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ABSTRACT 

Cross-correlations of unknown encrypted signals between 
two civilian GNSS receivers are used to detect spoofing 
of known open-source signals.  This type of detection 
algorithm is the strongest known defense against 
sophisticated spoofing attacks if the defended receiver has 
only one antenna.  The attack strategy of concern starts by 
overlaying false GNSS radio-navigation signals exactly 
on top of the true signals.  The false signals increase in 
power, lift the receiver tracking loops off of the true 
signals, and then drag the tracking loops and the 
navigation solution to erroneous, but consistent results.  
This paper develops codeless and semi-codeless spoofing 
detection methods for use in inexpensive, narrow-band 
civilian GNSS receivers.  Detailed algorithms and 
analyses are developed that use the encrypted military 
P(Y) code on the L1 GPS frequency in order to defend 
the open-source civilian C/A code.  The new detection 
techniques are similar to methods used in civilian dual-
frequency GPS receivers to track the P(Y) code on L2 by 
cross-correlating it with P(Y) on L1.  Successful detection 
of actual spoofing attacks is demonstrated by off-line 
processing of digitally recorded RF data.  The codeless 
technique can detect attacks using 1.2 sec of correlation, 
and the semi-codeless technique requires correlation 
intervals of 0.2 sec or less.  This technique has been 
demonstrated in a narrow-band receiver with a 2.5 MHz 
bandwidth RF front-end that attenuates the P(Y) code by 
5.5 dB. 

INTRODUCTION 

The vulnerability of unencrypted civilian GNSS signals to 
spoofing has long been known.  The U.S. Department of 
Transportation has noted the vulnerability of GPS to 
spoofing 1.  Spoofing is the intentional broadcast of false 
signals that, in a user receiver, appear to be true signals.  
Spoofing of GNSS signals can cause a user receiver to 
determine a location that is far different from its true 
position, to compute erroneous corrections to its receiver 
clock, or to make both errors simultaneously 2,3,4,5,6,7. 
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The spoofing attack described in Refs. 5 and 6 is hard to 
detect.  It synthesizes spoofing signals for multiple 
satellites in a way that initially overlays them on top of 
the true signals.  Next, it slowly pulls the victim receiver 
away from truth time and location in a self-consistent 
way.  Typical Receiver Autonomous Integrity Monitoring 
(RAIM) methods for spoofing detection will fail to detect 
such an attack because they look for signal 
inconsistencies at the navigation level, which are not 
present in this scenario. 

New RAIM methods are being developed to try to detect 
this type of attack at the tracking-
loop/discriminator/correlator level 8,9,10.  These detection 
algorithms are complex and may be difficult to implement 
robustly.  If such algorithms are to succeed, typically they 
must achieve detection at the moment of signal drag-off, 
which degrades their robustness. 

Several other approaches have been proposed to detect 
this type of spoofing attack.  These methods include 
cross-correlation of encrypted signals between secure and 
defended receivers 11,12, the use of multiple antennas 13, 
and methods that rely on inertial measuring devices and 
high-stability clocks.  Other proposed methods would 
require changes to the navigation data message to provide 
Navigation Message Authentication (NMA) 3,14, or some 
sort of partial encryption of spreading codes 3,7.  NMA 
techniques may need to be implemented in conjunction 
with algorithms that detect dynamic estimation-and-
replay spoofing of the NMA authentication bits 15. 

The cross-correlation method of Refs. 11 and 12 has 
several advantages over the other methods.  It does not 
require an extra GPS antenna or an IMU.  It does require 
a communication link from a secure receiver so that parts 
of the two receivers' signals can be cross-correlated.  The 
NMA method and methods based on new encrypted 
portions of the spreading code have the disadvantage of 
needing to change aspects of the broadcast signal.  
Presumably NMA could be implemented as an extension 
of the modern GPS civil navigation (CNAV) messaging 
format.  The NMA approach would have a longer latency, 
taking up to 5 minutes to authenticate a signal, versus 
latency on the order of one second or less if using the 
cross-correlation method.  Because of these advantages, 
the remainder of this paper focuses on the cross-
correlation spoofing detection method. 

The cross-correlation method relies on encrypted signals 
that are broadcast on the same frequency as the open-
source signal that is being tracked for navigation 
purposes.  For example, a GPS civilian receiver might 
track and use the unencrypted civilian pseudo-random 
number (PRN) codes such as the C/A code on the L1 
frequency or the new L2C code on the L2 frequency.  
These frequencies also carry the encrypted military P(Y) 
PRN codes and, on newer satellites, the encrypted 

military binary offset carrier (BOC) M-codes.  The 
civilian PRN codes can be spoofed using the technique of 
Refs. 5 and 6 or related techniques because the spoofer 
has prior knowledge of the codes.  The spoofing detection 
methods proposed in Refs. 11 and 12 use the known 
carrier-phase and code-phase relationships between the 
tracked civilian codes and the encrypted military codes.  
These methods correlate the parts of the signal known to 
contain the encrypted military codes between two 
receivers.  One receiver is presumed to reside in a secure 
location so that it has the correct encrypted code in the 
expected location.  The spoofing detection algorithm 
correlates this part of the signal from the secure receiver 
with the same part of the signal from the other receiver, 
the potential spoofing victim.  If the correlation is large 
enough, by an appropriate statistical measure, then the 
null-hypothesis of no spoofing is accepted.  Otherwise, a 
spoofing alert is issued for the signal. 

This strategy and the relationship of the open-source and 
encrypted signals is illustrated in Fig. 1 for the C/A and 
P(Y) signals on the GPS L1 frequency.  The signals in the 
secure reference receiver are depicted in the left-hand 
plot, with the vertical blue curve depicting the C/A PRN 
code signal and the horizontal red/green curve depicting 
the P(Y) PRN code.  Time increases along the second 
horizontal axis.  The right-hand plot shows the same 
sections of these two signals in the second receiver, the 
potential victim for which spoofing detection must be 
performed.  The use of orthogonal axes represents the fact 
that the C/A and P(Y) codes are modulated onto the 
carrier signal in phase quadrature.  The strategy of Refs. 
11 and 12 is to track the blue C/A signals in each receiver 
and to use the knowledge of these signals' phase and 
timing relationships to the P(Y) code in order to strip off 
the green part of the received P(Y) code in each receiver.  
Although this green signal is not known by either receiver 
a priori and although its received version is noisy, a 
correlation between these two green segments will 
produce a large statistic only if the correct P(Y) code is 
present in both receivers.  This will be true only if the 
defended receiver is not being spoofed. 

Reference 11 tested the un-spoofed case for this method.  
It showed a significant inter-receiver correlation of the 
baseband-mixed signal that was in phase quadrature with 
the GPS L1 C/A code.  Thus, it verified lack of spoofing 
based on the encrypted L1 P(Y) signal.  That effort did 
not perform a statistical analysis of the proper detection 
threshold for a spoofing alert, nor did it test the method 
under an actual spoofing attack.  Its correlation 
calculations, which were based on batch laboratory data 
collection and analysis techniques, amounted to a proof-
of-concept implementation.  They required an expensive 
code offset timing search between the baseband 
quadrature signals of the two receivers.  Further 
refinements are needed in order to develop a practical 
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Fig. 1. Relationship of known open-source C/A signal and encrypted P(Y) signal on 
two receivers. 

operational system. 

The effort of Ref. 12 sought to remedy several of these 
short-comings.  It presents a statistical analysis of 
spoofing detection thresholds.  In addition, it attempted to 
develop a system that could function in real-time.  Its 
approach to real-time detection was to stream raw RF 
samples directly from the secure receiver to the potential 
victim receiver via the internet.  The defended receiver, 
the potential victim of spoofing, was a software radio 
receiver.  It had the real-time capacity to track signals 
both from its own antenna and in the streamed RF data 
that originated from the secure antenna.  It also had the 
capacity to do the necessary correlation calculations of 
the quadrature baseband signals from the two data 
streams. 

A significant contribution of Ref. 12 is an analysis which 
shows that the P(Y) code can be used for practical 
spoofing detection even in a narrow-band C/A-code 
receiver, i.e., one with an RF front-end bandwidth of only 
1.9 MHz.  Reference 11 implies the need for a wide-band 
RF front-end for this type of approach.  A 1.9 MHz 
narrow-band receiver attenuates the P(Y) code by 6.9 dB 
and greatly distorts it, but there is still enough vestigial 
signal to achieve reasonable detection power for 
reasonable cross-correlation intervals.  Unfortunately, 
Ref. 12 failed to achieve successful spoofing detection 
results due to bugs in its real-time software radio inter-
receiver correlation calculations. 

A further improvement to the cross-correlation method of 
Refs. 11 and 12 may be possible.  This is true if the 
encrypted signal has a structure that allows a narrowing 
of its bandwidth in the two receivers prior to cross 

correlation.  This narrowing of the bandwidths increases 
and signal-to-noise ratio (SNR), which decreases any 
possible squaring loss.  Squaring loss is the loss of SNR 
that occurs when multiplying together two noisy signals.  
For GPS P(Y) code, signal bandwidth can be reduced by 
estimating the unknown W encryption chips that 
transform the open-source P code into the encrypted P(Y) 
code.  This technique is used regularly in semi-codeless 
reception of the P(Y) signal on the L2 frequency in 
civilian dual-frequency GPS receivers 16,17,18.  If the 
encrypted signal in question is the GPS M code, then 
bandwidth reduction can be achieved by mixing out the 
known BOC signal to leave only the unknown 5.115 
MHz spreading code chips, which then must be estimated 
in a manner analogous to W-chip estimation. 

It is well known that semi-
codeless dual-frequency civilian 
GPS techniques have an 
improved processing gain in 
comparison to codeless dual-
frequency techniques.  In the 
present context, the semi-
codeless cross-correlation takes 
place between encrypted signals 
from two receivers that are both 
receiving the same frequency, 
e.g., the GPS L1 frequency.  
Although this differs from 
cross-correlation in a single 
receiver between the L1 and L2 
frequencies, the potential for 
improved processing gain is the 
same.  This improved gain 
should yield a better probability 
of detection for a given false 
alarm rate and correlation 
interval.  In order to realize this 
processing gain, it is necessary 

to know the timing of the unknown encrypted chips 
relative to the tracked open-source signal.  For the P(Y) 
code, the timing of the unknown W-chips relative to the P 
code and relative to the C/A code has been addressed by 
several researchers 16,18,19.  For M code, the timing of the 
BOC relative to the spreading codes and relative to the 
C/A code may have to be deduced by a one-time set of 
observations from a high-gain antenna. 

This paper makes three principal contributions.  First, it 
implements the codeless spoofing detection test of Ref. 
12 and provides the first demonstrations of its 
effectiveness in detecting a sophisticated spoofing attack 
as defined in Refs. 5 and 6.  It does this using recorded 
RF front-end data from two receivers in off-line MATLAB 
calculations.  The RF front-ends have bandwidths of only 
2.4 and 2.6 MHz.  Therefore, this demonstration confirms 
the hypothesis of Ref. 12 that narrow-band receivers have 
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sufficient vestigial P(Y) code for purposes of spoofing 
detection. 

The second contribution is the development and test of a 
semi-codeless form of P(Y)-code-based spoofing 
detection.  Its method works even for a narrow-band 
receiver whose RF front-end filter passes less than 30% 
of the P(Y) signal's power.  The receiver produces a very 
distorted P(Y) code that poses a challenge to semi-
codeless signal processing.  The test of this second 
detection method also uses off-line MATLAB calculations 
that operate on recorded RF data. It demonstrates that the 
semi-codeless method can detect a spoofing attack of the 
type in Refs. 5 and 6 with greater efficiency than the 
codeless method. 

The last contribution is a theoretical comparison between 
the spoofing detection power of the codeless and semi-
codeless techniques for a narrow-band L1 receiver.  This 
comparison demonstrates a significant improvement on 
processing gain for the semi-codeless method. 

Techniques similar to this paper's semi-codeless W-chips 
spoofing detection algorithm could be developed for the 
M-code.  Such developments would require a much wider 
bandwidth RF front-end.  They would also require a 
modified algorithm to remove the BOC signal, rather than 
P-code chips, before estimating the chips of the 5.115 
MHz PRN spreading code.  Another important aspect of 
an M-code-based system is the need to have Doppler 
separation or directional antennas at the secure reference 
station.  Otherwise, it would be impossible to completely 
separate the M codes of different satellites.  Any needed 
antenna directionality could be provided by a phased-
array antenna with independent beam directions for each 
channel. 

This paper does not attempt to devise any strategy in the 
event that a spoofing attack has been detected.  Rather, its 
only goal is to inform the defended receiver whether or 
not its tracked open-source signals are reliable. 

The remainder of this paper consists of 5 sections plus 
conclusions.  Section II presents a mathematical model of 
the L1 C/A and P(Y) signals and of quadrature baseband 
mixing.  These two signals are, respectively, the example 
open-source and encrypted signals that are considered 
throughout this paper.  Section III reviews and explains 
the codeless spoofing detection method.  Section IV 
develops the semi-codeless spoofing detection method 
based on W-chip estimation for the P(Y) code.  This 
section also compares the detection power of the codeless 
and semi-codeless techniques.  Section V presents test 
results for the two spoofing detection methods.  Section 
VI discusses the possibility that modified spoofing attack 
strategies might provide tougher challenges to these 
methods, and it discusses possible responses to such 
challenges.  Section VII presents this paper's conclusions. 

