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ABSTRACT

To exploit unknown ambient radio frequency signals of
opportunity (SOPs) for positioning and navigation, one
must estimate their states along with a set of parameters
that characterize the stability of their oscillators. SOPs
can be modeled as stochastic dynamical systems driven
by process noise. The statistics of such process noise is
typically unknown to the receiver wanting to exploit the
SOPs for positioning and navigation. Incorrect statisti-
cal models jeopardize the estimation optimality and may
cause filter divergence. This necessitates the development
of adaptive filters, which provide a significant improvement

over fixed filters through the filter learning process. This
paper develops two such adaptive filters: an innovation-
based maximum likelihood filter and an interacting multi-
ple model filter and compares their performance and com-
plexity. Numerical and experimental results are presented
demonstrating the superiority of these filters over fixed,
mismatched filters.

I. INTRODUCTION

The plenitude of ambient radio frequency signals in Global
Navigation Satellite System (GNSS)-challenged environ-
ments make them an attractive choice for exploitation for
positioning and navigation [1–3]. These signals are com-
monly referred to as signals of opportunity (SOPs) and
include cellular phone signals [4, 5], television signals [6],
AM/FM radio signals [7], WiFi signals [8], Iridium satel-

lite signals [9, 10], XM
TM

satellite signals [11], and light-
emitting diode (LED) signals [12], among others.

To exploit an SOP for positioning and navigation, one
must estimate the SOP’s states, namely, the position and
velocity of the SOP transmitter’s antenna phase center,
the SOP’s time offset from a reference time base, and rate
of change of time offset, along with a set of parameters
that characterize the SOP’s reference oscillator stability.
An SOP can be modeled as a stochastic dynamical system
driven by process noise, where the statistics of such process
noise is a function of the SOP’s oscillator stability. Such
statistics can be related to the so-called h-parameters,
which characterize the spectra of the fractional frequency
deviation of oscillators.

The observability of environments comprising multiple re-
ceivers with velocity random walk dynamics making pseu-
dorange observations on multiple SOPs was thoroughly an-
alyzed in [13] and the states’ estimability was assessed in
[14]. Motion planning for optimal simultaneous receiver lo-
calization and signal landscape mapping of environments
comprising multiple SOPs was addressed in [15–19]. How-
ever, all such work assumed knowledge of the statistical
models of the process and observation noise.

A receiver entering a new signal landscape cannot assume
the availability of high-fidelity statistical models describ-
ing the SOPs. Incorrect models jeopardize the estimation
optimality and may cause filter divergence. Hence, the
receiver’s estimator need to: (i) perform on-the-fly sig-
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nal characterization for discovered SOPs and (ii) contin-
uously refine estimates of SOPs’ parameters of relevance.
Therefore, adaptive estimators, which provide a significant
improvement over fixed filters through the filter learning
process, will be necessary.

The main application of adaptive filters in navigation sys-
tems have been in coupling inertial navigation systems
(INS) with GNSS receivers [20–23]. Adaptive filters can
be classified into those that estimate the estimation error
covariances directly and those that explicitly estimate the
process and observation noise covariances. While the for-
mer methods could suffice for single receivers, the latter
techniques are more suitable for multiple collaborating re-
ceivers whose objective is to share information intrinsic to
the SOPs through a signal characterization database [1,2].

Navigation tracking loops could estimate the observation
noise variances associated with pseudorange and carrier
phase observations through explicit relationships relating
the tracking loop characteristics to the carrier-to-noise ra-
tio C/N0 [24]. However, estimating the process noise co-
variance describing the stability of the SOP’s oscillator is
not as straightforward. This is the subject of this paper.
To this end, adaptive filters that estimate the process noise
covariances pertaining to the SOP clock error states (i.e.,
bias and drift) will be designed. The objective of these fil-
ters is twofold: (i) improve the estimates of the SOP states
and (ii) produce estimates of the statistical model govern-
ing the SOP’s oscillator stability, which can be shared with
other receivers through a signal characterization database.

