L−1

1:r,1:rζk;0, D1:r,1:r

)∑
ζ∈Zr N

(
ε+ L−1

1:r,1:rζ;0, D1:r,1:r

) (50)

=
exp

(
− 1

2

∥∥ε+ L−1
1:r,1:rζk

∥∥2

D1:r,1:r

)
∑
ζ∈Zr exp

(
− 1

2

∥∥ε+ L−1
1:r,1:rζ

∥∥2

D1:r,1:r

)
where ‖x‖2Q , xTQ−1x. Note that (50) can be regarded
as generalization of (31) to include additional alternative fix
candidates.

The final conditional PDF for b̄ under MAP GIAB, but
without conditioning on the correctness of the validated fixes,
is a generalization of (38) that includes alternative fixes for
more than just the rejected ambiguity, and for each fix, its
corresponding position domain bias:

fb̄|ε̌c,q (ξ|ε, i) =
∑
ζk∈Zr

P (Eζk |ε, i)N
(
ξ; b+ µk, Qb̌i+1

)
(51)

Each term in the summation corresponds to the event that one
of the infinite possible alternative fixes is correct, and accounts
for the conditional PDI risk given that event. Each event’s
baseline remains normally distributed, but with additional
mean error caused by the integer offset, as in (11):

µk = Qb̂ ẑcD
−1
1:r,1:rL

−1
1:r,1:rζk (52)

A similar expression for fb̄|ε̌c,q (ξ|ε, i) can be obtained for
float and MMSE GIAB. See Appendix D of [23] for details
on how to determine which incorrect fixes must be accounted
for in (51) and when to truncate the infinite summation in
the denominator of (50). The maximum required set of size
2r, including the IB solution, is obtained by considering the
nearest two integers for each ambiguity in a branching tree of
alternative solutions. In practice, far fewer than 2r alternatives
need be considered. This represents a significant reduction in
computational effort when compared to EPIC.

Let s ≤ 2r − 1 be the number of non-negligible alternative
fixes considered and the index 0 represent the chosen fix.
The IR can be bounded by the following expression, with
Rk defined by (44) and with means defined by (52) for MAP
GIAB:

RGIAB = 1−
s∑

k=0

(1−Rk)P (Eζk |ε, i) (53)

VIII. PERFORMANCE ANALYSIS

A. Protection Levels

Integrity requirements are specified in terms of an integrity
risk, ĪR, that the baseline estimation error will exceed the
AL threshold without warning. ĪR is derived from an overall
risk requirement, such as probability of loss of aircraft, and
is typically a fixed value for a given system use case. The
AL is related to physical obstacle clearance requirements,
which are constant for a particular land based runway and a
given aircraft. However, obstacle clearance margins are not
constant when landing on a moving platform, such as an

aircraft carrier at sea. Because the risk of excess error is
frequently evaluated against a time-varying AL, it is useful
to determine a protection level PL that bounds the estimation
error to the required level of risk.
PL can be thought of as the minimum AL that could be met

by a navigation system or algorithm for a given value of ĪR.
In terms of statistical hypothesis testing, ĪR corresponds to
the desired confidence level, AL corresponds to the decision
threshold, and PL to a prediction interval. If the risk of excess
error is expressed as a function of AL, then PL can be defined
as

PL , min
AL

{
AL
∣∣R (AL) ≤ ĪR

}
(54)

PL for EPIC or for any version of GIAB can be computed
by using a root solving method to solve (54) with R(AL)
defined by (42) or (53), as appropriate.

B. Comparison to EPIC

To demonstrate the performance of GIAB compared to the
state-of-the-art high-integrity algorithm, the performance of
EPIC and MAP GIAB will be compared for the measurement
models previously examined. MAP GIAB is chosen because
it provides better accuracy than float GIAB and is simpler
to analyze than MMSE GIAB. If MMSE GIAB were used,
it would compare even more favorably with EPIC because
MMSE GIAB always produces smaller PL values than MAP
GIAB.