II. MATHEMATICAL MODELS OF SIGNALS AND 
PRE-PROCESSING 

A. Received Signal Models 

The spoofing detection analysis starts with models of the 
received signals at the outputs of the RF front-ends of 2 
receivers.  These signals take the form: 

)]([)( aiaaiIFaifcaai ttcostCAy φω +=  

 aiaiaaiIFaiYfpa nttsintPA +++ )]([)( φω  (1a) 

)]([)( bibbiIFbifcbbi ttcostCAy φω +=  

 bibibbiIFbiYfpb nttsintPA +++ )]([)( φω  (1b) 

where yai is the sample output by Receiver A's RF front-
end at Receiver Clock A sample time tai and where ybi is 
the sample output by Receiver B's RF front-end at 
Receiver Clock B sample time tbi.  Receiver A is assumed 
to be the secure reference receiver.  Receiver B is the 
potential victim of a spoofing attack, the receiver for 
which spoofing detection must be performed. 

The function Cf(t) is the product of the C/A code and the 
50 Hz navigation data bits as distorted and attenuated by 
the filter in the RF front-end.  The function PYf(t) is the 
distorted and attenuated product of the received P(Y) 
code and the navigation data bits.  In the present analysis, 
these functions are presumed to be the same in both 
receivers.  The semi-codeless analysis of Section IV will 
relax this assumption.  Nominally these functions would 
be either +1 or -1 at all times due to the BPSK nature of 
the PRN codes and the navigation data, and their powers 
would equal 1.  The RF front-end filters distort these 
signals so that they can take on different values than +/-1, 
and the filtering lowers their powers to values less than 1.  
Referring to Fig. 1, Cf(t) is represented by the blue 
curves, and PYf(t) is represented by the red/green curves, 
except that the figure does not depict distortion or 
attenuation.  These functions' phase quadrature 
relationship in Eqs. (1a) and (1b) is illustrated in the 
figure by their being plotted along orthogonal axes. 

The received C/A code amplitudes for the two receivers 
are, respectively, Aca and Acb.  The corresponding 
received P(Y) amplitudes are Apa and Apb.  Subsequent 
analyses in this paper assume that the P(Y) amplitudes 
can be deduced from the C/A amplitudes.  This 
calculation takes the form: 

pcp LAA 20/4.010=  (2) 

where Lp is the power loss factor of the broadcast P(Y) 
code relative to the broadcast C/A code for the satellite in 
question.  Typically 10log10(Lp) equals approximately -3 
dB 20.  The 0.4 dB term in the exponent of Eq. (2) 
compensates for the fact that Lp is defined in the +/-10.23 
MHz bandwidth centered at L1, which contains only the 
main lobe of the P(Y) power spectral density but 18 
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additional side-lobes of the C/A spectral density.  The "a" 
and "b" subscripts have been omitted from Eq. (2) 
because it applies to both pairs of amplitudes for both 
receivers using the identical loss factor Lp. 

The frequency ωIF is the nominal intermediate frequency.  
It is the frequency to which the nominal carrier at ωL1 = 
2πx1575.42x106 rad/sec gets mixed by the RF front-end. 

The functions φa(t) and φb(t) are the beat carrier phase 
time histories of the signals at Receivers A and B, 
respectively.  They have the opposite sign to the usual 
definition of beat carrier phase in the GPS literature.  
Their time derivatives equal the received carrier Doppler 
shifts. 

The quantities nai and nbi are the receiver noise terms.  
They are assumed to be discrete-time Gaussian white-
noise with statistics: 

jinnEnEnE ajaiRFaaiai ≠=== allfor   0}{  ,}{  ,0}{ 22 σ  

 (3a) 
jinnEnEnE bjbiRFbbibi ≠=== allfor   0}{  ,}{  ,0}{ 22 σ  

 (3b) 
   ,allfor   0}{ jinnE bjai =  (3c) 

B. C/A-Code and Carrier Tracking and Quadrature 
Baseband Mixing 

The spoofing detection algorithms of this paper presume 
that the reference and defended receivers are able to 
acquire and track the C/A code signals in Eqs. (1a) and 
(1b).  A Delay-Lock Loop (DLL) is presumed to track the 
C/A PRN code in order to determine the start/stop times 
in Cf(t).  Suppose that these times are τak and τbk at the 
end of the (k-1)st C/A code period and the start of the kth 
C/A code period, as measured at Receivers A and B using 
their respective clocks.  The tracking algorithms also use 
a Phase-Lock Loop (PLL) in order to determine the 
estimated beat carrier phase time histories )(ˆ taφ  and 

)(ˆ tbφ . 

The PLL uses feedback from a carrier-phase 
discriminator.  The discriminator is computed from the 
following prompt in-phase and quadrature accumulations 
for the kth code period: 

×∑ +−=
−+

=
])/ˆ1)([(

1
1

kk

k

Ni

ii
LDkkiik tCyI ωωτ  

 )](ˆˆ[ kiDkkiIF ttcos τωφω −++  (4a) 

×∑ +−=
−+

=
])/ˆ1)([(

1
1

kk

k

Ni

ii
LDkkiik tCyQ ωωτ  

 )](ˆˆ[ kiDkkiIF ttsin τωφω −++  (4b) 

where the "a" and "b" subscripts have been omitted 
because the accumulation processing is similar in both 
receivers.  The sample index ik is the first sample of the 
kth code period, i.e., the first sample such that τk ≤  ti.  
The number Nk is the total number of samples in the code 
period so that the terminal index ik+Nk-1 is the last sample 
of the code period, that is, the last sample such that ti < 
τk+1.  The function C[t] is the +1/-1-valued C/A PRN code 
without RF filter effects.  The frequency Dkω̂  is the 
PLL's carrier Doppler shift estimate for the kth code 
period, and the phase kφ̂  is the estimated beat carrier 
phase at the code period start time τk. 

Quadrature baseband mixing is used in order to isolate the 
P(Y)-code part of the signal.  The quadrature baseband 
mixed signals for the kth C/A code period are computed as 
follows: 

)](ˆˆ[{ kiDkkiIFkiqi ttsinIyy τωφω −++=  

 22/)]}(ˆˆ[ kkkiDkkiIFk QIttcosQ +−++− τωφω  
  for i = ik, ..., (ik+Nk-1) (5) 

where yqi is the quadrature baseband mixed signal that 
corresponds to the original sample yi.  This mixing 
formula uses both the estimated carrier-phase time history 
from the PLL and the in-phase and quadrature 
accumulations.  If the PLL has settled, then the 
quadrature accumulation Qk will nominally be zero, and 
this formula will approximate simple multiplication by 
the quadrature sin[ωIFti+...] signal.  Equation (5) is used 
in place of this simple multiplication because it 
compensates for the effects of navigation data bit signs 
and for PLL tracking errors.  The latter compensation 
assumes that the noise effects on Ik and Qk are negligible. 

Again, the "a" and "b" subscripts have been omitted from 
Eq. (5).  In later analyses, the quadrature baseband-mixed 
samples of the two receivers must be distinguished from 
each other.  They will be designated as yqai and yqbi.  They 
are computed as in Eq. (5), except that the quantities yi, Ik, 
Qk, ti, kφ̂ , Dkω̂ , τk, ik, and Nk are modified to include an 
"a" or "b" subscript, depending on whether yqai or yqbi is 
being calculated. 

Equation (5) provides a recipe for computing the 
quadrature baseband-mixed signal in each receiver.  It is 
helpful also to have a model of this signal for each 
receiver.  A model can be derived by substitution of the 
signal model in Eq. (1a) or (1b) into Eq. (5) and by 
assuming that the true beat carrier phase time history is 
accurately represented by )(ˆˆ

kiDkk t τωφ −+ -atan2(Qk, Ik).  
The function atan2( , ) is the usual 2-argument arctangent 
function.  The resulting models for the two receivers take 
the form: 
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qaiaiYfpaqai ntPAy += )(2
1  (6a) 

qbibiYfpbqbi ntPAy += )(2
1  (6b) 

where the quadrature baseband noise terms nqai and nqbi 
have the statistics 

jinnEnEnE qajqaiRFaqaiqai ≠=== allfor  0}{ ,}{ ,0}{ 2
2
12 σ

 (7a) 
jinnEnEnE qbjqbiRFbqbiqbi ≠=== allfor  0}{ ,}{ ,0}{ 2

2
12 σ

 (7b) 
   ,allfor   0}{ jinnE qbjqai =  (7c) 

The models in Eqs. (6a) and (6b) ignore the parts of the 
signals in Eqs. (1a) and (1b) that get mixed to vicinity the 
frequency 2ωIF by the operations in Eq. (5).  This is 
reasonable because the neglected high-frequency signals 
will not affect the subsequent baseband processing. 

These quadrature models neglect the effect of 50 Hz 
navigation data bits on the mixing recipe in Eq. (5).  The 
neglected sign effects will be identical for both receivers.  
The goal of this effort is to cross-correlate the two 
quadrature signals.  Therefore, neglected data bit signs 
will not have an impact because they will cancel each 
other in all cross-correlation calculations. 

C. Modeling W Encryption Chips and RF Filter 
Distortion of the P(Y) Code 

The P(Y) code can be modeled as the product of the 
known P code 20 multiplied by unknown W encryption 
chips.  This model takes the form 

)()()( tWtPtPY =  (8) 

where PY(t) is the +/-1-valued encrypted P(Y) code, P(t) 
is the +/-1-valued known P code, and W(t) is the +/-1-
valued unknown time history of encryption chips.  The 
W(t) encryption chips have an average chipping rate of 
480 KHz.  The PRN code time history P(t) and the 
encryption chip time history W(t) have known code phase 
relationships between the times when their chip sign 
transitions can occur and between the times when the chip 
sign transitions can occur on the corresponding C/A code 
C(t). 

The timing of the W(t) chips is discussed in Refs. 16, 18, 
and 19.  The following description is based on Ref. 19 
and on unpublished results that were obtained during the 
study which is reported in that work.  The W(t) chip 
timing is directly linked to that of the X1A code, which is 
a generator code that is used to form the known P(t) code 
20.  The X1A code chips at 10.23 MHz and repeats every 
4092 chips, i.e., every 400 μsec.  Each chip interval of the 
X1A code is aligned with a chip interval of the P(t) code.  
Every 4092 chips of X1A code is broken down into Lw 
equal sets of chip periods.  Each of these 4092/Lw chip 
periods is broken down into Mw W-chip periods of 

duration Iw P-code chips followed by Nw W-chip periods 
of duration Jw P-code chips.  Thus, Lw(IwMw + JwNw) = 
4092.  The exact values of Lw, Mw, Nw, Iw, and Jw have 
been determined, but have not been fully published.  
References 16 and 18 erroneously report that Lw = 1.  
Reference 19 reports that Lw is greater than 1.  Published 
information indicates that the two durations of the W 
chips, Iw and Jw, are about 20 P chips and that the average 
W chipping rate [Lw(Mw+Nw)/4092]x10230 KHz = 480 
KHz. 

The filtered version of the P(Y) code that appears in Eqs. 
(1a), (1b), (6a), and (6b) can be modeled as follows: 

∑=
∞

−∞=j
fwjjYf tPwtP )()(  (9) 

where wj is the jth +/-1-valued W chip and where Pfwj(t) is 
the attenuated and distorted version of the 20 or so P 
chips that correspond to the jth W chip. 

The wj chip values cannot be known a priori in a civilian 
receiver, but the functions Pfwj(t) can be determined based 
on the known P code, the known W-chip timing, and the 
modeled effects of the RF front-end filter.  Suppose that 
the unfiltered version of Pfwj(t) takes the form: 

])([)(
1

∑ −−−=
−+

=

wjwj

wj
p

Ii

ii
wjpwjTiwj TiitptP τΠ  (10) 

where pi is the known +1/-1 value of the ith P-code chip of 
the given GPS week, Tp is the P-code chip period, iwj is 
the index of the initial P-code chip of the jth W chip as 
measured from the start of the GPS week, Iwj is the total 
number of P-code chips in the jth W chip, and τwj is the 
start time of the jth W chip and of the (iwj)th P chip.  The 
function ΠT(t) is the usual rectangular support function, 
which is equal to one over the interval 0 ≤  t < T and zero 
elsewhere.  The P-code chip period is nominally Tp = 
1/(10.23x106) sec, but it will vary if there is a non-zero 
code Doppler shift. 

The filtered version of these same P-code chips takes the 
form 

])([)(
1

∑ −−−=
−+

=

wjwj

wj

Ii

ii
wjpwjifwj TiitptP τΨ  (11) 

where Ψ(t) is the filtered version of the rectangular 
support function ΠT(t): 
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 (12) 

In this formula, hRF(t) is the real part of the envelop 
impulse response function of the receiver's RF filter.  This 
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function can be determined using off-line system 
identification techniques 21.  Equation (12) assumes that 
hRF(t) is a finite impulse response with zero response Thmax 
sec after the impulse.  This is a reasonable approximation 
for a large enough Thmax, and it is consistent with the 
system identification assumptions of Ref. 21. 

