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Abstract—A new method is developed for integer ambiguity
resolution in carrier-phase differential global navigation satellite
system (CDGNSS) positioning. The method is novel in that it is
simultaneously (1) data-driven, (2) generalized to include partial
ambiguity resolution, and (3) amenable to a full analytical charac-
terization of the prior probabilities of correctly- and incorrectly-
resolved ambiguities. The technique is termed generalized integer
aperture bootstrapping, or GIAB. A full development of GIAB is
provided herein, including sizing its integer aperture to usually
produce a higher prior probability of full ambiguity resolution
than comparable existing methods. In Monte-Carlo simulations,
GIAB is shown to provide nearly optimal ambiguity resolution
success rates of full ambiguity resolution for relevant integrity
requirements under strong models while enabling partial ambi-
guity resolution.

Keywords—Generalized integer aperture, bootstrap, CDGNSS,
integrity, availability, partial ambiguity resolution, LAMBDA,
data-driven

I. INTRODUCTION

The next generation of CDGNSS use cases includes fully
autonomous landing and refueling of large, unmanned aerial
vehicles, and automated land vehicle navigation. These ap-
plications will demand decimeter-level position accuracy and
more stringent solution integrity than all previous applications.
Integrity is specified in terms of integrity risk (IR), the
probability that the solution error exceeds an alert limit (AL)
without warning. The percentage of time that a system meets
its required navigation performance, including accuracy and
IR, is called solution availability. For safety-of-life applica-
tions, IR is on the order of 10−7 per hour, with required
availability in excess of 99% [1].

This paper focuses on the portion of the IR budget allocated
to incorrect resolution, or fixing, of the carrier-phase integer
ambiguities that are a central feature of CDGNSS positioning.
This portion is specified as the acceptable probability of
incorrect fix, or failure rate, P̄F . High-integrity CDGNSS tech-
niques must provably satisfy demandingly low P̄F . Two such
methods are the Geometry Extra Redundant Almost Fixed
Solutions (GERAFS) [2] and the Enforced Position-domain
Integrity-risk of Cycle resolution (EPIC) [3]–[6] algorithms.
Both of these rely exclusively on a priori error models to
determine, before the measurements are processed, whether
a fixed solution or a float backup solution will be selected.
This approach is termed model-driven because the solution
selection logic is entirely dependent on the prior error model.
Because the EPIC and GERAFS algorithms attempt to bound
IR using the a priori distribution, they are inherently conserva-
tive. Their conservatism arises from the need to protect against

potentially-incorrect fixes without the benefit of conditioning
on the observed carrier phase measurements.

In contrast to the model-driven approach, data-driven meth-
ods decide a posteriori whether to accept the fixed or float
solution. Conditioning the selection on the observed mea-
surements reduces the risk of incorrect fixing. A subset of
data-driven methods is called integer aperture (IA) estimation
[7]. In IA methods, the integer ambiguity vector is estimated,
typically using either integer bootstrapping [8] or integer least
squares (ILS) [9]. Many IA methods compute a test statistic
from the ambiguity residual, i.e., the difference between the
float and fixed ambiguities. This test statistic is compared to
a threshold to decide between the fixed and float solution.

Perhaps the simplest IA method is IA bootstrapping (IAB),
which resolves the integer ambiguities via integer bootstrap-
ping and then tests the fixed solution by applying bootstrap-
ping to a scaled-up version of the ambiguity residual [10].
If the test returns the zero vector, then the fixed solution is
selected; otherwise the float solution is selected. IAB is sub-
optimal in the sense that bootstrapping does not always find
the maximum likelihood integer ambiguity, as opposed to ILS,
which is guaranteed to do so. It is also sub-optimal in the sense
that it does not maximize the probability of successfully fixing
the ambiguities for a given probability of incorrectly fixing
them. But it has the advantage that all of these probabilities
have analytically computable values, which allows the decision
threshold to be set analytically as a function of P̄F . More
generally, IAB enables the strict performance requirements
that safety-of-life applications demand to be provably satisfied.

The remaining IA methods discussed in this introduction
solve for the integer ambiguity with ILS, which is optimal
in the maximum likelihood sense for Gaussian measurement
noise. Ellipsoidal IA takes the covariance weighted norm
of the ILS ambiguity residual as its test statistic [11]. As
with IAB, the simplicity of this statistic allows the decision
threshold to be set analytically so long as adjacent apertures
do not overlap, but the probability of successfully fixing the
ambiguities is sub-optimal. While ellipsoidal IA can have a
higher probability of success than IAB for models with a few
ambiguities of approximately equal conditional variance, IAB
tends to provide a higher probability of success for models in
which the conditional variances of the ambiguities differ by
more than about 10%, which tends to be the case for realistic
measurement models.

Other ILS-based IA methods employ test statistics that are
a function of the ambiguity residuals of the ILS fix and of one
or more higher-cost alternate fixes. These include the ratio test
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[12], [13], the difference test [14], [15], and the optimal test
[16], [17]. Unlike IA bootstrapping and ellipsoidal IA, none
of these methods’ test statistics has an analytical probability
distribution or decision threshold [18]. In practice, decision
thresholds are set based on one of a few ad hoc methods.
The crudest of these, which applies a fixed threshold for all
measurement models, does not allow one to control the actual
probability of incorrect fix, PF , for time-varying measurement
models. More sophisticated methods determine the decision
threshold that approximately satisfies P̄F via Monte Carlo
simulation, lookup tables [13], or functional approximations
[19], [20]. But these techniques are inapt for safety-of-life
systems because the resulting thresholds cannot be analytically
proven to satisfy P̄F for any particular model. At best, they
incorporate sufficient conservatism to protect the solution at
the expense of decreased availability. Of course, in the limit as
the number of test points becomes exceedingly large, Monte
Carlo simulation for a given measurement model can yield
an arbitrarily exact decision threshold, but such simulation is
hardly feasible for real-time operation.

The optimal IA algorithm uses ILS to optimally estimate
the ambiguities and then takes as its test statistic the a
posteriori probability of correct fix [21]. Counterintuitively,
the threshold corresponding to a particular P̄F for this statistic
is not analytically computable. Also, the optimal IA estimator
involves an infinite sum over all possible integer ambiguities.
The search can be truncated once a sufficiently large number
of integer fixes has been evaluated, but the number required
depends on the strength of the model and on the required
P̄F . To satisfy the most demanding integrity requirements,
the search often extends to several hundred candidate fixes
in realistic scenarios, which becomes impractical for real-time
applications.