Off-line techniques to estimate the h-parameters via spec-
tral methods exist [25,26]. However, to our knowledge, es-
timating the statistics of the clock error states in an adap-
tive estimation framework has not been addressed before.
This paper’s contribution is to design appropriate adap-
tive filters for receivers making pseudorange observations
on unknown SOPs. To this end, two adaptive filters will
be studied: a simple maximum-likelihood (ML) adaptive
Kalman filter (KF) and a more involved interacting mul-
tiple model (IMM) filter. Numerical simulation and ex-
perimental results for single and multiple receivers will be
presented comparing the two adaptive filters and demon-
strating their superiority over fixed, mismatched filters.

The remainder of this paper is organized as follows. Sec-
tion II describes the clocks, receiver, and SOP dynamical
models and the pseudorange observation model. Section
III gives a brief overview of the different classes of adap-
tive filters and summarizes the computations involved in
the ML and IMM. Section IV presents simulation results
comparing the performance of matched, mismatched, and
adaptive filters. Section V presents experimental results il-
lustrating the application of the various filters into estimat-
ing the states and process noise statistics of an unknown
cellular SOP. Concluding remarks are given in Section VI.

II. MODEL DESCRIPTION

A. Clock Dynamics Model

The receiver and SOP clock error dynamics will be mod-
eled according to the two-state model composed of the
clock bias δt and clock drift δ̇t, as depicted in Fig. 1. The
clock error states evolve according to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

xclk =

[

δt

δ̇t

]

, w̃clk =

[

w̃δt

w̃δ̇t

]

, Aclk =

[

0 1
0 0

]

,

where the elements of w̃clk are modeled as zero-mean,
mutually independent white noise processes and the
power spectral density of w̃clk is given by Q̃clk =
diag

[

Sw̃δt
, Sw̃

δ̇t

]

. The power spectra Sw̃δt
and Sw̃

δ̇t
can be

related to the power-law coefficients {hα}
2

α=−2, which have
been shown through laboratory experiments to be ade-
quate to characterize the power spectral density of the frac-
tional frequency deviation y(t) of an oscillator from nomi-

nal frequency, which takes the form Sy(f) =
∑2

α=−2 hαf
α

[27, 28]. It is common to approximate the clock error dy-
namics by considering only the frequency random walk co-
efficient h−2 and the white frequency coefficient h0, which
lead to Sw̃δt

≈
h0

2
and Sw̃

δ̇t
≈ 2π2h−2 [29, 30].

+

+w̃
δ̇t

w̃δt

δ̇t
δt

∫ ∫

Fig. 1. Clock error states dynamical model

B. Receiver Dynamics Model

The receiver’s position rr and velocity ṙr will be assumed
to evolve according to a velocity random walk model given
by

ẋpv(t) = Apv xpv(t) +Dpvw̃pv(t),

Apv =

[

02×2 I2×2

02×2 02×2

]

, Dr =

[

02×2

I2×2

]

xpv =
[

rT

r ṙT

r

]T

, rr =
[

xr yr
]T

, w̃pv =
[

w̃x w̃y

]T

,

where the elements of w̃pv are modeled as zero-mean,
mutually-independent, white noise processes with power
spectral densities q̃x and q̃y, respectively.

The receiver’s state vector xr is defined by augmenting the
receiver’s position and velocity with its clock error states,
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i.e., xr ,

[

xT

pv, x
T

clk,r

]T

. Discretizing the receiver’s dy-

namics at a constant sampling period T yields the discrete-
time (DT) model

xr (k + 1) = Fr xr(k) +wr(k), k = 0, 1, 2, . . .

where wr is a DT zero-mean white noise sequence with
covariance Qr = diag [Qpv, Qclk,r], with

Fr =





I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk



 , Fclk=

[

1 T
0 1

]

Qclk,r=

[

Sw̃δtr
T+Sw̃

δ̇tr

T 3

3
Sw̃

δ̇tr

T 2

2

Sw̃
δ̇tr

T 2

2
Sw̃

δ̇tr

T

]

Qpv =











q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT











.