Figure 2 plots five examples of the unfiltered and filtered 
sets of P-code chips that are associated with 5 different W 
chips.  The upper graph plots the unfiltered time histories 
Pwj(t) for j = 1, ..., 5, and the lower plot shows the 
corresponding filtered Pfwj(t) time histories.  Each W chip 
in this example spans Iwj = 20 P-code chips.  The lower 
plots have been generated using the hRF(t) filter impulse 
response function associated with one of the RF front-
ends that has been used to generate results for Section V.  
The plots for the other receiver's RF front-end would be 
similar.  It is obvious from Fig. 2 that this narrow-band 
RF filter causes significant power attenuation and 
distortion in the P(Y) signal.  These accurate models of 
the attenuation and distortion are important to the 
development of this paper's spoofing detection 
algorithms. 
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Fig. 2. Wide-band (top) and filtered (bottom) P-code 

chips of 5 successive W encryption chips 
(filtering performed by a 2.5 MHz wide narrow-
band RF front-end; filter delay removed from 
bottom plot). 

D. P(Y) Code and C/A Code Power Loss in the RF 
Front-End Filter 

The filter impulse response function can be used to 
determine the P(Y) signal's power loss in the narrow-band 
RF front-end.  This calculation starts by computing the 
envelop filter's frequency response 

∫= −hmaxT
tj

RFRF dtethjH
0

)()( ωω  (13) 

where j = (-1)1/2 in this formula.  The square of the 
absolute value of this function multiplies the unfiltered 
P(Y) code's normalized power spectral density 

2
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in order to yield the corresponding filtered power spectral 
density.  The ratio of the integrals of the filtered and 
unfiltered power spectral densities gives the power loss 
through the filter.  It is 
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Recall that Tp in these formulas is the P-code chipping 
period.  Thus, these integrals are performed over the main 
lobe of the P(Y) signal, i.e., over the range -10.23 MHz to 
+10.23 MHz. 

Another power loss factor is that of the C/A code.  It is 
important because the spoofing detection calculations 
need to know P(Y) code power or amplitude, and they 
infer it from C/A code amplitude using calculations like 
those in Eq. (2).  The C/A code loss factor must account 
for two effects.  One is the loss in the RF front-end filter, 
and the other is the loss associated with the accumulation 
calculations in Eqs. (4a) and (4b).  The latter loss arises 
from the use of the unfiltered C/A code C[t] in the 
accumulation recipes.  The total power loss of the C/A 
code at the output of the [Ik,Qk] accumulation process is: 

2

0
)()(
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⎥
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⎤

⎢
⎢
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−∫= dttsthmaxL ca

t
RFfca

max
τ

τ
 (16) 

where sca(t) is the symmetric autocorrelation function of 
the unfiltered C/A code.  The result of the integration in 
Eq. (16) is the cross-correlation between the filtered and 
unfiltered versions of the C/A code.  Its maximum value 
is less than 1, but it approaches 1 as the filter bandwidth 
increases 21. 

III. CODELESS SPOOFING DETECTION 
TECHNIQUE 

This section develops an implementation of the codeless 
spoofing detection algorithm of Refs. 11 and 12.  A 
significant amount of this material is taken from Ref. 12, 
but the notation has been changed in a number of places 
in order to conform with the models in Section II of the 
present paper.  In addition to the notation changes, the 
developments of the present section include 
implementation details that are not found elsewhere. 

A. Computation of the Raw Codeless Spoofing 
Detection Statistic 

The raw codeless spoofing detection statistic is the sum of 
products of quadrature samples from Receivers A and B.  



 8

In other words, it is the sum of products of Eq. (6a) 
samples and Eq. (6b) samples.  Before forming products, 
however, it is necessary to map sample times in the two 
receivers to identical values as measured relative to their 
respective tracked C/A codes.  This inter-receiver time 
mapping relies on the DLL estimates of the C/A code 
start/stop times, τa1, τa2, ..., τak, τak+1, ... and τb1, τb2, ..., τbk, 
τbk+1, ... 

Suppose, in addition, that there is a known differential 
relative timing offset between the filtered P(Y) code and 
the DLL estimate of the filtered C/A code.  This offset is 
denoted by δtab, and it represents a difference between the 
two receivers.  It is a measure of the amount by which the 
filtered P(Y) code in Receiver B is delayed relative to that 
receiver's DLL-generated C/A code replica when 
compared to the filtered P(Y) code in Receiver A.  
Nominally, one would expect this differential timing 
offset to be zero or nearly so.  A non-zero value is 
allowed in the present analysis in order to make it more 
general and to facilitate an experimental study of the 
magnitude of this delay. 

Suppose that the correlation calculation seeks the correct 
quadrature sample from Receiver B to correlate with 
sample yqai from Receiver A, which was sampled at 
Receiver A clock time tai.  Suppose that the delayed 
sample time (tai+δtab) lies in the Receiver A DLL's 
estimate of the reception interval of the kth C/A PRN code 
period.  That is, suppose that τak ≤  (tai+δtab) < τak+1.  Then 
the first step in the correlation process is to compute the 
corresponding time according to Receiver B's clock.  
Using linear interpolation between DLL code start/stop 
times, it is: 
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1
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bkbi ttt τδ
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This Receiver B time estimate can be used to interpolate 
between Receiver B quadrature samples from Eq. (6b) in 
order to synthesize the "sample" of the Receiver-B 
quadrature signal that corresponds to the Receiver-A 
sample yqai.  Suppose that the interpolated time bit~  from 
Eq. (17) lies between Receiver-B RF sample times tbj and 
tbj+1.  Then the synthesized quadrature sample of Receiver 
B is the linearly interpolated value: 
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+=
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+  (18) 

The Receiver-A quadrature samples from Eq. (6a) and the 
synthesized Receiver-B quadrature samples from Eq. (18) 
are multiplied together and summed in order to form the 
un-normalized codeless spoofing detection statistic: 

∑=
−+

=

1 ~Mi

ii
qbiqaiul

l

l

yyγ  (19) 

The index il in this formula is the initial sample of the 
correlation accumulation interval, and M is the total 
number of samples used in each accumulation.  This lth 
un-normalized spoofing detection statistic spans a data 
interval of length Tcorr = MΔt sec, where Δt = tai+1 - tai is 
the RF front-end sample period.  The mid-point of this 
interval is 

2
)1( ΔtMtt laicl

−+=  (20) 

according to the Receiver-A clock. 

B. Hypothesis Test for Spoofing based on a 
Normalized Codeless Detection Statistic 

The spoofing detection statistic in Eq. (19) has 
significantly different properties depending on whether or 
not the C/A code signal tracked by Receiver B is a 
spoofed signal.  If the signal is not spoofed, then the 
synthesized qbiy~  quadrature sample is assumed to be 
modeled by Eq. (6b).  If the signal is spoofed, however, 
then the P(Y) code is presumed to be absent from the 
quadrature channel of Receiver B.  In this case, Eq. (6b) 
is modified to setting the P(Y)-code amplitude to Apb = 0. 

Under the hypothesis of spoofing, hypothesis H1, the 
mean and variance of the spoofing detection statistic γul 
are 

}|{ 11| HE ulHu γγ =  
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where qbin~  is the noise in the synthesized quadrature 
sample qbiy~ , which is assumed to obey the same statistics 
as qbin  in Eqs. (7b) and (7c).  The quantity 2

YfP  is the 
mean value of 2

YfP , i.e., it is the power of the distorted 
P(Y) code at the output of the RF front-end filter.  The 
quantity (C/N0)pya = )4/( 222 ΔtPA RFaYfpa σ  is the filtered 
P(Y)-code carrier-to-noise ratio in Receiver A.  The 
derivations in Eqs. (21a) and (21b) depend on the 
assumptions that }~~{ qbjqbinnE = 0 for all (i,j) such that 
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i ≠ j and that }~{ qbjqainnE = 0 for all (i,j). 

Under the hypothesis of no spoofing, hypothesis H0, the 
mean and variance of γul are 

}|{ 00| HE ulHu γγ =  
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where (C/N0)pyb = )4/( 222 ΔtPA RFbYfpb σ  is the P(Y)-code 
carrier-to-noise ratio in Receiver B. 

The derivations in Eqs. (22a) and (22b) assume that the 
mean value of the product )~()( biYfaiYf tPtP  also equals 

2
YfP .  This is reasonable when the RF front-end filters are 

similar because the Receiver A time tai and the Receiver 
B time bit~  are the same times relative to their respective 
P(Y) codes by virtue of the construction of bit~  in Eq. 
(17).  Of course, a stricter use of notation would have 
created slightly different function names for PYf(t) in the 
two receivers in order to allow them to take on the same 
value at the different input time arguments tai and bit~ . 

The carrier-to-noise ratios (C/N0)pya and (C/N0)pyb in the 
final forms of Eqs. (21b)-(22b) are used in place of terms 
involving 22

YfpaPA  and 22
YfpbPA .  This convention is 

adopted because it is convenient to deduce the carrier-to-
noise ratios.  The determination of (C/N0)pya and (C/N0)pyb 
begins with a determination of the corresponding C/A-
code carrier-to-noise ratios.  Given a time history of 
prompt accumulations Ik and Qk for the C/A code, the 
calculation starts by determining the mean amplitude of 
the accumulation vector [Ik; Qk] and the noise variance in 
each of this vector's components: 

4/122 )( zIQ zA σ−=  (23a) 

)(5.0 222
zIQ zz σσ −−=  (23b) 

where z  and 2
zσ  are, respectively, the mean and variance 

of the accumulation power: 
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As a side benefit, the accumulation variance in Eq. (23b) 
can be used to estimate the effective variance of the noise 
in the raw RF samples: 

22 2
IQ

accum
RF N

σσ =  (25) 

where accumN  = (N1+N2+...+NK)/K is the average number 
of samples in an accumulation.  The value of this variance 
for each receiver is needed in Eqs. (21b) to (22b). 

The C/A-code carrier-to-noise ratio is computed from the 
accumulation amplitude and variance in Eqs. (23a) and 
(23b).  Given the accumulation interval Taccum = 
Δt accumN , the carrier-to-noise ratio is: 

accumIQ

IQ
c

T

A
N/C 2

2

0
2

)(
σ

=  (26) 

Given the C/A-code carrier-to-noise ratio, the P(Y) code 
carrier-to-noise ratio can be computed.  This calculation 
considers the effects of filter loss and distortion, as per 
Eqs. (15) and (16), and the transmitted power decrement 
of the P(Y) code in comparison to the C/A code, as per 
Eq. (2).  The resulting formula is 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−

fca

c
pfpypy L
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The power of 10 in this equation adjusts for the fact that 
the Lfca loss calculation in Eq. (16) presumes an infinite 
bandwidth of the transmitted C/A code instead of the 
actual 20.46 MHz bandwidth.  The term in square 
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brackets on the right-hand side of this equation is what 
the received C/A-code carrier-to-noise ratio would have 
been had there been no loss in the filter or in the prompt 
accumulation calculations. 

The formulas in Eqs. (23a)-(27) apply to Receivers A and 
B.  The usual "a" and "b" subscripts can be added to each 
of the quantities in order to denote the receiver to which it 
applies. 

Typically the variance results in Eqs. (23b), (24b), and 
(25) are computed only once when the receiver is 
operating on a quiescent signal with very little actual 
amplitude fluctuation.  These quantities tend to remain 
constant over time due to the actions of the RF front-end's 
automatic gain control. 

The signal power quantities in Eqs. (23a) and (24a) and 
the associated carrier-to-noise ratios in Eqs. (26) and (27) 
are typically re-computed continually.  One might re-
compute them for each spoofing detection accumulation 
interval.  This approach enables the spoofing detection 
test to adapt to the time variations in signal power that 
typically occur. 

Before developing the spoofing test, it is helpful to 
normalize the test statistic.  A suitable normalization is to 
divide γul by its standard deviation under the spoofed 
hypothesis H1, 1|Huγσ .  This produces the normalized 
spoofing test statistic: 

1|Hu
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 (28) 

The results in Eqs. (21a)-(22b) can be used to compute 
the means and standard deviations of this statistic under 
the respective hypotheses of spoofing on Receiver B, H1, 
and no spoofing, H0.  These quantities are: 

01 =Hγ  (29a) 

11| =Hγσ  (29b) 
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The means and variances in Eqs. (29a)-(29d) can be used 
to design and analyze a sensible spoofing detection test.  
The necessary derivations require knowledge of the 
spoofed and un-spoofed probability density functions 
p(γl|H1) and p(γl|H0).  The exact formulas for these 
functions are complicated because they involve products 
of the Gaussian noise terms qain  and qbin~ .  Fortunately, 
the randomness in γl is the result of many such product 

terms.  Therefore, the central limit theorem can be 
invoked in order to model these two probability density 
functions as Gaussian distributions. 