This paper’s focus on IAB is motivated by the alternative IA
approaches’ computational complexity or lack of an analytical
connection between P̄F and the decision threshold.

This paper extends the IAB technique to a generalized form
in which subsets of the full set of integer ambiguities are
considered for resolution if the full set cannot be resolved
confidently. This generalization makes IAB a member of
the family of Generalized Integer Aperture (GIA) estimators
[22]. These algorithms evaluate successively smaller subsets
until either a satisfactory fix is found or the float solution
is applied as a last resort. Also known as partial ambiguity
resolution (PAR), this technique provides gradual degradation
of performance for weak models.

In summary, to meet the increasingly stringent performance
requirements of safety-of-life applications there is a need for a
data-driven ambiguity resolution and validation method whose
decision threshold for choosing between a fixed and float
solution can be set analytically for a desired P̄F . To maximize
availability, the method must be generalized to accommodate
PAR. Extant methods in the high-integrity CDGNSS literature
do not satisfy this need.

This paper offers three contributions to address this need.
First, IAB is extended to encompass PAR. The extended
technique is called Generalized Integer Aperture Bootstrapping
(GIAB). Second, analytical characterizations of the probability

of incorrect fix, correct partial fix, and correct full fix are
developed and validated. Third, a method for setting the
integer aperture size and shape is developed that enables
GIAB’s availability to exceed IAB’s subject to a given P̄F .
These contributions are validated with a set of Monte Carlo
simulations, and algorithm performance is compared to the
optimal IA, ellipsoidal IA, and IAB methods.

A preliminary version of this work was presented in [23].
This work extends the preliminary work with further validation
of the theoretical results via additional simulation of a larger
set of measurement models and a detailed comparison to the
optimal integer aperture method. A further extension of the
preliminary work will be published in a companion paper to
this one [24]. The companion paper analytically develops the
prior and posterior probability density functions for the GIAB
baseline, bounds the integrity risk associated with data-driven
PAR, and validates the derived distributions via Monte- Carlo
simulation.

The following acronyms will be used frequently throughout
the remainder of this paper and are collected here for ease of
reference: IA - Integer Aperture, IB - Integer Bootstrapping,
IAB - Integer Aperture Bootstrapping, and GIAB - General-
ized Integer Aperture Bootstrapping.

II. GENERALIZED INTEGER APERTURE BOOTSTRAPPING

A. Integer Bootstrapping Overview

The basic theory of integer bootstrapping (IB) is reproduced
here from [8] with a few amplifications for ease of understand-
ing and notational consistency. The treatment begins with the
linearized, short-baseline GNSS measurement model

y = Bb+Aa+ ν (1)

where y ∈ Rn contains the “observed-minus-modeled”
double-difference carrier-phase and, optionally, pseudorange
measurements, b ∈ R3 is the unknown, real-valued correction
to the modeled baseline between GNSS antennas, a ∈ Zm
holds the unknown carrier phase integer ambiguities, B and
A are appropriately-dimensioned measurement sensitivity ma-
trices, and ν ∈ Rn is the zero-mean, double-difference
measurement noise with variance Qy .

Applying weighted least squares estimation to (1), with
H = [B A], produces real-valued estimates of b and a:[

b̂
â

]
=
(
HTQ−1

y H
)−1

HTQ−1
y y (2a)

E

([
b̂
â

])
=

[
b
a

]
(2b)

cov

([
b̂
â

])
=

[
Qb̂ Qb̂â
QT
b̂â

Qâ

]
=
(
HTQ−1

y H
)−1

(2c)

The estimates â ∈ Rm and b̂ ∈ R3, called the float ambiguity
and float baseline, ignore the integer constraint a ∈ Zm.

Integer ambiguity resolution is a technique by which the
float ambiguity â is mapped to a vector of integers ǎ ∈ Zm.
The process can be represented by the map

ǎ = M(â, Qâ)

M : Rm × Sm++ 7→ Zm
(3)
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where Sm++ is the set of positive definite matrices of size
m × m. The integer-bootstrapping variant of M operates in
such a way that when Qâ has non-zero off-diagonal elements,
the probability that ǎ = a depends on the ordering of the
elements of â [8]. To ensure near-optimal IB performance,
an integer-preserving transformation is applied to decorrelate,
insofar as possible, the elements of â; details of this transfor-
mation, referred to as the Z-transform, may be found in [25],
[26]. The decorrelated float ambiguity is ẑ = ZT â, and the
transformed true ambiguity is z = ZTa, with Z being the
integer-preserving transformation matrix. Likewise, Qâ and
Qb̂â are transformed as Qẑ = ZTQâZ and Qb̂ ẑ = Qb̂âZ. All
integer-related operations hereafter will be performed in the
decorrelated space, with ẑ referred to as the float ambiguity.

The functional map M(ẑ, Qẑ) partitions Rm into disjoint
subsets, called pull-in regions, that collectively cover Rm.
Each region is an integer-valued translation of the subset

S0 , {x ∈ Rm |0 = M(x, Qx)} (4)

The pull-in region Sζ ⊂ Rm is the set of all points x mapped
by M(x, Qx) to the integer vector ζ ∈ Zm:

Sζ , {x ∈ Rm |ζ = M(x, Qx)} , ζ ∈ Zm

Sζ = S0 + ζ
(5)

For IB, the pull-in regions are m-dimensional parallelotopes
centered on the integers.

For presentation of the IB algorithm, it will be convenient
to decompose the covariance of the float ambiguity as Qẑ =
LDLT , where L is a unit lower triangular matrix and D is a
diagonal matrix, and to model the float ambiguity as the true
ambiguity plus zero-mean Gaussian noise, ẑ = z + ε, ε ∼
N (0, Qẑ). Multiplication by L−1 transforms ε into a vector
whose elements are mutually uncorrelated: εc , L−1ε, εc ∼
N (0, D). Letting lij denote the ijth element of L, di the ith
element of the diagonal of D, and εi and εci the ith elements
of ε and εc, respectively, εi and its variance can be computed
from the first i components of εc as

εi =

i∑
k=1

likεck, var (εi) =

i∑
k=1

l2ikdk (6)

IB can be interpreted as constrained maximum likelihood
estimation in which the integer constraint z ∈ Zm is applied
sequentially. Application of the integer constraint can also
be viewed as conditioning on an assumed value of ε. For
convenience in what follows, let the shorthand notation vI
denote the vector composed of the first i− 1 elements of any
vector v of sufficient length. Thus, εI = [ε1, . . . , εi−1]

T . Let
εj |εI represent the jth element of ε conditioned on εI being
known. Starting with (6), and exploiting the lack of correlation
in the elements of εc, one can show that

εj |εI ∼ N

(
i−1∑
k=1

ljkεck,

j∑
k=i

l2jkdk

)
, j = i, ...,m (7)

Note that var(εi|εI) = di. Thus, di can be interpreted as the
conditional variance of the ith ambiguity. A larger value of di
indicates that correct integer resolution of the ith ambiguity
will be more difficult.