C. SOP Dynamics Model

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state will consist
of its planar position and clock error states. Hence, the
SOP’s dynamics can be described by the state space model

ẋs(t) = As xs(t) +Dsw̃s(t), (1)

where xs =
[

rT

s , x
T

clk,s

]T

, rs = [xs, ys]
T
, w̃s =

[

w̃δts , w̃δ̇ts

]T

As =

[

02×2 02×2

02×2 Aclk

]

, Ds =

[

02×2

I2×2

]

.

Discretizing the SOP’s dynamics (1) at a sampling interval
T yields the DT-equivalent model

xs (k + 1) = Fs xs(k) +ws(k),

where ws is a DT zero-mean white noise sequence with
covariance Qs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

where Qclk,s is identical to Qclk,r, except that Sw̃δtr
and

Sw̃
δ̇tr

are now replaced with SOP-specific spectra, Sw̃δts

and Sw̃
δ̇ts

, respectively.

D. Observation Model

The pseudorange observation made by the receiver on the
SOP, after discretization and mild approximations dis-
cussed in [13], is given by

z(k) = ‖rr(k)−rs(k)‖2+ c · [δtr(k)− δts(k)]+vρ(k), (2)

where c is the speed of light and vρ is a DT zero-mean
white Gaussian sequence with variance r.

III. OVERVIEW OF ADAPTIVE FILTERS

Adaptive estimation approaches can be categorized into
Bayesian, covariance matching, correlation, maximum like-
lihood (ML), and hybrid methods. Bayesian techniques
suffer from the curse of dimensionality and assume sta-
tionarity of the process noise [31, 32]. Covariance match-
ing techniques rely on the principle of making the time
average of squared innovations consistent with the ensem-
ble average; hence, they implicitly assume ergodicity of
the noise. Tuning the process noise covariance is typi-
cally done in an ad-hoc manner, making the convergence
of these techniques questionable [31,33]. Correlation meth-
ods assume ergodicity of the noise and rely on establishing
relationships between the noise statistics and the autocor-
relation of the measurement or residual sequences. They
have been shown to be a fruitful approach [31, 34, 35]. In
ML techniques, the likelihood function is maximized to
obtain estimates of the noise statistics, and the chain rule
of probability distributions is typically invoked. A unique
solution is only guaranteed whenever the dimension of the
observation vector is greater than or equal to the dimen-
sion of the state vector [31, 36, 37]. The most popular hy-
brid techniques are the multiple-model adaptive estimator
(MMAE) [38] and the interacting multiple-model (IMM)
estimator [39]. Both maintain a bank of KFs matched
to the various modes at which the system may be op-
erating. The innovation likelihoods from each filter are
used to weight the filter estimates to form a combined
state estimate. The MMAE directly uses these likelihoods
as adaptive weights, which could cause the filter to get
“stuck” onto a particular mode. To rectify this behavior,
minimum threshold probabilities are typically assigned to
each filter. The IMM circumvents this problem with the
introduction of an interaction/mixing step in which state
estimates given to the bank of filters are calculated at each
time step using the weighted estimates of the previous time
step.

The next two subsections summarize the main computa-
tions involved in two candidate adaptive filters, which this
paper study: the simple ML-based adaptive KF and the
more involved IMM filter.

A. MAXIMUM LIKELIHOOD ADAPTIVE
KALMAN FILTER

In ML-based adaptive Kalman filtering, the process noise
covariance matrix Q is estimated using either the inno-
vation ν or state correction ∆x. This estimate is sub-
sequently fed-back within a Kalman filtering framework
[20, 40]. The innovation is defined as

ν(k + 1) , z(k + 1)− ẑ(k + 1|k),
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where z(k + 1) is the measurement and ẑ(k + 1|k) is the
predicted measurement. The state correction is defined as

∆x(k + 1) , x̂(k + 1|k + 1)− x̂(k + 1|k),

where x̂(k + 1|k + 1) is the updated state estimate and
x̂(k + 1|k) is the predicted state estimate.