Given the Gaussian assumption and given the allowable 
false-alarm probability αFA, the spoofing detection 
threshold γth can be computed by solving the following 
equation: 
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This threshold is used to determine whether the signal in 
Receiver B is being spoofed according to the following 
rule:  If γl ≥  γth, then accept the H0 hypothesis that there 
is no spoofing, but if γl < γth, accept the H1 hypothesis that 
there is spoofing.  This threshold and spoofing test lead to 
the following probability of a successful detection: 
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th
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 misdetll
th
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2
1 2
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Note that the H0 un-spoofed hypothesis is somewhat 
unusual:  It has a non-zero mean that is calculated by 
factoring down the measured C/A carrier-to-noise ratio in 
order to estimate the P(Y) carrier-to-noise ratio.  It is 
important to use the proper calculation of the C/A carrier-
to-noise ratio in Eqs. (23a)-(26) and the proper 
attenuation to get the P(Y) carrier-to-noise ratio in Eq. 
(27).  Errors in these calculations will cause errors in the 
un-spoofed expected value 0Hγ  and in the spoofing 
detection threshold γth.  These errors will cause the 
detection test to have a different false-alarm probability 
and a different probability of detection than are given in 
Eqs. (30) and (31). 

The analysis of this section assumes that the noise in the 
quadrature baseband-mixed signal is purely white noise.  
This assumption is violated to some extent in any real 
receiver.  For the receivers considered in the present 
study, their departures from the white-noise assumption 
do not appear to be large enough to have a significant 
impact on the spoofing detection results.  If the non-
whiteness of the noise were an issue, then it would be 
straight-forward to adapt the foregoing analysis 
appropriately.  This adaptation is omitted for the sake of 
brevity. 

The detection statistic γl would be the optimal Neyman-
Pearson detection statistic 22 if the noise in Receiver A 
were negligible and if the prediction of the P(Y) carrier-
to-noise ratios for the two receivers were exact.  In that 
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case, the Receiver-A quadrature signal would yield a 
perfect scaled replica of the encrypted P(Y) code.  One 
could use this replica and the P(Y) amplitudes on 
Receivers A and B in order to derive the joint probability 
density functions for yqbi for i = il, ..., il+M-1 under the 
two hypotheses.  One could demonstrate a monotonic, 
one-to-one correspondence between the ratio of these two 
probability density functions and the γl test statistic.  This 
correspondence would prove the optimality of the γl 
statistic.  The use of a sub-optimal test statistic is 
necessitated by the receivers' imperfect knowledge of the 
P(Y) signal. 

C. Potential for Cross-Talk between Channels 

There is a potential for the P(Y) code or even the C/A 
code of another GPS signal to affect the spoofing 
detection statistic γl in Eq. (28).  This can happen if the 
Doppler shifts and code delays of the other GPS signal 
line up in a certain way with those of the signal for which 
spoofing detection is being performed.  The necessary 
Doppler alignment to cause interference is that of a zero-
valued or nearly zero-valued Doppler double difference 
between the two receivers and the two signals.  That is, if 
the carrier Doppler shift difference between the two GPS 
signals is the same at both the reference receiver and the 
defended receiver, then there is a potential interference.  
This difference must be smaller than the correlation 
accumulation frequency 1/Tcorr.  Otherwise, the averaging 
action of the accumulation in Eq. (28) will attenuate the 
interference. 

An additional requirement for interference between two 
signals is that their double-differenced PRN code phase 
be zero or nearly zero.  That is, the C/A code period 
start/stop time difference between the two signals for the 
reference receiver must equal this same difference for the 
defended receiver.  If this code-phase double difference is 
less than the correlation time of the filtered P(Y) code, 
then un-intended cross-correlations of the P(Y) code of 
the other signal can appear in the γl spoofing detection 
statistic of Eq. (28).  Similarly, if this code-phase double 
difference is less than a C/A code PRN chip length, then 
un-intended cross-correlations of the other signal's C/A 
code can appear in γl.  The C/A code of the second signal 
could affect the P(Y) cross-correlation of the signal in 
question because the second C/A code could lie nearly in 
phase quadrature with the C/A code of the original signal. 

This type of interference was noted in the study of 
codeless cross-correlation spoofing detection found in 
Ref. 12.  In that study, the two receivers were both 
located in Ithaca, NY.  Given this close proximity, the 
carrier Doppler shift double differences and the code 
phase double differences were likely to be small, and 
interference was likely to occur. 

Under normal conditions, it is unlikely that two signals 
will interfere due to small double differences in Doppler 

shift and code phase.  Large double differences will 
normally be caused by the necessary receiver separation 
between the secure reference receiver and the defended 
receiver.  If both double differences are small, however, 
then this fact will be noticeable from the C/A code 
tracking, and the spoofing detection calculations for the 
signals in question must be ignored or modified.  
Otherwise, the computed γl can be much larger than 
expected, much smaller than expected, or even negative 
12.  These possibilities arise because additional non-zero 
correlations of the second signal can add constructively or 
destructively to alter the mean value of γl. 

It is possible to reduce or even eliminate this type of 
interference at the reference station.  The necessary 
infrastructure would be a high-gain antenna system with 
independently steerable beams, such as could be provided 
by a phased array.  Given sufficient gain, the interference 
effects of other signals on γl would be negligible even 
with zero-valued double differences of Doppler shift and 
code phase. 

IV. SEMI-CODELESS SPOOFING DETECTION 
TECHNIQUE 

The semi-codeless spoofing detection technique attempts 
to improve the power of the spoofing detector by 
employing additional a priori knowledge about the P(Y) 
code.  This a priori knowledge is the fact that P(Y) is 
generated by mixing the known P code with the unknown 
W encryption chips, as described in Subsection II.C. 

A. "Hard" W Chip Estimates 

The heart of the semi-codeless spoofing detection method 
is an estimator for the unknown +1/-1 values of the wj 
chips in Eq. (9).  For a given interval of interest, the 
estimates are formed by solving the following batch least-
squares estimation problem: 

find: w1, w2, w3, ..., wK (32a) 
to minimize:  

 ∑ ∑−=
= =

M

i

K

j
ifwjjpqiK tPwAywwJ

1

2

12
1

2
1

1 ])([),...,(  

  (32b) 
subject to: 
 wj = -1 or +1  for j = 1, ..., K (32c) 

The cost function in Eq. (32b) is half the sum of the 
squared errors in M instances of Eq. (6a) or (6b), 
depending on the receiver in question.  This cost formula 
uses the W-chips model of the PYf(t) function in Eq. (9) in 
order to frame the problem explicitly in terms of 
unknown W chips.  Note that Eqs. (32a)-(32c) do not 
include "a" or "b" subscripts.  These have been omitted 
because this estimation problem applies equally to both 
receivers.  For the same set of W-chips, however, there is 
an independent W-chip estimation problem based on each 
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receiver's independent quadrature samples and on each 
receiver's Pfwj(t) as dictated by the impulse response of its 
RF front-end's band-pass filter. 

The sample indices i and the W-chip indices j in this 
problem are defined somewhat arbitrarily in order to 
simplify the estimation problem statement.  In practice, 
the range of the RF sample index i might be different 
from 1 to M, and the W-chip index range might be 
different from 1 to K.  The first RF sample, sample i = 1 
at time t1 in the problem above, should be the initial 
sample in the P(Y) code interval associated with the 
initial W-chip function Pfw1(t), as per Fig. 2.  Similarly, 
the last RF sample, sample i = M at time tM, should be the 
final sample associated with the final W-chip function 
PfwK(t). 

The number of W chips estimated in a given batch 
optimization, K, is arbitrary.  A sensible choice would set 
K equal to the number of W chips that were used to 
calculate a single semi-codeless spoofing detection 
statistic.  Thus, if a 0.2 sec correlation were used for each 
independent detection statistic, then a sensible choice of 
K would be (0.2sec)x(480,000 W-chips/sec) = 96,000 W-
chips. 

The cost function in Eq. (32b) presumes that the timing of 
the received, RF-filtered W chips is known exactly 
according to the receiver clock.  That is, the functions 
Pfwj(t) are presumed to be known with t measured in 
receiver clock time.  This knowledge depends on the 
working of the C/A-code DLL, on knowledge of the 
relative delays between the filtered C/A-code chips and 
the filtered P-code chips that comprise Pfwj(t), and on 
knowledge of the nominal W-chip timing relative the 
nominal C/A code timing at the transmitter.  The latter 
knowledge is well defined by the GPS Interface 
Specification 20 in conjunction with the W-chip timing 
studies associated with Refs. 17 and 19.  The other two 
pieces of information are effectively defined by the way 
that the RF filter impulse response function, as estimated 
by the system identification procedures of Ref. 21, is 
defined relative to the C/A code DLL tracking point.  If 
the same DLL is used for spoofing detection as was used 
for the RF filter system identification and if the same 
PRN code is being tracked as one of the codes that was 
used for system identification, then this relative timing 
should be well known.  In other situations, a calibration 
must be made of this relative timing. 

This relative timing calibration is the semi-codeless 
equivalent of the codeless timing offset δtab.  Recall that 
this latter offset is used in Eq. (17) of the codeless 
spoofing detection calculations.  In the semi-codeless 
case, each receiver has its own independent relative 
timing of the W chips and their associated filtered P chips 
relative to the C/A-code DLL tracking point.  The effects 
of changes in the semi-codeless relative timing 

assumptions have been examined experimentally, and 
results from this study are reported in Section V. 

The P(Y) code amplitude Ap in Eq. (32b) must be 
deduced from the C/A code amplitude in order to define 
the estimation problem.  The formula for this amplitude is 

IQ
fca

p

accum
p A

L
L

N
A 20/4.0102=  (33) 

Recall that AIQ is the C/A-code prompt accumulation 
amplitude from Eq. (23a).  This equation is the semi-
codeless equivalent of codeless Eq. (27).  The factor 
2/ accumN  transforms from accumulation amplitude to 
carrier amplitude.  The square-root in Eq. (33) arises 
because this is an amplitude equation rather than a power 
equation.  The tern Lfpy is missing from Eq. (33) because 
this component of power loss is modeled not by the 
carrier amplitude Ap but by the filtered time histories 
Pfwj(t).  The power of 10 in Eq. (33) accounts for the 
differing losses of the C/A code power and the P(Y) code 
power in the +/-10.23 MHz bandwidth in comparison to 
their infinite-bandwidth powers. 

Optimization of the cost function in Eq. (32b) is 
performed iteratively.  The ad hoc iteration strategy relies 
on the following fact:  The overlaps of the neighboring 
non-zero portions of the Pfwj(t) functions are small 
relative to the time spans over which they have 
appreciable non-zero values.  This fact is evident in the 
bottom plot of Fig. 2.  Therefore, reasonable first-cut 
estimates of the W-chips are: 

])([ˆ ∑=
=

maxj

minj

i

ii
qiifwjj ytPsignw    for j = 1, ..., K (34) 

where iminj and imaxj are, respectively, the minimum and 
maximum sample indices i for which Pfwj(ti) is 
appreciably different from zero.  The sign[] function in 
Eq. (34) returns a +1 for a positive or zero input argument 
and a -1 for a negative input argument. 

If there were no non-zero overlaps between neighboring 
Pfwj(t) functions, then the W-chip estimates in Eq. (34) 
would be optimal.  In the presence of minor overlaps, the 
following heuristic iteration should converge to the 
optimal solution 
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  for j = 1, ..., K (35) 

where old
lŵ  for l = 1, ..., K are the chip estimates from 

the previous iteration and where L is the number of 
neighboring chips on each side of wj whose Pfwl(t) 
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functions have appreciable non-zero overlap with the 
Pfwj(t) function.  For the cases considered in this paper, L 
= 2 has been selected as a conservative estimate.  The 
value L = 1 probably would have sufficed, and it would 
have saved computation time.  Note: for j values less than 
L+1 or greater than K-L, one or the other of the 
summations over l in Eq. (35) must be truncated 
appropriately. 

The iterative optimization starts by generating W-chip 
estimates using Eq. (34).  Next, it updates its W-chip 
estimates using Eq. (35).  It repeats the evaluations in Eq. 
(35) using the jŵ  values from the previous iteration as 
its old

lŵ  values for each new iteration.  It terminates the 
iterative process when jŵ  = old

jŵ  for all j = 1, ..., K. 

The rate of convergence of the iterations is dependent on 
the receiver design through its RF filter's distorting effect 
on the Pfwj(t) functions.  Experience with this algorithm's 
convergence properties has been gained for the receivers 
used in the present study.  The algorithm always 
terminated in 7 or fewer iterations, and the average 
number of iterations was less than 5.  The required 
number of iterations should decrease for a higher 
bandwidth RF front-end. 

The sign[] function in Eqs. (34) and (35) ensures that the 
resulting W-chip estimates are either +1-valued or -1-
valued.  Thus, the constraint in Eq. (32c) is enforced by 
this heuristic optimization procedure.  Because of these 
constraints, the resulting W-chip estimates are termed 
"hard" estimates. 

B. Probability of W-Chip Correctness and "Soft" W-
Chip Estimates 

One could directly correlate the "hard" +1/-1 W-chip 
estimates of the previous sub-section between Receivers 
A and B in order to form a spoofing detection statistic.  It 
is well known, however, that "hard" W-chip estimates are 
not optimal when performing semi-codeless tracking of 
the L2 signal in dual-frequency receivers 17.  Therefore, it 
seems wise to develop "soft" W-chip estimates in the 
hopes of improving the detection power of the semi-
codeless statistic. 