One may alternatively find the mean of εj |εI via the stan-
dard expression for conditional mean. Assume εI ∼ N (0, QI),
and let QjI ∈ R1×(i−1) be the cross-correlation matrix
between εj and εI , for j ≥ i. Then the mean of εj conditioned
on knowledge of εI is [27]

E[εj |εI ] = QjIQ
−1
I εI (8)

With these preliminaries, the algorithm for a single step
of IB is straightforward. Let zI = [z1, . . . , zi−1]

T , and
suppose that one assumes zI = žI for some known žI =
[ž1, . . . , ži−1]

T ∈ Zi−1. Then, starting from ẑ = z + ε, the
constrained maximum likelihood estimate of zi given zI = žI
is

ẑi|I = ẑi −QiIQ−1
I (ẑI − žI) (9)

Defining ε̌ , ẑ − ž and ε̌c , L−1ε̌, and referencing (7) and
(8), one recognizes (9) as equivalent to

ẑi|I = ẑi − E [εi| εI = ε̌I ]

= ẑi −
i−1∑
k=1

lik ε̌ck

= zi +

i∑
k=1

likεck −
i−1∑
k=1

lik ε̌ck

(10)

where the last equality makes use of ẑi = zi + εi and (6).
The quantities ẑi|I , i = 1, 2, ...,m are called the sequentially-
constrained float ambiguity estimates; these are stacked to
form the vector ẑc.

It is shown in Appendix A that ε̌c = ẑc−ž, which evokes an
interpretation of ε̌c as the sequentially-constrained ambiguity
residual. When ε̌ci, the ith element of ε̌c, is small, this implies
that the sequentially-constrained float estimate ẑci = ẑi|I is
close to ži, meaning the assumption zi = ži is likely correct.
If the assumption is correct for all zk, k ∈ {1, . . . , i − 1},
then εck = ε̌ck for all k ∈ {1, . . . , i− 1}, and (10) simplifies
to

ẑi|I = zi + εci (11)

The appearance of εci as the sole noise element in this equation
indicates that, given the true value of zI , ẑi|I is uncorrelated
with εI , and, by extension, with ẑI . This important property
allows the integer constraint zi ∈ Z to be enforced directly on
ẑi|I by simple rounding, yielding the conditional maximum-
likelihood integer estimate

ži = bẑi|Ie (12)

where b·e denotes nearest integer rounding. The set of
successively-obtained integer estimates are stacked to form the
vector ž = [ž1, . . . , žm]

T , which is called the fixed ambiguity,
as distinguished from the float ambiguity ẑ. Note that, if one
or more of the elements in zI are constrained incorrectly, so
that the integer error vector ∆zI , žI − zI is nonzero, then
(10) instead becomes

ẑi|I = zi + εci +

i−1∑
k=1

lik∆zk (13)

where ∆zk is the kth element of ∆zI .
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To summarize, the ith IB iteration starts by assuming zI =
žI , calculates ẑi|I subject to this constraint as in the center
equation in (10), then rounds ẑi|I to the nearest integer to
obtain ži. The full IB algorithm becomes clear by mention
of two additional points: (1) žI is taken to be composed of
the integer-rounded estimates from previous steps, and (2) for
i = 1, ẑi|I = ẑi.

An efficient implementation of IB is given in pseudocode
below. This implementation, which is functionally equivalent
to that given in [8] although its internal details differ, is the
starting point for the new algorithm developed in this paper.

Algorithm 1: IB(ẑ, L)

Input : ẑ ∈ Rm, L ∈ Rm×m
Output: ž ∈ Zm

1 ẑc = ẑ
2 for i = 1:m do
3 ži = bẑcie
4 ε̌ci = ẑci − ži
5 for j = i+1:m do
6 ẑcj = ẑcj − lij ε̌ci
7 end
8 end

Once the fixed ambiguity ž is computed, an integer-
constrained baseline estimate, called the fixed baseline, is
produced as

b̌ = b̂−Qb̂ ẑQ
−1
ẑ ε̌

= b̂−Qb̂ ẑL
−TD−1ε̌c

(14)

The corresponding covariance matrix reflects the improved
precision of the baseline estimate due to integer fixing, as-
suming all ambiguities were fixed correctly:

Qb̌ = Qb̂ −Qb̂ ẑQ
−1
ẑ QT

b̂ ẑ
(15)

B. Integer Aperture Bootstrapping (IAB)

IAB extends the IB concept by adding a validation test [10].
The test statistic for IAB can be expressed as a function of
the ambiguity residual ε̌ , ẑ − ž and a parameter β ∈ [0, 1]
called the aperture parameter:

T (ε̌, L, β) =

∥∥∥∥IB

(
1

β
ε̌, L

)∥∥∥∥
0

(16)

Here, ‖v‖0 , |{i | vi 6= 0}| denotes the number of non-zero
elements in the vector v. It can be shown that T (ε̌, L, β) =
0 ⇐⇒ |ε̌ci| < β

2 , ∀i ∈ {1, . . . ,m} [10]. Thus, a small
β ensures that T (ε̌, L, β) = 0 only when the sequentially-
constrained ambiguity residuals are small, implying that ž = z
with high probability. Accordingly, IAB accepts the integer
fix produced by IB whenever T = 0, but otherwise rejects it.
In the event that the fix is rejected, IAB resorts to the float
solution ẑ. The overall IAB process can be represented by the
map

IAB (ẑ, L, β) ,

{
IB(ẑ, L) if T (ε̌, L, β) = 0
ẑ otherwise

Note that, since IB(ε̌, L) = 0, a fixed solution can be forced
by choosing β = 1; likewise, a float solution is forced by
β = 0.