The estimate of process noise covariance Q̂ using ∆x is
computed as

Q̂(k + 1) ,
1

N

k+1
∑

j=k−N+2

∆x(j)∆xT(j) + P(k + 1|k + 1)

−FP(k|k)FT, (3)

where P is the estimation error covariance, F is the state
transition matrix, and 1

N

∑k+1

j=k−N+2 ∆x(j)∆xT(j) is the
covariance of the state corrections, averaged over a sliding
window of length N . The first estimate of Q is obtained
after N time steps and is subsequently fed-back to the KF.
In practice, additional constraints of positive-definiteness
need to be enforced for Q̂. This may be achieved by drop-
ping the last two terms in (3) [21, 41].

When the filter is in steady-state, (3) can be approximated
by

Q̂(k + 1) ≈ W(k + 1)Cν(k + 1)WT(k + 1),

where Cν(k + 1) is an estimate of the innovation covari-
ance that is obtained by averaging the previous innovation
sequence over a window of length N , namely Cν(k+ 1) ,
1
N

∑k+1

j=k−N+2 ν(j)ν
T(j), and W is the Kalman gain [41].

Note that the above formulation implicitly assumes that
the system is observable, the innovation sequence is white
and ergodic, and the measurement noise covariance matrix
R is completely known.

This adaptive estimation scheme is attractive due to: (i)
relying on ML, which provides uniqueness and consistency
of the estimates and (ii) involving simple computations.
However, the window size N needs to be tuned to trade-
off adaptability versus stability of the filter.

B. INTERACTING MULTIPLE MODEL ADAP-
TIVE ESTIMATION

In multiple model (MM) estimation, the system is assumed
to obey one of a finite number of modes, and a bank of es-
timators (usually KFs) run in parallel, where each filter is
matched to a particular mode. A state estimate is com-
puted by summing the individual filter estimates, weighted
by their respective innovation likelihoods [29].

An optimal estimator would keep a track of the entire his-
tory of mode changes; however, this makes the estima-
tion problem exponentially hard. Therefore, sub-optimal

techniques are typically employed. Two solutions are the
generalized pseudo-Bayesian (GPB) algorithms, known as
GPB1 and GPB2, which store one time step (r hypotheses)
and two time steps (r2 hypotheses), respectively, where r
is the number of modes [29].

To balance computational efficiency and accuracy of the
solution, the IMM filter was proposed [29, 42]. In IMM,
the input to each filter is given as a weighted combination
of the estimates of the filters at the previous time step.
This step, called the interaction/mixing step, is able to
approximately encapsulate information from the last two
time steps using only r filters, as compared to r2 filters in
GPB2.

A single cycle of the IMM for r = 2 is depicted
in Fig. 2, with the following notational definitions:

r Number of filters

i {1, . . . , r} ∈ N

x̂i(k|k) State estimate of filter i

Pi(k|k) Estimation error covariance of filter i

µ(k|k) Mixing probability matrix

x̂0i(k|k) Mixed initial condition matched to fil-
ter i

P0i(k|k) Estimation error covariance associated
with x̂0i(k|k)

z(k + 1) Measurement

Λi(k + 1) Innovation likelihood of of filter i

x̂i(k + 1|k + 1) Updated state estimate of filter i

Pi(k + 1|k + 1) Updated estimation error covariance
of filter i

µ(k + 1) Mode probability vector

x̂(k + 1|k + 1) Combined state estimate

P(k + 1|k + 1) Combined estimation error covariance

The IMM consists of four stages: interaction/mixing, fil-
tering, mode update, and combination, which are summa-
rized next.