Reasonable "soft" W-chip estimates can be derived based 
on the probabilities of correctness of the corresponding 
"hard" estimates.  Assuming that the random errors in 
Eqs. (6a) and (6b) are described by the statistics in Eqs. 
(7a)-(7c), the probability that jŵ  is correct is 
approximately 

)ˆ,...,ˆ,ˆ,ˆ,...,ˆ([2{1}ˆ{ 111( Kjjjj wwwwwJexpw +−+=P  

 
12

111 )}/)]ˆ,...,ˆ,ˆ,ˆ,...,ˆ( −
+− −− RFKjjj wwwwwJ σ  

  for j = 1, ..., K (36) 

This probability formula is based on the assumption that 
the normalized cost function 2

1 /),...,( RFKww2J σ  is the 
negative log likelihood of the W chips and, up to a 
constant offset, that it is also the negative logarithm of the 
a posteriori probability of the W chips.  The log-
likelihood assumption is consistent with Eqs. (6a)-(7b).  
The equivalence between the log-likelihood function and 
the log a posteriori probability is a consequence of Bayes' 
formula and the uniform prior assumption that both 
possible W-chip values are equally likely 22. 

The only difference between the two cost terms in the 
exponential in Eq. (36) is the sign of the estimate of wj. 
The value jŵ  produces a lower cost than does the value 

jŵ− . Therefore, the exponent in Eq. (36) is guaranteed to 
be negative, and }ˆ{ jwP  is guaranteed to be greater than 
0.5. 

The probability formula in Eq. (36) is inexact for the 
situation of significant non-zero overlap between 
neighboring Pfwj(t) functions.  In this situation, the exact 
formula would involve a normalized sum over all possible 
combinations of +1/-1 values of the chips other than jŵ .  
Given the small overlaps, however, the approximation in 
Eq. (36) is reasonable.  In the event of larger overlaps, an 
appropriate alternative to Eq. (36) could be developed.  It 
has been omitted due to the lack of a perceived need and 
for the sake of brevity. 

The RF sample variance from Eq. (25) can be used in Eq. 
(36), but an alternate value can be deduced directly from 
the optimal value of the Eq.-(32b) cost.  That value is 

M
wwJ K

altRF
)ˆ,...,ˆ(4)( 12 =σ  (37) 

This formula is consistent with the statistical assumptions 
of Eqs. (6a)-(7c).  This alternative form of 2

RFσ  has been 
used to generate results in the present paper.  Although 
never very much different than the value computed in Eq. 
(25), this alternate value appears to be a more reliable 
indicator of the random noise levels in Eqs. (6a) and (6b). 

The probability of a correct jŵ  estimate from Eq. (36) 
can be used to compute the probability that the correct 
estimate is wj = +1.  This latter probability is 

]}ˆ{[ˆ
2
1

2
1

)( −+=+ jjj ww PP  (38) 

The "soft" estimate of wj used in this paper is its 
conditional expectation value based on the receiver's 
quadrature baseband data, yq1, yq2, yq3, ..., yqi, ...  It is: 

12},,,|{ˆ )(321 −== +jqqqjsj yyywEw PK  (39) 

This estimate is guaranteed lie in the range -1 ≤ sjŵ ≤  1.  
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It takes on the end-point values if )(+jP  takes on the 
value 0 or 1.  It equals 0 if )(+jP  = 0.5.  Thus, sjŵ  is a 
reasonable "soft" estimate of wj. 

As in the case of codeless spoofing detection, the 
foregoing optimal estimation algorithm and analyses 
ignore the fact that the noise in the quadrature baseband-
mixed signal is not purely white noise.  If the violation of 
the whiteness assumption were significant, then the 
derivations of this subsection and the previous subsection 
would have to be modified in order to account for the 
noise correlations.  The primary change would be to 
modify the cost function in Eq. (32b) to include cross-
products between Eq.-(6) error terms with sample indices 
i that were near each other.  The resulting modified cost 
would remain the negative log likelihood of the W chips 
after rescaling by 2/ RF2 σ .  These modifications to the 
W-chips estimation algorithm and the associated analyses 
appear to be unnecessary for the receivers considered in 
this paper, and they have been omitted for the sake of 
brevity. 

C. Spoofing Detection via Correlation of "Soft" W-
Chip Estimates 

The soft W-chip estimates can be used to develop a 
spoofing test statistic that is Neyman-Pearson optimal in 
the limit of weak signals in Receiver B.  The derivation of 
this test statistic assumes the availability of )(+ajP , 
reference Receiver A's calculated probability that chip wj 
is positive.  The derivation also assumes that the filtered 
P-code functions corresponding to any two distinct W-
chips, say wj and wl, have insignificant overlap of their 
non-zero parts so that they are orthogonal.  In other 
words, it assumes that 

0)()(
1

=∑
=

M

i
bifwlbifwj tPtP   for all (j,l) such that lj ≠ (40) 

This assumption allows a re-scaled version of the cost 
function in Eq. (32b) for Receiver B to be re-written in 
the form: 
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where the newly defined quantities on the right-hand side 
of Eq. (41) are 
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The re-scaled cost function in Eq. (41) is the negative log 
probability density of the Receiver B quadrature baseband 
mixed measurements yqb1, ..., yqbM.  The corresponding 
probability density is conditioned on the W-chip values 
w1, ..., wK and on the P(Y)-code amplitude Apb.  
Therefore, conditional probability density functions of the 
measurements for the un-spoofed and spoofed cases can 
be derived by using Eq. (41) along with the known W-
chip probabilities from Receiver A.  For the un-spoofed 
hypothesis, H0, this conditional density function is 
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where c is a normalizing constant.  The nominal spoofed 
hypothesis, H1, assumes that there is nothing besides 
receiver noise on the quadrature channel.  This hypothesis 
is the equivalent of using a Receiver-B P(Y) amplitude of 
Apb = 0.  The measurement probability density for this 
case is 

)~()|,,( 011 bqbMqb JexpcHyyp −=K  (44) 

The Neyman Pearson spoofing detection test statistic in 
this case is 
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If this statistic lies above a certain threshold value, then 
the un-spoofed hypothesis H0 is accepted.  Otherwise, the 
spoofed hypothesis H1 is accepted, and a spoofing alert is 
issued. 

Using algebra and hyperbolic trigonometry, one can 
derive equivalent forms of γsopt that are useful for 
analysis: 
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The transition from the first to the second line of Eq. (46) 
makes use of the "soft" W-chip formula in Eq. (39) as 
applied for Receiver A.  The transition from the second-
to-last line to the last line of Eq. (46) uses the fact that 
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An equivalent detection statistic is 

γsalt =  log(γsopt) + ∑
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One can derive a low-power approximation for Receiver 
B by expanding this statistic in a Taylor series about the 
values sbjŵ  = 0.  The result, to second order in sbjŵ , is  
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Before proceeding further, it is worthwhile to examine 
this spoofing detection statistic.  The first term in its sum 
is the product of the "soft" W-chip estimates from the two 
receivers.  This whole analysis has been developed with 
the goal of deriving a detection statistic of this form.  The 
second term, however, looks mostly for power in the P(Y) 
signal of Receiver B.  If Receiver A has a very high 
carrier-to-noise ratio, then each of its sajŵ  estimates will 
be very near +1 or -1.  In this case, the second term on the 
right-hand side of Eq. (49) will be insignificant because 

)ˆ1( 2
sajw−  will be nearly zero.  In other cases, however, 

the second term will indicate that there is a valid un-
spoofed signal whenever it detects appreciable P(Y) 

signal power in Receiver B. 

The proposed spoofing detection statistic in Eq. (49) leads 
to a dangerous situation.  Suppose that a spoofer were to 
put P(Y) pseudo-code on the quadrature channel with 
randomly chosen false wj chips.  In this case, the first 
term in Eq. (49) would contribute zero to the spoofing 
statistic, on average, but the second term could contribute 
a significant positive component, possibly enough to 
cause a missed detection. 

This situation can be resolved by considering an alternate 
spoofing hypothesis, H1'.  The spoofer generates a false 
P(Y) code with randomly chosen +1/-1 values for its W 
chips.  Suppose that it assigns equal probabilities to the 
potential wj values +1 and -1.  The probability density of 
the Receiver B quadrature samples conditioned on 
spoofing hypothesis H1' then becomes 
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and the optimal spoofing detection statistic becomes 

(γsopt)'  =  ∏ +
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Its logarithmic approximation to second order in sbjŵ  
becomes  

(γsalt)' =  log[(γsopt)'] 
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This statistic does not suffer from the problem of too 
much probability of a missed detection because of false 
P(Y) code on the spoofed quadrature signal. 

In order to simplify further analysis, the spoofing 
detection statistic is truncated to retain only the first-order 
terms in sbjŵ .  Thus, the final statistic chosen for semi-
codeless "soft" W-chips spoofing detection is 
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This spoofing detection statistic is optimal in the limit of 
very low P(Y) power in defended Receiver B.  It is 
optimal for any level of P(Y) power in reference Receiver 
A.  At higher P(Y) powers in Receiver B, this statistic is 
sub-optimal.  As for locally most powerful detection tests, 
one can normally tolerate sub-optimality in the case of a 
stronger signal. 

This first-order truncation of the logarithmic Taylor series 
avoids the possibility that false W chips could defeat the 
detection.  Nevertheless, the foregoing analysis of the 
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false W-chips case has been worthwhile.  It suggests 
additional analyses that should be carried out in the 
future.  The needed analyses would explore whether there 
are sophisticated spoofing attack scenarios which could 
overcome the defenses that are developed in the present 
paper. 

D. Probability Analysis and Detection Threshold 
Design for the "Soft" W-Chips Test Statistic 

At the point of spoofing detection, the random variability 
of the γs spoofing detection statistic in Eq. (53) comes 
entirely from the variability of the sbjŵ  soft W-chip 
estimates.  Although the sajŵ  estimates will have been 
affected by random noise in reference Receiver A, these 
will be known quantities at the time of spoofing detection 
in Receiver B.  The randomness in sbjŵ  can be 
characterized by using its formula in terms of μbj, Eq. 
(47), coupled with the probability density of μbj. 

The randomness in μbj comes from the random noise in 
the yqbi quadrature baseband mixed samples, as per Eq. 
(42b).  Therefore, μbj follows a Gaussian distribution in 
each of the 3 possible situations: a) the signal is not being 
spoofed and the true wj is +1, b) the signal is not being 
spoofed and the true wj is -1, or c) the signal is being 
spoofed so that yqbi contains only random noise.  The 
mean and variance of μbj can be deduced in each of these 
situations by substituting the models in Eqs. (6b) and (9) 
into Eq. (42b) and by taking appropriate expectations 
based on the statistical models in Eq. (7b).  Given these 
means and variances and given the wj = +1 chip 
probabilities from reference Receiver A, the un-spoofed 
and spoofed conditional probability densities for μbj are: 
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In preparation for computing the means and variances of 
the spoofing detection statistic γs under the two 
hypotheses, one can compute the corresponding 
expectation values of sbjŵ  and 2ˆ sbjw .  These are 
computed by using the model for sbjŵ  in terms of μbj in 
Eq. (47) and the probability density functions in Eqs. 
(54a) and (54b).  The results are: 
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where the two special functions q(ξ) and r(ξ) are defined 
as follows: 
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The analyses that derive Eqs. (55a)-(56b) involve changes 
of dummy integration variables from μbj to η.  They 
require two proofs involving modifications to the integral 
in Eq. (56a).  One proof demonstrates that a change from 
(ξ+η) to (-ξ+η) in the tanh function argument of the 
integrand causes the resulting formula to yield -q(ξ).  The 
other proof demonstrates that a squaring of the tanh 
function causes the resulting formula to remain equal to 
q(ξ). 

The special functions defined in Eqs. (56a) and (56b) can 
be evaluated approximately via numerical integration.  
For purposes of this paper, they have been pre-computed 
off-line on an extensive grid of ξ points.  Afterwards, 
their pre-computed values have been used in an 
interpolation scheme in order to provide a quick, practical 
means of evaluating them. 

The results in Eqs. (55a)-(55d) can be used to compute 
the corresponding means and variances of the spoofing 
statistic γs.  These calculations rely in the assumption that 
any two "soft" W-chip estimates sbjŵ  and sblŵ  for j ≠  l 
are sampled from independent distributions. 
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As in the codeless case, the means and variances in Eqs. 
(57a)-(57d) are used to design and analyze the spoofing 
detection test.  This involves the probability density 
functions p(γs|H0) and p(γs|H1).  These are non-Gaussian 
due to the non-Gaussian nature of the sbjŵ  distributions.  
Given that many such random quantities affect the 
correlation statistic summation in Eq. (53), however, the 
central limit theorem can be invoked in order to argue that 
Gaussian approximations of these two distributions are 
reasonable. 