The set of all float ambiguities mapped to the vector ζ,
called Ωζ , is a subset of the corresponding pull-in region of
IB(ẑ, L), with equality if and only if β = 1:

Ωζ = {x ∈ Rm | ζ = IAB (x, L, β)} , ζ ∈ Zm

Ωζ ⊆ Sζ
(17)

Such sets are called apertures. Due to the integer invariance
of integer bootstrapping, Ωζ = Ω0 + ζ.

-2 -1 1 2
ϵ1 (cycles)

-2

-1

1

2

ϵ2 (cycles)

Fig. 1. IAB aperture regions for a two-dimensional example model. This is
a visual representation of the possible outcomes of IAB(ε, L, β). The axes
correspond to the first to float ambiguity errors in units of cycles. The central,
darkly shaded region is the success region, in which ž = z. The lightly
shaded regions correspond to incorrect ambiguity fixes, in which ž 6= z. The
unshaded region is the fix-rejection region.

The IAB apertures have the same shape as the IB pull-
in region but are scaled by a factor of β. Accordingly, gaps
between integer-shifted apertures emerge whenever β < 1, as
illustrated in Fig. 1. Three important regions can be identified
in Fig. 1, each corresponding to a possible IAB outcome. The
central, dark region corresponds to the success event in which
the full ambiguity set is resolved correctly. The union of the
many lightly shaded regions corresponds to the failure event in
which one or more integer ambiguities are fixed incorrectly.
Values of ε = ẑ − z falling in the unshaded region result
in the fix being rejected. This is the undecided event. The
probabilities of these events are [10], [28]

PS =

m∏
i=1

(
2Φ

(
β/2√
di

)
− 1

)
(18a)

PF =
∑

z̃∈Zm\{0}

m∏
i=1

(
Φ

(
β
2 − L

iz̃
√
di

)
− Φ

(
−β2 − L

iz̃
√
di

))
(18b)

PU = 1− PF − PS (18c)

where Li is the ith row of L−1, and Φ (·) is the CDF of the
standard normal random variable.

4



A few observations should be made about the event proba-
bilities. First, calculation of PF involves an infinite sum over
all integer ambiguities other than the correct one. One can
calculate an approximate PF by summing over a large number
of alternative ambiguities, but this may still be computationally
expensive if the specified acceptable PF , written P̄F , is small
or if m is large. Second, PF is a monotonically increasing
function of β, which implies that PF decreases as the integer
aperture is made smaller. Thus, the aperture parameter β con-
trols the failure probability. Third, PS is also monotonically
increasing in β, which implies that any increase in PS comes
at the expense of an increase in PF .

C. Generalization to Partial Ambiguity Resolution

Accepting or rejecting the whole of ž, as IAB does, is an
extreme approach that limits the range of useful outcomes.
Consider instead a variant of IAB in which a subset of the
elements of ž may be accepted. IAB is well suited to such
generalization from full to partial ambiguity resolution, for
two reasons. First, the lack of correlation between the elements
of ε̌c allows an aperture test to be applied separately to each
element. Moreover, the test can be tailored for each element:
the ith ambiguity can be tested against aperture parameter βi,
with the vector β = [β1, . . . , βm]T chosen such that PF ≤
P̄F . A later section will discuss the benefits of such element-
specific aperture sizing.

Second, one need not consider every possible subset of IAB
ambiguities, which, besides being computationally demanding,
would involve so many aperture tests that the probability of
one of them randomly passing will force the selection of small
βi values to satisfy PF ≤ P̄F . These small βi will lead to the
rejection of many correct fixes, driving down PS . Instead, one
can achieve good performance even when considering only
the subset corresponding to the first q ≤ m elements of ẑ,
where q is the number that pass the validation test. This is
because any of the commonly-accepted Z transform techniques
(e.g., those in [25], [26]) tend to arrange ẑ to greatly increase
(though not necessarily maximize) PS relative to what would
have been possible with the un-transformed system. And since
the expected value of q can be shown to increase with PS ,
attempted fixing from the first to last element of ẑ ensures
that q will be maximized, or nearly so.

The new algorithm, called generalized integer aperture
bootstrapping (GIAB), is given in pseudocode below. GIAB
successively fixes ambiguities until it determines that the next
one cannot be fixed without PF exceeding P̄F . The output q is
the number of ambiguities fixed; q < m implies the (q+ 1)th
validation test failed, so the last m− q ambiguities were left
unfixed.

Whereas IAB has three outcome events (success, failure,
and undecided), GIAB has m+2. These are defined in terms of
the random variables ž and q as follows, where z1:n indicates
the vector composed of the first n elements of the vector z:

F : ž1:q 6= z1:q, q ∈ {1, . . . ,m} (19a)
U : q = 0 (19b)
Si : ž1:i = z1:i, q = i ∈ {1, . . . ,m} (19c)

Algorithm 2: GIAB (ẑ, L,β)

Input : ẑ ∈ Rm, L ∈ Rm×m, β ∈ [0, 1]
m

Output: q ∈ {0, . . . ,m}, ž ∈ Zmin(q+1,m)

1 q = 0
2 ẑc = ẑ
3 for i = 1:m do
4 ži = bẑcie
5 ε̌ci = ẑci − ži
6 if |ε̌ci| < βi

2 then
7 q = i
8 for j = i+1:m do
9 ẑcj = ẑcj − ljiε̌ci

10 end
11 else
12 break
13 end
14 end

The failure event F occurs upon acceptance of any incorrect
integers. The undecided event U occurs when no ambiguity is
fixed. There are m success events Si defined for each possible
number of correct integer fixes from 1 to m.

The aperture Ωζ ⊂ Rm, ζ ∈ Zm, introduced in (17) for
IAB, can be generalized for partial ambiguity resolution as
Ωi,ζ ⊂ Rm, ζ ∈ Zi, i ∈ {1, . . . ,m}. Let x̌ and q be the
outputs of GIAB (x, L,β). Then

Ωi,ζ = {x ∈ Rm | ζ = x̌1:i, q = i} , i ∈ {1, . . . ,m}, ζ ∈ Zi
(20)

In other words, Ωi,ζ is the set of all float ambiguity vectors
whose first i elements are mapped and validated by GIAB to
ζ ∈ Zi, but whose (i+1)th element is not validated. Note that
when βi = β for all i ∈ {1, . . . ,m}, then Ωm,ζ = Ωζ , ζ ∈
Zm.