Interaction/Mixing This stage calculates x̂0i(k|k) and
P0i(k|k) by combining x̂i(k|k) and Pi(k|k) through
weighting their corresponding mixing probabilities from
µ(k|k).
Filtering This stages performs a regular KF update (pre-
diction and correction), for each KF in the bank, where
each filter is matched to a particular mode. It also calcu-
lates the innovation likelihood functions.
Mode and mixing probability update This stage up-
dates the mode probability vector and mixing probability
matrix, based on the innovation likelihoods.
State estimate and covariance combination This
stage combines the state estimates and estimation er-
ror covariances from the individual filters by weighting
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x̂i(k + 1|k + 1) and Pi(k + 1|k + 1) by their respective
mode probabilities from µ(k + 1).

x̂
1(k|k), P1(k|k) x̂

2(k|k), P2(k|k)

x̂
01(k|k), P01(k|k) x̂

02(k|k), P02(k|k)

Interaction/Mixing

Λ1(k + 1) Λ2(k + 1)

x̂
1(k + 1|k + 1), P1(k + 1|k + 1) x̂

2(k + 1|k + 1), P2(k + 1|k + 1)

µ(k|k)

Λ1(k + 1)

Λ2(k + 1)

x̂
1(k+1|k+1)

P
1(k+1|k+1)

x̂
2(k+1|k+1)

P
2(k+1|k+1)

Filter M1 Filter M2

µ(k + 1)

x̂(k + 1|k + 1)

P(k + 1|k + 1)

µ(k + 1)

µ(k + 1|k + 1)

z(k + 1) z(k + 1)

x̂
1(k+1|k+1)

P
1(k+1|k+1)

x̂
2(k+1|k+1)

P
2(k+1|k+1)

µ(k + 1)

Mode Probability

Update &

Mixing Probability

Calculations

State Estimate

& Covariance

Combination

Fig. 2. Single cycle of the IMM filter for r = 2

Generally, each mode in the IMM is initialized with a dif-
ferent x̂i, Pi, Qi, and Ri. A mode transition probability
matrix π is specified to model the Markov chain transition
probabilities between the different modes.

The IMM was extended to estimating the unknown pro-
cess noise statistics in [39], where a bank of two KFs is
identically initialized with the exception of Qi. One of the
filters is initialized with an upper-bound Qmax, while the
other is initialized with a lower-bound Qmin, correspond-
ing to the worst and best case process noise scenarios. In
this scheme, the noise covariance estimate Q̂ is computed
as

Q̂(k + 1) =

2
∑

i=1

µi(k + 1) Qi(k + 1). (4)

A numerically better estimate for Q̂ can be achieved using
the matrix square root as

Q̂1/2(k + 1) =

2
∑

i=1

µi(k + 1)
[

Qi(k + 1)
]1/2

Q̂SD(k + 1) = Q̂1/2(k + 1)Q̂1/2(k + 1) (5)

The IMM is attractive due to the following reasons: (i)
it has a fixed computational cost per cycle, (ii) it can be
applied to systems with non-stationary noise and rapidly
varying statistics, and (iii) it is self-tuning.

IV. SIMULATION RESULTS

This section presents simulation results demonstrating the
application of ML and IMM adaptive filters. Subsection
IV-A considers the case of a single receiver estimating the
states and process noise covariance of one unknown SOP,
while Subsection IV-B tackles the case of collaborative es-
timation of the states and process noise covariance of one
unknown SOP via multiple receivers.

A. Single Receiver

A.1 Simulations Setup

Consider an environment with a single receiver with per-
fect knowledge about its own states (through having access
to GNSS observables, for example) and moving according
to the velocity random walk dynamics described in Subsec-
tion II-B. This receiver makes pseudorange observations
on an unknown SOP according to (2). It was shown in [13]
that such scenario is fully-observable.

Three sets of simulations are performed, each assuming a
different truth model for the SOP, specifically an SOP with
(i) the best oven-controlled crystal oscillator (OCXO),
(ii) a typical OCXO, and (iii) the worst temperature-
compensated crystal oscillator (TCXO). The simulation
settings are given in Table I, where vmax is the maxi-
mum speed with which the receiver can move, and the
h-parameters values were obtained from [43]. For purposes
of numerical stability, the clock error states were defined
as cδt and cδ̇t.