Given the false-alarm probability αFA and the Gaussian 
assumption, the spoofing detection threshold γsth is the 
solution of the following equation: 
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If γs ≥ γsth, then hypothesis H0 is accepted: there is no 
spoofing.  If γs <γsth, then hypothesis H1 is accepted, and a 
spoofing alert is issued.  The probability of successful 
spoofing detection is: 
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 misdetP−= 1  (59) 

As in the codeless case, the un-spoofed H0 hypothesis is 
atypical because the test statistic's mean value is non-zero.  
The accuracy of the mean valued given in Eq. (57a) is 
dependent on the accuracy of the modeled P(Y)-code 
carrier amplitudes in the two receivers, Apa and Apb as 
computed using Eq. (33).  Any errors in these calculations 
will lead to errors in the predicted mean 0|Hsγ  and in the 
detection threshold γsth.  Any such errors will distort the 
false-alarm probability and the probability of detection 
away from the values given in Eqs. (58) and (59). 

E. Offline Analysis of "Soft" W-Chips Spoofing 
Detection 

The results in Eqs. (57a)-(59) are suitable for on-line 
spoofing detection using the "soft" W-chips technique, 
but not for off-line analysis.  In an off-line analysis, the 
required sajŵ  estimates from reference Receiver A are 
not available, nor are the ξbj values available from 
defended Receiver B. 

An offline analysis replaces actual values of sajŵ  with a 
statistical model of their distribution.  This model uses the 
tanh formula in Eq. (47) to represent sajŵ  as a function 
of μaj.  Along the lines of Eq. (54a), this analysis models 
the probability distribution of μaj under two conditions as 
follows: 
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A similar statistical model applies to sbjŵ  and μbj, except 
that the μbj probability densities also must be conditioned 
on the un-spoofed and spoofed hypotheses.  For the un-
spoofed hypothesis, the two conditional probabilities are 
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In the case of spoofing, Eq. (54b) still gives the correct 
μbj probability density. 

Expected values of ξaj and ξbj can be computed based on 
the respective P(Y) carrier-to-noise ratios of the two 
receivers. 

wchip

pya
a f

N/C )(2 0=ξ  (62a) 

wchip

pyb
b f

N/C )(2 0=ξ  (62b) 

where fwchip = 480,000 Hz is the nominal mean chipping 
rate of the W chips. 

Given the forgoing statistical models, the means and 
variances in Eqs. (57a)-(57d) can be re-computed a priori.  
This computation accounts for the correlation between μaj 
and μbj that is caused by their both being conditioned on 
the same wj chip value for any given case.  After a 
lengthy derivation, the results are 

)()(0| baHs qKq ξξγ =  (63a) 

)]()(1)[()(2
0| babaHs qqqKq ξξξξσγ −=  (63b) 

0}|{ 11| == HE sHs γγ  (63c) 
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The number of W chips in any given correlation statistic 
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Fig. 3. Comparison of codeless and semi-codeless spoofing detection power as functions of 
correlation interval for a false alarm probability of 0.01%. 

is K = Tcorrfwchip, where Tcorr is the duration of the 
correlation interval. 

The computed a priori statistics in Eqs. (63a)-(63d) can 
be used in Eqs. (58) and (59) in order to analyze the 
expected performance of a proposed spoofing detection 
test.  The analysis starts with expected P(Y)-code carrier-
to-noise ratios in the two receivers (C/N0)pya and (C/N0)pyb.  
These can be computed based on expected received 
power levels and on the RF filter losses that are modeled 
by Eq. (15).  These carrier-to-noise ratios and the 
designed correlation interval Tcorr serve as inputs to the 
calculations in Eqs. (62a)-(63d).  Next, the results of 
these calculations and the designed false-alarm 
probability αFA are input to the computations in Eqs. (58) 
and (59).  The final results are the expected spoofing 
detection threshold and the corresponding probability of 
detection. 

Analogous calculations can be carried out for the codeless 
spoofing detection test by using Eqs. (29a)-(31).  These 
computations must use the following number of samples 
in order to define a codeless statistic of equivalent 
duration: M = Tcorr/Δt. 

Figure 3 compares the power of codeless and semi-
codeless spoofing detection for correlation intervals Tcorr 
that range along the horizontal axis from 0.01 sec to 10 
sec.  Both curves assume P(Y)-code carrier-to-noise 
ratios of 35 dB-Hz in both receivers, and both curves use 
a false-alarm probability of αFA = 0.0001 (0.01%).  Also 
plotted are points for two actual cases associated with the 
results in Section V, one for PRN 13 plotted with 
triangles and one for PRN 17 plotted with squares.  Both 
of these actual cases have carrier-to-noise ratios larger 
than 35 dB-Hz, despite the use of  2.4-2.6 MHz filter 

bandwidths in the RF front.  Therefore, the carrier-to-
noise ratios assumed for the two curves are somewhat 
conservative. 

Figure 3 indicates that the codeless technique should be 
able to detect spoofing reliably (Pdetect = 0.986) with a 
cross-correlation interval of 5 sec.  This same detection 
probability can be achieved by the semi-codeless 
technique when using intervals of only 0.43 sec. 

Thus, the semi-codeless method is more than 10 times as 
efficient as the codeless method in its use of data to 
achieve a given power of detection.  This efficiency has 
two advantages.  First, spoofing detection can occur with 
a lower latency.  Second, the required communication 
bandwidth between Receivers A and B can be reduced for 
a given frequency of calculation of spoofing detection test 
statistics.  A further bandwidth reduction occurs for the 
semi-codeless technique because it only has to send data 
at the 480 KHz W-chips chipping rate.  The codeless 
technique must send data at the RF sample frequency, 
1/Δt Hz.  This latter frequency can be on the order of 6 
MHz or higher.  Of course, each W-chip estimate might 
entail the transmission of more bits than each raw 
quadrature RF sample.  This means that the bandwidth 
requirement of the codeless technique is not quite so high 
relative to the semi-codeless technique as is indicated by a 
simple comparison of sampling and chipping rates. 

The data points on Fig. 3 for PRNs 13 and 17 indicate 
that practical spoofing detection can be performed with 
correlation intervals of 1.2 sec for the codeless technique 
(blue triangle and square) and 0.2 sec for the semi-
codeless technique (red triangle and square).  Given the 
very high probabilities of detection for these data points, 
it would be possible to reduce the cross-correlation 

intervals and still retain 
adequate detection power.  
These results are surprising 
and encouraging:  Despite 
using RF front-ends that 
attenuate the P(Y) code 
power by 5.4 to 5.6 dB, 
despite the corresponding 
marked distortion of the P(Y) 
code, and despite the squaring 
losses in the detection 
calculations, practical 
spoofing detection can be 
performed using this 
technique. 

Another surprising point of 
Fig. 3 is that the semi-
codeless technique offers an 
order of magnitude 
improvement in the spoofing 
detection efficiency.  Semi-
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codeless techniques derive their advantage from a 
narrowing of signal bandwidth and a corresponding 
increase of the processing gain prior to squaring.  Given 
that the signal bandwidth is already very narrow at the 
output of the RF filter, it was not obvious at the outset of 
this study that a further bandwidth reduction in the semi-
codeless matched filter would afford any additional 
processing gain. 

The semi-codeless technique has one significant 
disadvantage:  It requires much more signal processing.  
First, the distorted Pfwj(t) P-chip functions must be 
computed for each RF sample of each W-chip.  These 
function evaluations are complicated and must be 
performed on-line.  Additionally, the W-chip optimization 
problem in Eqs. (32a)-(32c) must be solved on-line.  A 
good area for future research would be to seek efficient 
means of carrying out these complex calculations in real-
time. 

F. Alternate Semi-Codeless Spoofing Detection 
Statistic 

There is an alternative semi-codeless detection statistic.  It 
is an optimal Neyman-Pearson statistic in the limit of very 
high carrier-to-noise ratio at reference Receiver A.  It is 
also optimal in the limit of very low carrier-to-noise ratio 
at defended Receiver B. 

If (C/N0)pya is very large, then the sajŵ  values will be 
either +1 or -1, and the corresponding probabilities )(+ajP  
in Eq. (45) will be either 1 or 0.  (C/N0)pya values that 
approximate this limit can be achieved by using a high-
gain antenna at reference Receiver A or by appropriate 
averaging of imprecise results from many secure 
reference receivers. 

Given the high (C/N0)pya limit, the analysis in Eqs. (43)-
(48) can be modified to show that  

γsopt  =  ∏∑−
==

K

j
bjsaj

K

l
bl wexpexp

11

2
2
1 )ˆ()( μξ  (64) 

and that 

γsalt  =  log(γsopt) + ∑
=

K

l
bl

1

2
2
1 ξ   =  ∑

=

K

j
bjsajw

1
ˆ μ  (65) 

An alternate analysis demonstrates that this same 
approximate is valid in the low (C/N0)pyb limit.  One starts 
with the γs approximation of Eq. (53), which is valid in 
this limit.  If one substitutes the formula sbjŵ  = tanh(μbj) 
from Eq. (47) into Eq. (53) and if one uses the first-order 
approximation tanh(μbj) ≅  μbj, then one arrives at the 
same formula for γsalt as appears on the extreme right-
hand side of Eq. (65).  This tanh() approximation is valid 
for |μbj| << 1.  The limit |μbj| << 1 holds true if (C/N0)pyb is 
small.  This latter result is implied by the two μbj mean 

values from Eq. (54a), 2
bjξ± , if one considers the 

relationship of these mean values to the carrier-to-noise 
ratio, as given in Eq. (62b). 

The accumulation statistic in Eq. (65) can be re-cast into a 
more conventional form by using Eq. (42b) to eliminate 
μbj:  
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The second line of Eq. (66) has been derived from the 
first line by extending the limits of the second summation 
on the first line all the way from i = 1 to i = M.  
Afterwards, the second line cay be derived by a simple 
interchange of the order of summation.  This extension of 
the summation indices is allowable because the filtered P-
chips function Pfwj(tbi) has already been assumed to be 
zero-valued for i < ibminj and for ibmaxj < i.  The last line of 
Eq. (66) is derived by making the following definition of 
the approximate filtered P(Y) code: 
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That is, )(ˆ tPYfa  is the approximation of the filtered P(Y) 
code which is based on assuming that the Receiver A soft 
W-chip estimates sajŵ  are the true W-chip values. 

The detection statistic in Eq. (66) has several useful 
features.  It is the optimal statistic in the limit of exact 
values in sajŵ , as has been stated.  Thus, the detection 
statistic in Eq. (66) takes the standard matched filter form: 
mix the data with the known signal time history.  
Fortunately, this is also an approximately optimal form 
even when the expected signal time history is not known 
exactly due to residual uncertainty in the sajŵ  estimates.  
A second convenient feature of Eq. (66) is that it avoids 
the need to compute optimal sbjŵ  estimates.  That is, it 
avoids the need to solve the optimal estimation problem 
in Eqs. (32a)-(32c) for Receiver B.  This can represent a 
considerable computational savings. 

There are two negative aspects of using the detection 
statistic in Eq. (66).  They both concern loss of the 
symmetry between the receivers that had been present in 
the statistic formula in Eq. (53).  This loss of symmetry 
implies that different calculations must be performed in 
the reference and defended receivers.  Furthermore, if the 
detection is not done in the defended receiver, then it 
must transmit to the detector the raw quadrature baseband 
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samples yqbi instead of the soft W-chip estimates sbjŵ .  
This change would likely require an increased 
communication bandwidth. 

Probabilistic analysis of the detection statistic in Eq. (66) 
yields its means and variances under the un-spoofed H0 
and spoofed H1 hypotheses: 
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It is straightforward to show that these means and 
variances of the detection statistic γsalt  approach those in 
Eqs. (57a)-(57d), those of γs, in the limit of small 
(C/N0)pyb.  This is true because small (C/N0)pyb implies 
small 2

bjξ , as per Eq. (62b).  The special functions in Eqs. 
(56a) and (56b) take on the approximate 2nd-order Taylor 
series forms q(ξ) ≅  ξ 2 and r(ξ) ≅  ξ 2 for ξ 2 << 1.  
Substitution of these approximations into Eqs. (57a)-
(57d) yields equivalent expressions to Eqs. (68a)-(68d) 
out to 1st order in 2

bjξ , which proves the equivalence in 
the low-power limit.  Note, however, that the expressions 
in Eqs. (57a)-(57d) differ from those in Eqs. (68a)-(68d) 
starting in their 2nd order terms in 2

bjξ . 

Off-line predictive results similar to Eqs. (63a)-(63d) 
could be developed for the alternate detection statistic 
γsalt.  They have been omitted for the sake of brevity. 

V. EXPERIMENTAL SPOOFING DETECTION 
RESULTS 

A. Cases Considered 

This paper's spoofing detection algorithms have been 
implemented and tested on actual data.  The algorithms 
run in MATLAB software receiver code that operates on 
recorded RF data in an off-line mode.  The RF data have 
been collected simultaneously from reference Receiver A 
operating in Ithaca, NY and from defended Receiver B 
operating in Austin, TX.  Both receivers were connected 
to roof-mounted patch antennas. 

The RF front-ends of the 2 receivers have 3 dB 
bandwidths of 2.4 MHz (Ithaca) and 2.6 MHz (Austin).  
The former front-end attenuates the P(Y) signal power by 
5.6 dB, and the latter by 5.4 dB. 