The success event Si can be defined in terms of Ωi,ζ as

Si : ẑ ∈ Ωi,ζ , i ∈ {1, . . . ,m} (21)

and the failure event can be defined as

F : ẑ ∈

 ⋃
i∈{1,...,m}

 ⋃
ζ∈Zi\z1:i

Ωi,ζ

 (22)

The regions corresponding to the F , U , and Si events are
illustrated in Fig. 2 for m = 2.

D. Partial Ambiguity Resolution Probabilities

To assess GIAB’s theoretical performance, the probability of
each possible event must be computed. For the ith ambiguity
reached during GIAB processing, there are three possibilities:
the fix is accepted correctly, accepted erroneously, or rejected.
Conditioned on the event that the first i−1 integers have been
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F S0 S1 S2

Fig. 2. Regions of the float ambiguity error, ε ∈ Rm, that are mapped by
GIAB to failure, undecided, and success events for an example model with
m = 2. The axes correspond to the first to float ambiguity errors in units of
cycles. Event F results if one or more ambiguities are fixed incorrectly. Event
Si occurs when exactly i ∈ {1, . . . ,m} ambiguities are fixed and each of
these is correct. Event U occurs when the first ambiguity is rejected, leaving
all ambiguities unfixed.

fixed correctly (i.e., žI = zI ), the probabilities for these three
events, for i ∈ {1, . . . ,m}, follow from (18):

PCi = P

(
|εci| <

βi
2

∣∣∣∣ žI = zI

)
= 2Φ

(
βi/2√
di

)
− 1 (23a)

PEi =
∑

ζ∈Z\{0}

P

(
|εci − ζ| <

βi
2

∣∣∣∣ žI = zI

)

=
∑

ζ∈Z\{0}

(
Φ

(
βi

2 − ζ√
di

)
− Φ

(
−βi

2 − ζ√
di

))
(23b)

PRi = P

(
βi
2
≤ |εci|

∣∣∣∣ žI = zI

)
= 1− PEi − PCi (23c)

Note that, for i = 1, žI and zI become empty vectors and the
conditioning has no effect.

The failure event probability, PF , is computed by noting
that one or more fixing errors entail the failure event and
that, if an ambiguity is rejected, no further ambiguities are
considered. Thus PEi only contributes to PF if all previous
ambiguities were fixed correctly. The probability of the ith
success event, PSi

, can be computed by applying similar logic.
The probability of the undecided event, PU , is simply PR1.

The failure, success, and undecided probabilities are thus

PF = PE1 +

m∑
i=2

PEi

i−1∏
j=1

PCj (24a)

PSi =


m∏
j=1

PCj i = m

PR(i+1)

i∏
j=1

PCj i ∈ {1, . . . ,m− 1}
(24b)

PU = PR1 (24c)

Note that if βi = β for all i ∈ {1, . . . ,m}, then PSm
is equal

to PS as defined for IAB in (18a).
A bound can be introduced to avoid the infinite sum in

calculating PEi. Consider the region βi

2 ≤ |εci| ≤ 1 − βi

2 ,
which is a subset of the rejection region βi

2 ≤ |εci|, so that
PRi ≥ P

(
βi

2 ≤ |εci| ≤ 1− βi

2

∣∣∣ žI = zI

)
. Appending to this

region the correct acceptance region |εci| < βi

2 from (23a),
and working out the probability for the combined region, it
follows that

PCi + PRi ≥ 1− 2Φ

(
βi/2− 1√

di

)
(25)

From this and (23c), one obtains the following upper bound
on PEi:

PEi ≤ 2Φ

(
βi/2− 1√

di

)
(26)

Provided P̄F is small and the measurement model is strong
enough that

√
di < 0.2, as is typical, this bound on PEi is

tight. The next section invokes the bound, together with P̄F ,
to set the aperture parameters βi.

III. SETTING THE INTEGER APERTURE PARAMETERS

In IAB, PF is controlled by adjusting a single aperture
parameter β. GIAB is more flexible, as it allows a tailored
parameter βi for each validation test. For any specified P̄F ,
a parameter vector β = [β1, . . . , βm]T can almost always be
found so that GIAB’s probability of fixing all m integers,PSm

,
exceeds IAB’s PS . This section shows how β can be computed
analytically to satisfy PF ≤ P̄F , and develops a technique that
chooses β to nearly maximize PSm .

A. Allocation from Probability of Failure

Each validation test that GIAB performs contributes to PF .
The parameter βi determines the amount of incorrect fixing
risk that gets allocated to ith ambiguity, from an overall risk
budget P̄F . (The word risk here and elsewhere in this paper
refers to the probability of an undesirable event.) Suppose
wiP̄F is allocated to the ith ambiguity, where wi < 1, and
suppose the aperture parameters preceding βi have all been
set, which implies that PCj is known for all j ∈ {1, . . . , i−1}.
Then the maximum allowable βi—the one that maximizes
PSi subject to the allocation wiP̄F—is found in two steps.
First, PEi is written as a function of wiP̄F by isolating its
contribution to PF in (24a):

PEi(wiP̄F ) =

{
w1P̄F i = 1
wiP̄F∏i−1
j=1 PCj

i = 2, . . . ,m (27)
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Second, the correponding value of βi is found by treating
(26) as an equality and inverting it to find βi. Applying the
constraint βi ∈ [0, 1], one has βi = βmax (PEi, di), with

βmax (PEi, di) , min
[
1,max

[
0, 2

(
1 +

√
diΦ
−1 (PEi/2)

)]]
Note that if any βi = 0, then the ith and following ambiguities
cannot be fixed while satisfying PF ≤ P̄F . Conversely, if
βi = 1 for all i ∈ {1, . . . ,m}, then all m ambiguities can be
fixed while satisfying PF ≤ P̄F .

The functions PEi(wiP̄F ) and βmax (PEi, di), which are
constructed from well-known and readily-computable opera-
tions, constitute an analytical mapping from wiP̄F to βi. This
analytical relationship is a key benefit of GIAB, as it allows
data-driven partial ambiguity resolution to be applied in safety-
of-life systems that must provably satisfy PF ≤ P̄F .