Because it uses an a priori, model driven approach to
validation, EPIC will always produce the same PL for the
same number of integers fixed with a given measurement
model and ĪR. Conversely, GIAB is a data-driven algorithm
for which PL is a random variable. PL has a finite support
because it is a finite function of the bounded quantity |ε̌ci| ≤ 1

2 .
PL values produced by EPIC will be compared to the

minimum, maximum, and average PL produced by GIAB
for each number of integers fixed, along with the probability
that GIAB will fix that number of integers for each model
considered. As shown in Table I with data tabulated from the
same Monte Carlo simulations used to generate Fig. 5, GIAB
is able to provide smaller PL values than EPIC most of the
time. Note that PL computed for U by EPIC is simply the PL
of the float solution with no incorrect fixing bias. The event U
for GIAB corresponds to the case where the measurements are
so poor that no integers can be fixed successfully. The worst
case PL computed for any q > 0 by MAP GIAB, which has
the largest PLs of any of the GIAB implementations, is better
than the best PL computed by EPIC.

GIAB provides lower PLs because it is able to reject and
exclude most of the incorrect fixes that EPIC must protect
against. This implies that GIAB will also provide superior
availability of integrity for models similar to those examined
in this paper. It is expected that this will be the case in general
because the a posteriori alternate candidate fix used in GIAB
will virtually always be among the candidates considered a
priori by EPIC. This implies that any decrease in PL computed
by EPIC as compared to GIAB will result only when the
incorrect fixing bias of the GIAB alternative fix is the same
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as the largest incorrect fixing bias considered by EPIC, which
will be a rare event.

TABLE I: Integrity performance comparison between EPIC
and MAP GIAB. All distance units are in meters. The left-
most column indicates the result from GIAB. The next column
indicates it’s theoretical probability of occurrence [11]. The
third column is the standard deviation of the b̄ under the
given GIAB event. For EPIC, the standard deviations from
the previous row applies since GIAB conditions on the first
non-validated fix, but EPIC conditions only on the validated
fixes. The next three columns indicate the minimum, average
and maximum PL produced by GIAB under each event. The
final column is the value of PL produced by EPIC when it
fixes the same number of integers as GIAB.

E PE σ (m) PLmin E [PL] PLmax PLEPIC

U 0.00072 0.310 2.79 2.92 3.35 1.77
S1 0.00043 0.221 1.31 1.32 1.37 2.62
S2 0.00051 0.196 1.63 1.74 2.13 2.61
S3 0.00119 0.138 1.75 1.83 2.09 2.49
S4 0.00090 0.115 1.09 1.16 1.38 3.03
S5 0.00189 0.084 0.99 1.04 1.20 2.91
S6 0.00039 0.081 0.48 0.53 0.69 2.99
S7 0.99393 0.081 0.46 0.46 0.46 2.95

Note that PL values computed by GIAB and EPIC do not
increase or decrease uniformly with the number of validated
fixes. For example, the maximum PL increases from 1.37 m
to 2.13 m when transitioning from the first successful fix to
the second successful fix. Recall that PL is driven primarily
by the bias between the most likely fix and the incorrect fixes
of non-negligible probability. Because these biases depend on
the relationships among the various integers and the baseline
directions of interest (e.g. vertical error), the biases can change
dramatically from one integer fix to the next. Specifically, for
EPIC, the case labeled U corresponds to the float solution
that includes no incorrect fix biases under the model-driven
paradigm.

For both GIAB and EPIC, it is tempting to think that
in the case of successfully fixing only two integers in the
example above would be better to only fix one integer because
that would yield a lower protection level. It may in fact be
preferable to do so, but only if the bias induced in the solution
by leaving the second integer floating produces acceptable
accuracy performance. That is, the reduction in PL is obtained
only at the expense of a biased solution that degrades average
accuracy. The impact to average accuracy can be seen in the
difference between the strength of the central modes of Float
and MAP GIAB in Fig. 3.

IX. CONCLUSIONS

A new data-driven CDGNSS partial ambiguity resolution
(PAR) and validation algorithm has been developed analyt-
ically and validated with Monte Carlo simulation. The new
algorithm has advantages over the state-of-the-art in that (1)
data-driven methods offer improved availability of integrity
over model-driven methods such as EPIC, (2) the integrity risk
due to incorrect fixing is bounded analytically as compared to
functional approximation methods used with the ratio test and

similar integer aperture methods, (3) it correctly accounts for
the integrity risk of PAR in the position domain that existing
GIA methods neglect, and (4) it requires less computational
burden than EPIC because it eliminates the search for many
alternate fix candidates. The new algorithm has been shown
to provide superior performance to the current state-of-the-art
method for a range of measurement models.
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