In a first test, the Austin receiver was not subjected to a 
spoofing attack.  The first test was conducted in Sept. 

2010.  In a second type of test, the Austin receiver was 
attacked using the spoofer that is described in Refs. 5 and 
6.  Various versions of the second test were conducted in 
Sept. 2010 and in July 2011.  Results for the second type 
of test will be reported only for the July 2011 data 
because that data set employed the most sophisticated 
version of the spoofer. 

The spoofing attack was carried out by combining the 
signal from the spoofer with the signal from the Austin, 
TX roof-mounted patch antenna.  This combining 
operation was carried out electronically before input to 
the RF front-end of the defended receiver.  This approach 
avoided violation of FCC regulations because the 
spoofing signal was never broadcast.  The spoofer also 
had access to the signal from a roof-mounted antenna, as 
required by the spoofer design of Refs. 5 and 6.  It used 
this data to lay the spoofed signal exactly on top of the 
true signal during the initial attack.  This attack profile 
allowed the victim receiver to continue tracking C/A code 
without interruption and seemingly without problems 
during the attack. 

A special spoofing protocol has been used for the July 
2011 spoofed case.  The initial 60 seconds of data have 
no spoofing.  The spoofer turns on at about 60 seconds, 
but it keeps its spoofed C/A code exactly on top of the 
true C/A code for about the first 60 seconds of spoofing.  
During this initial period, there is zero carrier Doppler 
shift of the spoofed signal relative to the true signal.  
During this phase, the spoofing detection algorithm will 
still see the true P(Y) code on the quadrature channel 
unless the spoofed C/A code has exactly a 90 deg phase 
offset from the true C/A code.  In this situation, however, 
the true P(Y) code will not have the correct amplitude 
relationship to the spoofed C/A code because the latter 
will have a higher amplitude than the true C/A code in 
order to take control of the receiver's tracking loops.  At 
about 120 second into the spoofing run, i.e., about 60 
seconds after the onset of the attack, the spoofer starts to 
move the spoofed C/A code phase away from the true 
code.  This process is necessary if the spoofer wants to 
deceive the receiver about its position or time.  The 
receiver's C/A-code tracking loops are dragged away 
from the true C/A code by the spoofed signal during this 
latter phase of the attack.  This causes the P(Y) code to 
disappear from the quadrature channel of the victim 
receiver, and the spoofing detection test statistic should 
drop to a mean of zero at this point of the attack. 

Only a subset of the visible GPS satellites had their C/A 
PRN codes spoofed in the attack.  There were 9 signals 
present in the data, but only 6 of them were spoofed. 

B. Performance of Codeless Spoofing Detection 

Results for the codeless spoofing detection test are shown 
in Figs. 4 and 5.  Figure 4 corresponds to an un-spoofed 
case.  It plots the detection statistic γ (solid blue curve), 
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the statistic's predicted mean value 0Hγ  (dotted red 
curve), and the 0.01% false-alarm spoofing detection 
threshold γth (dashed green curve).  The γ statistic has 
been computed using the cross-correlation interval Tcorr = 
1.2 sec.  These curves apply to PRN 17, a typical tracked 
signal.  The mean and threshold values have been 
computed based on the assumption that the P(Y) code is 
transmitted with a power level that is 10log10(Lp) = -3.04 
dB down from that of the C/A code.  This is the value that 
causes 0Hγ  to equal the mean of γ -- note the 
correspondence between the level of the dotted red curve 
and the mean value of the solid blue curve.  This case 

demonstrates the efficacy of the spoofing 
detection test: It clearly recognizes that 
this signal is not being spoofed.  It also 
demonstrates the reasonableness of the 
statistical signal modeling that went into 
deriving the mean value 0Hγ  and the 
detection threshold γth. 

Figure 5 demonstrates the codeless 
detection method's performance during a 
spoofing attack.  Again, this figure plots 
time histories of the detection statistic γ, 
its predicted mean value 0Hγ , and the 
corresponding 0.01% false-alarm 
spoofing detection threshold γth, all 
calculated using 1.2 sec cross-correlation 
intervals.  These quantities are plotted for 
two signals: PRN 13, which undergoes a 
spoofing attack starting at t = 60 sec, and 
PRN 23, which remains un-spoofed for 

the duration of the test.  Unlike Fig. 4, the 0Hγ (t) and 
γth(t) time histories fluctuate because their levels are 
computed based on time-varying averages of the two 
receivers' C/A-code carrier-to-noise ratios.  Each average 
is taken over the corresponding spoofing detection cross-
correlation interval.  The C/A to P(Y) transmitted power 
loss factors that have been used to produce these 0Hγ (t) 
and γth(t) plots are 10log10(Lp) = -3.93 dB for PRN 13 and 
10log10(Lp) = -3.80 dB for PRN 23.  These values have 
been chosen to make the 0Hγ (t) curves lie close to the 
γ(t) curves during the un-spoofed first 60 seconds of this 
case. 

Figure 5 shows clear responses at 
the time of the initial attack and 
further response changes as the 
attack progresses to carry the 
tracking loops away from the true 
signal.  The spoofing detector 
correctly identifies the fact that PRN 
13 is spoofed starting at t = 60 sec 
and that PRN 23 is never spoofed.  
PRN 13's solid blue spoofing 
detection statistic drops below its 
dashed green detection threshold and 
remains below that value except for 
a short interval from t = 164 to 169 
sec.  During this latter interval, the 
detection fails briefly because the 
detection power falls to low levels.  
This happens because the spoofed 
and true C/A codes briefly interfere 
with each other to produce a short, 
sharp power fade on that signal.  
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Fig. 4. Codeless spoofing detection statistic time history for PRN 17, un-
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PRN 23, on the other hand, never generates a spoofing 
(false) alarm.  Its solid turquoise detection statistic never 
drops below its corresponding dashed brown detection 
threshold. 

It is interesting to note the behavior of spoofed PRN 13's 
detection statistic during the two phases of the attack.  
During the interval from t = 60 sec to t = 150 sec, the 
spoofed signal exactly overlays the true signal.  The 
detection statistic drops a small amount, but not to a mean 
value of 0.  The residual non-zero mean value is the result 
of the P(Y) code still being present, though not with the 
same amplitude as before the attack.  One of the reasons 
for the amplitude reduction is the larger overall power 
entering the RF front-end at the onset of the attack.  The 
spoofing signals must have higher power than the true 
signals in order to capture the receiver's tracking loops.  
This extra power affects the RF front-end's Automatic 
Gain Control (AGC), causing it to lower the gain.  This 
lowered gain translates into a lowered received power of 
the true P(Y) code in Receiver B.  This lower power 
reduces the value of the detection statistic.  A second 
possible reason for the drop in the statistic during the 
middle interval is that the spoofed C/A code phase 
probably does not match the true C/A code phase.  
Therefore, the quadrature baseband mixing will not 
exactly capture the P(Y) code, thus reducing the detection 
statistic's amplitude.  In an extreme situation, the 
detection statistic could take on a negative mean value 
during this phase.  Starting at about t = 150 sec, the 
spoofer drags the receiver away from the true C/A code.  
It also drags the quadrature channel away from the true 
P(Y) code, and the spoofing detection statistic drops to a 
mean value of zero, as expected.  

One might think that the spoofing detection test would 
not detect the attack until the last phase, when the spoofer 
drags the receiver away from the true C/A code phase.  In 
fact, the detection is successful at the very outset of the 
attack.  This happens because the spoofing detection 
threshold rises suddenly: Note the sudden jump of the 
green dashed curve at t = 60 sec.  This rise is caused by 
the increased C/A code power of the combined spoofed 
plus true signal during this phase of the attack.  This rise 
is sufficient to cause the spoofing alarm to be issued.  
Note, however, that there could be situations for well 
executed attacks where the spoofing attack would not be 
detected until the last phase, the phase of C/A code drag-
off.  Such a situation is acceptable because a spoofing 
attack with the spoofed C/A code exactly aligned to the 
true code represents a benign event. 

The detection statistic for un-spoofed PRN 23, the solid 
turquoise curve, undergoes a sudden drop at the onset of 
the attack at t = 60 sec.  This occurs because the receiver 
lowers its AGC gain in response to the extra power of the 
spoofing signals.  The effect on an un-spoofed signal is to 
lower its C/A and P(Y) power, and this lowering of 

power is what causes the spoofing detection statistic for 
PRN 23 to decrease suddenly.  One might think that this 
sudden decrease would give rise to a false spoofing 
alarm.  This does not happen because the spoofing 
detection threshold for PRN 23, the dashed brown curve 
in Fig. 5, drops at the same time.  It drops because it is 
keyed to the PRN 23 C/A signal power, which also drops 
in response to the AGC adjustment.  Thus, the connection 
between the C/A-code signal power and the design of the 
spoofing detection threshold is important to the proper 
operation of this test. 

The results in Fig. 5 might tempt one to suggest a simpler 
method of detecting the spoofing attack:  Look for sudden 
changes of the AGC and of the C/A code power.  If the 
AGC gain suddenly drops while the C/A power suddenly 
rises for some of the channels, then declare a spoofing 
attack.  Additionally, small transient carrier phase glitches 
in the PLL tracking performance are evident on some of 
the spoofed channels at the onset of the spoofing attack.  
One might be tempted to look for such glitches and use 
them to detect a spoofing attack.  Unfortunately, these 
detection methods can be defeated by slowly ramping up 
the power of the spoofed signals at the beginning of the 
attack.  A slow attack was not used here only because the 
authors wanted to minimize the amount of data that 
needed to be tracked using offline MATLAB software 
receiver code.  Such code runs very slowly, and its use on 
long data sets can be time-consuming. 

In addition, the proposed simple detection scheme would 
work only if applied at or very near the initial moment of 
the spoofing attack.  If the attack were not detected at its 
onset, then the simple detection methods would fail.  This 
paper's cross-correlation-based detection methods 
function well during all phases of an attack. 

The results in Fig. 5 and related results for other data sets 
represent the first successful spoofing detections using a 
single-antenna system at the defended receiver when 
attacked by the sophisticated spoofer of Refs. 5 and 6.  
The only other successful detection used a multi-antenna 
system 13.  This also represents the first successful 
detection of an actual spoofing attack using the cross-
correlation method of Refs. 11 and 12.  This 
demonstration is important because it proves that the 
vestigial P(Y) code in a narrow-band receiver can form 
the basis of a powerful spoofing detection test. 

The detection powers in all 3 cases associated with Figs. 
4 and 5 remain above 0.995, except for PRN 13 during 
the short interval from t = 160 to 174 sec.  As already 
mentioned, this short anomaly is caused by a drop in the 
C/A code amplitude due to transient interference between 
the true and spoofed signals.  During steady-state 
spoofing, no such interference would occur due to the 
temporal separation between the two codes.  The 
nominally high probabilities of detection indicate that the 



 23

Tcorr = 1.2 sec cross-correlation intervals are more than 
sufficient for a powerful test.  They probably could be 
shortened significantly. 

Two additional spoofed signals have been processed for 
the case associated with Fig. 5, those of PRN 03 and PRN 
16.  They both required P(Y) transmitted power 
decrements of 10log10(Lp) = -3.37 dB in order to achieve 
good agreement between γ(t) and 0Hγ (t) during the 
initial un-spoofed phase.  Spoofing detection worked well 
for these two signals, similar to the results for PRN 13 in 
Fig. 5. 

C. Performance of Semi-Codeless Spoofing Detection 

Figures 6 and 7 present results for the semi-codeless 
spoofing detection method.  They plot γs(t) spoofing 
detection time histories along with predicted mean-values 

0|Hsγ (t) and detection thresholds γsth(t).  Both figures use 
spoofing detection intervals of Tcorr = 0.2 sec and false-
alarm probabilities of 0.01%.  The case shown in Fig. 6 is 
for PRN 17 not being spoofed.  It re-processes the same 
RF data as have been used to generate the codeless 
detection results in Fig. 4.  Figure 7 corresponds to a case 
in which PRN 13 is spoofed starting at t = 60 sec.  It re-
processes the same RF data that apply to the PRN 13 
curves in Fig. 5.  The salient feature of Figs. 6 and 7 is the 
ability of the semi-codeless method to distinguish 
between un-spoofed and spoofed signals as reliably as 
does the codeless method, but using cross-correlation 
intervals that are only 1/6th as long. 

An important feature of these curves is the accuracy with 
which the predicted mean values in 0|Hsγ (t) track the 
actual spoofing detection statistic γs(t) whenever the 
signal is not being spoofed.  These mean values rely on 
the power decrement factors Lp for the transmitted P(Y) 
code relative to the transmitted C/A code.  The same 
power loss factors have been used in this analysis as have 
been used in the codeless analysis, 10log10(Lp) = -3.04 dB 
for PRN 17 and 10log10(Lp) = -3.93 dB for PRN 13.  
These factors were "tuned" in the codeless case in order 
to get 0Hγ (t) to track γ(t).  No additional tuning has been 
used for the semi-codeless case.  The reasonable 
correspondence of 0|Hsγ (t) to γs(t) in the semi-codeless 
case provides an independent confirmation that the 
original tunings are reflective of the actual relationship 
between the transmitted C/A and P(Y) power levels. 