B. Optimization for Availability of Full Ambiguity Resolution

Consider how the wi should be chosen. Assuming a nonzero
risk is allocated to each ambiguity, and assuming the full risk
budget P̄F is to be exhausted, the wi should satisfy

0 < wi < 1,∀i ∈ {1, . . . ,m} and
m∑
i=1

wi = 1 (28)

One could allocate an equal fraction of P̄F to each of the
m ambiguities by setting wi = 1/m for all i ∈ {1, . . . ,m},
but this may not be optimal in the sense of maximizing the
probability PSm of correctly resolving all m ambiguities. The
optimal allocation problem can be posed in terms of β as

β∗ = arg max
β

[PSm (β)]

s.t. PF (β) ≤ P̄F and conditions in (28)
(29)

This problem can be approached by gradient ascent, but
PSm and PF are both non-convex functions of β and give rise
to many local maxima in the region of the global maximum.
Thus, gradient ascent offers no guarantee of finding the global
optimum, besides which the gradient calculation for this
problem is computationally expensive.

Mercifully, a nearly-optimal choice of the wi can be found
by a simple heuristic. Because both PSm and PF are functions
of the conditional variances di, it is reasonable to compute the
weights as functions of di as well. The most general function
satisfying (28) is

wi =
f (di)∑m
j=1 f (dj)

(30)

where f (di) is a weighting function. Guided by the intuition
that more risk must be allocated to the ambiguities that are
most difficult to resolve (those having the largest di), lest their
resulting small βi reject fixing too often, four variants of f(di),
shown in the following table, are considered: Equal-weighting,
σ-weighting, σ2-weighting, and PE-weighting. Note that PE-
weighting simply sets f(di) equal to PEi from (26) with βi =
1. This heuristic does not ensure the global optimum is found,
but offers good performance.

When tested on a variety of models with bootstrap prob-
ability of correct fix ranging from .85 to .9999 and for a

TABLE I
WEIGHTING FUNCTION ALTERNATIVES CONSIDERED

Equal σ σ2 PE

f (di) 1
√
di di 2Φ

(
−1/2√

di

)

wide range of P̄F , it was found that PE-weighting produces
the highest PSm for all models studied, including cases of
flat spectra (e.g., max {di}m1 /min {di}m1 < 1.1), and spectra
with significant variation (e.g., max {di}m1 /min {di}m1 > 7).
When performing gradient ascent optimization starting from
the PE-weighted β, or starting from a large number of random
initial β distributed across its whole range, there was never
observed more than a 0.03% increase in PSm . Moreover,
compared to the common-parameter case in which βi = β
for all i ∈ {1, . . . ,m}, the probability PSm

for PE-weighting
was never lower, and almost always higher—often by several
percent. PE-weighting can thus be considered nearly optimal,
and is the recommended strategy for aperture sizing. The
overall aperture sizing algorithm is given in the following
pseudocode. Note that even when the algorithm’s output β
does not quite maximize PSm, it nevertheless guarantees
PF ≤ P̄F , which is most important for safety-of-life systems.

Algorithm 3: SetBeta
(
P̄F ,d

)
Input : P̄F ∈ [0, 1], d ∈ Rm
Output: β ∈ [0, 1]

m

1 Σ = 0;
2 A = 1;
3 for i = 1:m do
4 PEi = 2Φ

(
− 1/2√

di

)
5 Σ = Σ + PEi
6 end
7 for i = 1:m do
8 wi = PEi

Σ

9 βi = min
(

max
[
2
(

1 +
√
diΦ
−1
(
wiP̄F

2A

))
, 0
]
, 1
)

10 A =
(

2Φ
(
βi/2√
di

)
− 1
)
A

11 end

IV. THE GENERALIZED INTEGER APERTURE BASELINE

Analogous to the float baseline b̂ and the fixed baseline b̌, a
partially-fixed baseline can be calculated from the inputs and
outputs of GIAB. Let (14) be rewritten as

b̌ = b̂−
m∑
j=1

Qj
b̂ ẑc

ε̌cj
dj

(31)

where Qb̂ ẑc , Qb̂ ẑL
−T and where Qj

b̂ ẑc
denotes the jth

column of Qb̂ ẑc . Rewriting b̌ in this way reveals that each
element of the sequentially-constrained ambiguity residual
ε̌c makes a separate correction to b̂. To obtain a partially-
fixed baseline, one simply truncates the summation. Thus, the
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baselined constrained by only the first i ambiguities, denoted
b̌i, is calculated as

b̌i = b̂−
i∑

j=1

Qj
b̂ ẑc

ε̌cj
dj

(32)

Its covariance Qb̌i , cov
(
b̌i
∣∣ ž1:i = z1:i

)
, assuming all fixed

ambiguities are correct and i is chosen a priori, can be derived
from (15). Note that Qb̌i is not the unconditional variance of
b̌i since ž1:i is a random variable with its own distribution.
However, cov

(
b̌i
)

approaches Qb̌i as the probability of suc-
cess approaches one.

Qb̌i = Qb̂ −
i∑

j=1

1

dj
Qj
b̂ ẑc

(
Qj
b̂ ẑc

)T
(33)

For high-integrity positioning, the probability distribution
of the baseline vector is of great importance. It can be shown
that the float baseline b̂ ∼ N (b, Qb̂). On the other hand, the
fixed IB baseline from (14) is distributed as an infinite sum of
Gaussians, though, like b̂, it is unbiased [8].

Analysis of the baseline resulting from GIAB is complicated
by the effects of data-driven partial fixing. If, for some reason,
one decides a priori to fix only i ambiguities (e.g., based on
the strength of the model), then, given that all fixed ambiguities
are fixed correctly, b̌i has a simple distribution:

b̌i| (ž1:i = z1:i) ∼ N (b, Qb̌i), i ∈ {1, . . . ,m}

One might expect the same distribution to apply for GIAB
when q = i < m. However, there is key difference between
these two cases: q = i < m implies that GIAB has rejected
fixing the (i + 1)th ambiguity. The data-driven (a posteriori)
decision to reject yields a different baseline distribution than
that of a priori partial fixing:

b̌i| (ž1:i = z1:i, q = i < m) � N (b, Qb̌i)

To understand why, recall that q = i < m implies GIAB
rejected fixing the (i + 1)th ambiguity upon finding that
|ε̌c(i+1)| ≥ β(i+1)/2, as fixing it would violate PF < P̄F .
Even so, the most likely fix for the (i+ 1)th ambiguity, given
ε̌c(i+1) and given that ž1:i = z1:i, is the same one that would
have been produced by integer bootstrapping, which GIAB
outputs in ži+1. The next most likely fix and its associated
conditional ambiguity residual are

ži+1,alt = ži+1 + sgn
(
ε̌c(i+1)