Note in Fig. 7 that the spoofing detection statistic hardly 
changes during the first portion of the attack, from t = 60 
to 140 sec.  The mean of the solid blue curve stays 
roughly constant, but there is a moderate increase in its 
variance.  Apparently, this initial part of the attack leaves 
Receiver B with an ability to obtain reasonably accurate 
"soft" W-chip estimates; otherwise, the detection statistic 
would have decreased significantly.  This is reasonable 
given that the true P(Y) code remains in the correct 
location relative to the spoofed C/A code during this 
interval.  Despite this rough constancy of the spoofing 
detection statistic, the test still detects the attack by virtue 
of the sudden rise in its detection threshold at the onset -- 
see the dashed green curve.  As in Fig. 5, this rise is 
caused by the increased power of the spoofed C/A code.  

The detection algorithm thinks 
that the true C/A code's power 
has risen and, therefore, that the 
true P(Y) code's power must 
have risen with it.  It concludes 
that the accuracies of its 
Receiver-B "soft" W-chip 
estimates should have increased 
and, therefore, that the spoofing 
detection statistic's mean value 
should have increased.  These 
increases cause the sudden rise 
in the dashed green detection 
threshold.  The expected 
increase in γs(t) fails to 
materialize, γsth(t) crosses above 
γs(t), and a spoofing alert is 
issued. 

Figures 6 and 7 each have two 
new curves that do not appear in 
Figs. 4 and 5.  These are the 
dotted brown a priori 
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predictions of 0|Hsγ (t) 
and the dashed olive-
green a priori thresholds 
γsth(t).  These values have 
been computed using the 
offline analysis formulas 
from Subsection IV.E.  
These formulas take as 
inputs the P(Y)-code 
carrier-to-noise ratios as 
deduced by scaling down 
the C/A-code carrier-to-
noise ratios that are 
deduced from the C/A-
code prompt 
accumulations.  These 
curves have been plotted 
as a means of checking 
whether the analyses of 
Subsection IV.E have 
any basis in reality.  
There is a reasonable 
level of correspondence 
between these a priori 0|Hsγ (t) and γsth(t) curves and 
those that have been calculated based on the Receiver-A 
"soft" W-chip estimates sajŵ .  The agreement is 
especially good in Fig. 7.  Therefore, the a priori analyses 
of Subsection IV.E are reasonable. 

The probabilities of detection associated with the semi-
codeless cases in Figs. 6 and 7 are very high.  The lowest 
value is 0.964, and that value occurs only briefly for PRN 
13 during the interval from t = 164 to 170 sec.  Recall 
from the discussion of Fig. 5 that the lower detection 
power during this interval occurs because of interference-
induced loss of C/A signal power.  This lowered detection 
power corresponds to a brief 0.35 sec interval of a missed 
spoofing detection in Fig. 7 at t = 168 sec.  At all other 
times, the probability of detection is above 0.9999.  
Therefore, it would be possible to reduce the correlation 
interval significantly below Tcorr = 0.2 sec and still retain 
adequate detection power. 

Similar results have been obtained for the spoofed signals 
from PRN 03 and 16 for the same attack that yielded Fig. 
7.  Thus, the results for PRN 13 represent typical 
performance of the semi-codeless algorithm. 

D. Investigation of the Effects of Relative Time Offsets 
between the C/A and P(Y) Codes 

A study has been made of the effect on codeless spoofing 
detection of varying the differential relative time 
parameter δtab.  Recall from Subsection III.A that this is a 
differential between Receivers A and B of the timing of 

the received, filtered P(Y) code relative to the tracked 
C/A code.  Variations of this offset, as propagated 
through Eqs. (17) and (18), have been assessed in order to 
determine how they affect the mean cross-correlation 
amplitude.  The correct value of δtab should give the peak 
amplitude. 

All studies to date show that the peak cross-correlation 
amplitude occurs at δtab = 0 for the receivers and tracking 
loops that have been considered.  The precision of this 
finding is significantly better than 0.025 C/A code chips 
(24 nsec).  Given that the two receivers' RF front-ends 
and tracking software were identical to within 
manufacturing tolerance, this result is not surprising. 

If there were significant differences between the receiver 
RF front-ends, the DLL discriminators, or the DLL 
tracking loops, then this result might change.  In any 
application of codeless spoofing detection to a new 
receiver design, this issue should be investigated.  If 
necessary, the optimal value of δtab should be determined, 
recorded, and applied as a calibration parameter during 
regular codeless cross-correlation calculations. 

A similar timing issue has been investigated for the semi-
codeless method.  In this situation, it is a question of the 
timing of the RF-filtered C/A code, as measured by the 
DLL and its discriminator, relative to the filtered P(Y) 
code as predicted by the system-ID RF filter impulse 
response function.  The optimal relative timing should 
give the "best" W-chip estimates, and by extension, the 
best detection power.  In this context, the "best" estimates 
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are those that yield the lowest optimized value of the 
estimation cost function in Eq. (32b). 

There is reason to believe that the proper relative timing 
would be known a priori in the present set of tests.  This 
is true because these tests used the same receiver, the 
same RF front-end, the same C/A-code DLL, and the 
same discriminator to support the W-chips estimation 
process as had been used in the system-ID calculations 
for the RF filter 21.  Nevertheless, a study has been made 
of different timing offsets and their effects on the optimal 
values of the cost function in Eq. (32b).  The study has 
produced puzzling results to date.  Therefore, more work 
on this issue is deemed necessary. 

If there is a timing bias between the C/A code DLL and 
the W-chips' filtered P(Y)-code functions, then this bias 
should be measurable as part of a calibration procedure.  
Therefore, a calibration test should carried out as part of 
any application of semi-codeless spoofing detection to a 
new receiver design.  The relative timing result of the test 
should be retained and applied as a calibration factor 
during regular operation.  Unfortunately, the inconclusive 
state of the investigation of this issue leaves open the 
question about how best to perform the requisite 
calibration. 

VI. VULNERABILITY TO ALTERNATE 
METHODS OF SPOOFING ATTACK 

This paper's two spoofing detection tests have been 
developed by using the methods of statistical hypothesis 
testing.  They develop a test statistic that distinguishes 
between two precisely defined hypotheses.  The null 
hypothesis is that the P(Y) code signal is present in 
quadrature with the C/A code in the defended receiver 
and that it has a well defined amplitude ratio relative to 
the C/A code.  This is the un-spoofed hypothesis.  The 
spoofed hypothesis presumes that there is no signal on the 
quadrature channel. 

As has already been mentioned in Subsection IV.C, 
alternate forms of spoofing may be applied.  If the 
spoofer suspects that this paper's cross-correlation 
algorithms are being used, then it may elect to do 
something different than leaving no signal on the 
quadrature channel.  As already mentioned, the spoofer 
may elect to put pseudo P(Y) code on the quadrature 
channel.  This possibility has been considered, and this 
consideration has steered the semi-codeless detection test 
away from choosing a statistic that would look partly for 
W-chip power in the defended receiver. 

Another possibility for attack is a Security Code 
Estimation and Replay (SCER) attack 15.  This type of 
attack actively seeks to estimate the W chips on-line, and 
it uses its imprecise W-chip estimates in an attempt to 
spoof the true P(Y) code.  This type of attack will dilute 
the spoofing detection power of a cross-correlation 

method in direct proportion to the percentage of its 
correct W-chip estimates.  Of course, a large dilution can 
only be achieved by a high-gain antenna system.  If the 
number of correctly estimated W chips in the spoofer 
were not too large and if the cross-correlation spoofing 
detection algorithm had enough power, then this type of 
attack would be detected.  An effective SCER spoofer 
would have to estimate most of the W chips correctly, 
which would be expensive in terms of the needed antenna 
gain. 

Alternatively, an SCER attack might try to compensate 
for mis-estimation of a significant fraction of the W chips 
by turning up the power of the spoofed P(Y) code.  This 
strategy might thwart the codeless cross-correlation 
detection test of Section III or the alternate semi-codeless 
test of Subsection IV.F.  The semi-codeless test 
developed in Subsections IV.A to IV.D, however, could 
detect this attack mode by looking at the distribution of its 

sbjŵ  estimates.  Too many of them would be too near +1 
or -1 for the given C/A-code carrier-to-noise ratio. 

Furthermore, an SCER spoofer might need to induce a 
delay of the spoofed C/A code relative to the true C/A 
code in order to gain time to form its W-chip estimates.  
The necessary delaying action might be noticeable in the 
defended receiver at the onset of the attack. 

There are other possible attack types.  The spoofer might 
try to locate a second spoofer near the secure receiver.  If 
both spoofers used a common false P(Y) code, then they 
would defeat this technique.  A defense against such an 
attack would be to distribute an array of secure receivers 
over a large area and to connect them in a network that 
aggregated their sajŵ  chip estimates.  If there were 
enough secure receivers and if their locations were kept 
secret, then it would be unlikely that enough of them 
could be discovered and spoofed in a way that would 
defeat the detection system.  Reference stations could 
employ phased-array antennas with independently 
steerable beams in order to ensure their security.  They 
could use beam steering to attenuate the signal of any 
spoofer that was not directly on their line-of-sight vector 
to a given GPS satellite. 

A meaconing attack could also defeat this method.  This 
technique receives and replays the entire GNSS spectrum 
with some unavoidable delay 15.  This type of attack can 
event defeat a secure military receiver if the replayed 
bandwidth is wide enough to contain the P(Y) or M 
codes.  A sophisticated meaconing attack might use 
differential delays for different signals, which it could 
implement by using a phased array with independently 
steerable beams for signal reception prior to replay.  This 
type of attack, however, would be very expensive.  A 
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simple meaconing attack with only one delay for all 
signals would cause the spoofed receiver to determine a 
location equal to the spoofer's location, which could 
prove dangerous for the spoofer.  Also, a victim receiver 
with a very stable oscillator might detect the attack 
because of the necessary delay. 

Other types of spoofing attacks might be mounted against 
this paper's cross-correlation detection methods.  Perhaps 
a problematic attack would be to raise the noise floor on 
the quadrature channel instead of putting estimated or 
false P(Y) code there.  The analysis of all such attack 
scenarios and the performance of this paper's detectors 
under threat of such attacks is beyond this paper's scope.  
Several preliminary analyses of this subject suggest that 
this paper's spoofing detection techniques, especially its 
semi-codeless technique, would perform well under many 
attack scenarios if the power of detection were 
sufficiently close to 1 for the simple attack scenario 
discussed in this paper. 

VII. SUMMARY AND CONCLUSIONS 

Two spoofing detection methods have been developed for 
open-source/civilian GNSS signals.  They rely on the 
presence of an encrypted/military signal on the same 
transmitted frequency and on knowledge of the timing 
and carrier-phase relationship of the encrypted signal to 
the open-source signal.  The open-source signal is tracked 
in a secure reference receiver and in a defended receiver 
that might be the victim of a spoofing attack.  The open-
source tracking data are used to isolate the part of the 
received signal that is encrypted.  The encrypted parts of 
the signals from the two receivers are cross-correlated 
after being brought together via a communications link.  
This use of cross-correlation obviates the need for a priori 
knowledge of the PRN code of the encrypted signal.  If a 
high cross-correlation statistic is obtained, then no 
spoofing has been detected because this large value 
indicates the presence of the encrypted signal in both 
receivers.  If the cross-correlation statistic is too low, then 
a spoofing alert is issued.  The low cross-correlation is 
likely due to the absence of the encrypted part of the 
received signal in the defended receiver.  The only 
explanation for this absence is that the tracked open-
source signal is a false spoofing signal. 

Codeless and semi-codeless cross-correlation spoofing 
detection tests have been developed, analyzed, and tested.  
The analyses provide an ability to choose spoofing 
detection thresholds based on hypothesis testing theory 
and an ability to predict detection power.  The thresholds 
are dependent on the received power of the open-source 
signal and on the known power of the encrypted signal 
relative to the open-source signal.  Semi-codeless 
techniques offer significant processing gain in 
comparison to codeless techniques.  When applied using 
the encrypted GPS P(Y) code, the semi-codeless spoofing 

detection technique is similar to the semi-codeless 
methods that are used in civilian dual-frequency GPS 
receivers. 

The new techniques have been applied to detect actual 
GPS spoofing attacks using recorded RF data and off-line 
signal processing.  The codeless technique has 
successfully detected spoofing of the GPS L1 C/A code 
by cross-correlating the military P(Y) code over 
accumulation intervals of 1.2 sec.  The semi-codeless 
technique has succeeded when using cross-correlation 
intervals of only 0.2 sec.  It is likely that reductions of 
these intervals could be tolerated while maintaining a 
high detection power. 

A surprising aspect of these results is that they have been 
obtained using low-gain patch antennas and narrow-band 
receivers.  Each receiver's RF front-end had a 2.5 MHz 
wide filter and a 5.714 MHz sampling rate.  These front-
ends attenuate the P(Y) code by 5.5 dB and drastically 
distort its chips.  Nevertheless, sufficient P(Y) power 
remains for successful spoofing detection based on short 
cross-correlation intervals. 
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