)
(34a)

ε̌c(i+1),alt = ε̌c(i+1) − sgn
(
ε̌c(i+1)

)
(34b)

Equation (32) indicates that if the (i+ 1)th integer were to
be fixed, the adjustments to b̌i in the most likely and alternate
cases would be

b̌i+1 − b̌i = −Q(i+1)

b̂ ẑc

ε̌c(i+1)

di+1
(35a)

b̌i+1,alt − b̌i = −Q(i+1)

b̂ ẑc

ε̌c(i+1),alt

di+1
(35b)

It is shown in [24] that either b̌i+1 or b̌i+1,alt is unbiased
when conditioned on ε̌c(i+1) and zi+1 ∈ {ži+1, ži+1,alt}. and
that P

(
zi+1 ∈ {ži+1, ži+1,alt}| ε̌c(i+1), q = i

)
> 1 − P̄F . It

follows that, having examined ε̌c(i+1), but having rejected
the correction it offers, and the correction ε̌c(i+1),alt offers,
(b̌i|ε̌c(i+1) = ε, q = i) is biased for any ε 6= 0. Further,
because the rejection region does not contain the origin –
otherwise the fix would be accepted – averaging over the
support of ε̌c(i+1)|q = i implies that the distribution of(
b̌i
∣∣ ž1:i = z1:i, q = i < m

)
will not have an unbiased mode.

Therefore, for data-driven partial fixing, it is wrong—and
potentially hazardous—to assume the resulting constrained
baseline estimate is unbiased and unimodal. For a complete
discussion on the integrity implications of partial ambiguity
resolution, and for development of the a priori and a posteriori
partially-fixed baseline distributions, see [24].

V. VALIDATION VIA MONTE CARLO SIMULATION

To validate the GIAB event probabilities PF , PU , and
PSi

,∀i ∈ {1, . . . ,m}, extensive Monte Carlo simulations were
performed on float solution models with varying measurement
error but the same satellite geometry. For each model, the
simulation was initialized by computing the decorrelating Z-
transform and using PE-weighting to set the integer aperture
parameters. Then a large sample was drawn from the distri-
bution described by (2) to generate the float solution errors,
the float baseline, and float ambiguities. The float ambiguities
were then Z-transformed and the GIAB algorithm was applied
to the transformed float ambiguity solution. Finally, the outputs
were logged, including the number of correctly fixed samples,
tabulated by q, the number of incorrectly fixed samples,
tabulated by the first errant ambiguity, and the partially-fixed
baseline error, tabulated by q.

The sample size for each simulation was chosen to ensure
that a statistically significant number of failures occurred or a
significant number of solutions was available for each value
of q. This paper’s theoretical event probabilities were then
compared to the simulated results. To examine the goodness
of fit between theory and simulation, the differences between
predicted and simulated probabilities were calculated, normal-
ized by the expected standard deviation in the measured rate.

Several models were simulated to illustrate a range of
failure rates and fixing probabilities. Only small models with
7 ambiguities are presented in full detail, but similar results
were obtained for m ∈ {14, 21, 28}. In the following tables,
E is an event, whether F , U , or Si for i ∈ {1, . . . ,m}, PE is
the predicted event probability, P̂E is the event probability as
measured from the Monte Carlo simulation, and kPE is the
normalized difference between the predicted and estimated
event probabilities. The predicted probability of failure was
computed using the bound on PEi given in (26). The dif-
ference is normalized by the standard deviation of the Beta
distribution, β (nMCPE , nMC (1− PE)), which is the posterior
distribution of PE given the Monte Carlo results. Thus,

kPE =
P̂E − PE√
PE(1−PE)
nMC

(36)

The value of kPE is interpreted as follows: if |kPE | < N , then
the predicted and measured probabilities differ by no more
than N standard deviations.
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Table II shows the simulation results for nMC = 4 × 108

Monte Carlo samples from a float distribution with a bootstrap
probability of correct fix PCF ,B = 1 − 2 × 10−5 for P̄F =
10−8. This strong model was chosen to validate the event
probabilities when partial fixing is rarely needed. Table III

TABLE II
PREDICTED VS SIMULATED EVENT PROBABILITIES FOR A STRONG

MODEL

E PE P̂E kPE

F 10−8 5e-9 1.0000
U 0.0007217 0.0007204 1.0098
S1 0.0004399 0.0004396 0.2180
S2 0.0005133 0.0005131 0.1440
S3 0.0011997 0.0012005 -0.4574
S4 0.0009000 0.0009023 -1.4966
S5 0.0018919 0.0018902 0.7913
S6 0.0003955 0.0003956 0.0896
S7 0.9939380 0.9939380 -0.0864

shows the simulation results for nMC = 2.2×107 Monte Carlo
samples from a float distribution with a bootstrap probability
of correct fix PCF ,B = 0.988 and P̄F = 10−5. This weak
model was chosen to validate the event probabilities when
partial fixing must be employed frequently.

TABLE III
PREDICTED VS SIMULATED EVENT PROBABILITIES FOR A WEAK MODEL

E PE P̂E kPE

F 0.00001 0.0000101 -0.2673
U 0.13872 0.138628 1.1858
S1 0.09308 0.093210 -2.2452
S2 0.08423 0.084117 1.9596
S3 0.09987 0.099910 -0.8364
S4 0.07162 0.071578 0.6782
S5 0.08010 0.080070 0.2955
S6 0.03362 0.033647 -0.7922
S7 0.39878 0.398801 -0.2348

As can be seen in Tables II and III, both the strong and
weak model predictions match the simulation results well.

VI. COMPARISON AGAINST EXISTING IA METHODS

To demonstrate the improved performance of the GIAB
aperture sizing algorithm, GIAB was compared with existing
IA methods within Monte Carlo simulations for m ∈ {2, 7}.
For the m = 7 simulation, a single representative satellite
geometry was used with the measurement covariance scaled in
the same way as described in section V to give a weak model
that would test GIAB in the least favorable circumstance for
comparison with the optimal IA method. IAB and GIAB
compare similarly to the m = 2 case, so results are not
tabulated for IAB for compactness. Table IV shows the results
for GIAB. Note the greatest benefit of GIAB is in partial
ambiguity resolution: whereas optimal IA correctly resolves
the full set of ambiguities less than 84.2% of the time, GIAB
correctly fixes some ambiguities almost 95% of the time, and
more than half the ambiguities over 82% of time. Examination
of the joint probabilities illustrates that the majority of fixes

TABLE IV
JOINT PROBABILITY MASS FUNCTION OF GIAB (ROWS) AND OPTIMAL

IA (COLUMNS) FIXING DECISION FOR WEAK m = 7 MODEL

Sopt Uopt Fopt Marginal

S7,GIAB 0.6992 0.0064 0 0.7056
S6,GIAB 0.0009 0.0231 0 0.0239
S5,GIAB 0.0279 0.0253 5E-6 0.0532
S4,GIAB 0.0051 0.0360 7.5E-6 0.0411
S3,GIAB 0.0170 0.0340 0 0.0510
S2,GIAB 0.0227 0.0144 0 0.0370
S1,GIAB 0.0286 0.0089 0 0.0374
UGIAB 0.0403 0.0103 5.8E-5 0.0506
FGIAB 0 5E-5 2.8E-5 7.8E-5

Marginal 0.8415 0.1584 9.8E-5 1

rejected by the optimal method are partially fixed by the GIAB
algorithm.

For the m = 2 simulation, the same set of 106 float am-
biguity samples was processed using the optimal IA method,
the ellipsoidal IA method, IAB, and GIAB. The results are
visualized by a scatter plot of the float ambiguities in Fig. 3.
Each point is shaded according the results of the optimal IA
method: dark gray points were correctly fixed, light gray points
were left floating, and large, red points were fixed incorrectly.

The apertures of the ellipsoidal, IAB, GIAB, and optimal
methods are plotted over the scatter plot to illustrate the
comparative probability of successfully fixing all integers for
P̄F = 10−5. The threshold for the optimal method was set
using a larger Monte Carlo simulation of 107 samples such that
exactly nMC×P̄F −1 = 99 failures occur. This threshold was
then used to determine the outcome of the optimal IA method
for the smaller simulations. For visualization, the optimal
aperture region was approximated by solving for its location
along a polar grid with spacings of 0.1◦.

It is visually apparent that both IAB, which applies a
single threshold, and GIAB, which applies two different
risk-allocated thresholds, are superior to ellipsoidal IA for
the model considered. There is also a visually perceptible
improvement from IAB to GIAB; the exact improvement is
quantified in Tables V and VI. The similarity between the
GIAB and optimal apertures is clear. It is not visible, but is
important to note that the GIAB aperture is slightly wider than
the optimal aperture in the region of highest density. Since the
optimal threshold must be set by Monte Carlo simulation, it
is possible that it will perform worse than GIAB in practice
though it is optimal in theory. This is the case for the results
shown in Table VI.

Table V compares the ambiguity resolution performance of
IAB with a single aperture threshold to that of the optimal
IA estimator. This example was for a relatively lax incorrect
fix risk of P̄F = 10−5, so the performance is quite similar:
the percent of samples where IAB rejects a fix that the opti-
mal method correctly accepts is only 0.26%. Compare these
results to Table VI, in which the percent of samples where
GIAB rejects a fix that the optimal method correctly accepts
is significantly lower, 0.0074%. Moreover, GIAB correctly
accepts more fixes that the optimal method rejects. The main
advantage of GIAB over optimal IA is that GIAB allows
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Fig. 3. Comparison of the integer aperture acceptance regions for integer
aperture bootstrapping (IAB), ellipsoidal IA, GIAB, and optimal IA. All
apertures allow the same expected number of incorrect fixes, but yield different
rates of accepting the correct fix. Listed in ascending order of success are
the ellipsoidal, IAB, GIAB, and optimal IA acceptance regions. There is a
significant improvement from IAB to GIAB as many more correct fixes are
admitted. The optimal IA decisions only differ from the GIAB decisions in a
small fraction of cases. The scatter plot are color coded by optimal IA event:
dark gray for success, light gray for undecided, and large red for failure.

partial ambiguity resolution. GIAB correctly partially fixes
4.1% of all samples, all of which are rejected by the optimal
method.

TABLE V
JOINT PROBABILITY MASS FUNCTION OF IAB (ROWS) AND OPTIMAL IA

(COLUMNS) FIXING DECISION FOR m = 2 MODEL

Sopt Uopt Fopt Marginal

SIAB 0.954108 0.001876 0 0.955984
UIAB 0.002623 0.041382 0 0.044005
FIAB 0 0 0.000011 0.000011

Marginal 0.956731 0.043258 0.000011 1

TABLE VI
JOINT PROBABILITY MASS FUNCTION OF GIAB (ROWS) AND OPTIMAL

IA (COLUMNS) FIXING DECISION FOR m = 2 MODEL

Sopt Uopt Fopt Marginal

S2 0.956657 0.001791 0 0.958448
S1 0 0.041416 0 0.041416
UGIAB 0.000074 0.000051 0 0.000125
FGIAB 0 0 0.000011 0.000011

Marginal 0.956731 0.043258 0.000011 1

VII. CONCLUSIONS

A new data-driven CDGNSS partial ambiguity resolution
and validation algorithm has been developed analytically and
validated with Monte Carlo simulation. The new algorithm
has advantages over the state-of-the-art in that (1) data-driven

methods offer improved availability of integrity over model-
driven methods, (2) the integrity risk due to incorrect fixing
is precisely controlled analytically as compared to functional
approximation methods used with the ratio test and similar
integer aperture methods, and (3) it provides superior proba-
bility of success when compared to IAB or ellispoidal IA and
approaches that of optimal IA. In simulation testing, the new
algorithm was shown to provide superior performance to the
current state-of-the-art methods for a range of measurement
models. GIAB’s partial fixing, together with its analytical
connection between the allowable failure rate and its validation
thresholds, make GIAB attractive for safety-of-life systems in
challenging environments.
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APPENDIX A

Adopting the notation from Section II-A, the sequentially-
constrained float ambiguity vector, ẑc, is defined such that its
ith element is žci = ži|I . Each žci is computed as

ẑci =

{
ẑi i = 1

ẑi −
∑i−1
k=1 lik(ẑck − žk) i ∈ {2, . . . ,m} (37)

where lik is the i, k entry in the matrix L. Because L is unit
lower triangular, (37) can be expressed in vector form as

ẑc = ẑ − (L− I) (ẑc − ž) (38)

Rearranging and collecting terms in L yields

ε̌ , ẑ − ž = L (ẑc − ž) (39)

Multiplication by L−1 produces

ε̌c , L−1ε̌ = ẑc − ž (40)
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