Three sets of filters are developed and compared:

Matched An extended Kalman filter (EKF) that is ini-
tialized with the true Q will serve as a reference for the op-
timal achievable performance whenever the process noise
covariance is perfectly known
Mismatched A number of mismatched, fixed EKFs, each
initialized with a different Q, will demonstrate the perfor-
mance of the filter if one chooses to fix Q to some “typical”
value without adaptation
Adaptive The ML and IMM adaptive filters will demon-
strate the achieved performance whenever the filter is si-
multaneously estimating xs while adapting Q

For the sake of meaningful comparison, each estimator
is initialized with the same initial estimate x̂s, and the
same process and observation noise realization per simu-
lation run is used. The IMM used a bank of two EKFs
with

{

Qi
}2

i=1
corresponding to the best OCXO and worst

TCXO, respectively. The initial mode probability and
mode transition probabilities were set at

µ

[

0.5

0.5

]

, π =

[

0.999 0.001

0.001 0.999

]

,
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which indicates our lack of a priori knowledge about
whether the SOP is an OCXO or a TCXO, and our
assertion that the process noise is not likely to switch
modes. The ML filter was initialized assuming an aver-
age clock, i.e., with an initial process noise covariance of
Qavg = (Q1 +Q2) /2, which also indicates our lack of a
priori knowledge about whether the SOP is an OCXO or
a TCXO. The total simulation time was 400s and a sam-
ple receiver trajectory is shown in Fig. 3. Single-run and
Monte Carlo (MC) simulation results over 100 runs for
each case are presented next.

TABLE I

Simulation Settings

Parameter Value

xr(0) [400, 400, 0, 0, 10, 1]
T

xs(0) [50, 100, 1, 0.1]
T

x̂s(0| − 1) ∼ N [xs(0),Ps(0| − 1)]

Ps(0| − 1) (103) · diag [1, 1, 30, 0.3]

Best OCXO {h0,s, h−2,s}
{

2.6× 10−22, 4.0× 10−26
}

Worst TCXO {h0,s, h−2,s}
{

2.0× 10−19, 2.0× 10−20
}

Typical OCXO {h0,s, h−2,s}
{

8.0× 10−20, 4.0× 10−23
}

Typical TCXO {h0,s, h−2,s}
{

9.4× 10−20, 3.8× 10−21
}

q̃x, q̃y 0.5 (m/s2)2

r 40m2

vmax 10m/s

T 0.1 s

Fig. 3. Sample receiver trajectory

A.2 Results

Best OCXO Assuming the SOP’s true oscillator to be
a best OCXO, three sets of filters were simulated: (i) a
matched filter; (ii) three mismatched, fixed filters, which
assumed the SOP to have a typical OCXO, a typical
TCXO, and an average clock; and (iii) two adaptive fil-
ters (ML and IMM). The mode probability trajectory of

the IMM for a single run is illustrated in Fig. 4. The
root-mean squared estimation error (RMSEE) results for
the SOP’s position, clock bias, and clock drift are given in
Fig. 8.
Typical OCXO Assuming the SOP’s true oscillator to
be a typical OCXO, three sets of filters were simulated: (i)
a matched filter; (ii) two mismatched, fixed filters, which
assumed the SOP to have a typical TCXO and an average
clock; and (iii) two adaptive filters. The mode probability
trajectory of the IMM for a single run is illustrated in Fig.
5. The RMSEE results for the SOP’s position, clock bias,
and clock drift are given in Fig. 9.
Worst TCXO Assuming the SOP’s true oscillator to be
a worst TCXO, three sets of filters were simulated: (i) a
matched filter; (ii) three mismatched, fixed filters, which
assumed the SOP to have a typical OCXO, a typical
TCXO, and an average clock; and (iii) two adaptive fil-
ters. The mode probability trajectory of the IMM for a
single run is illustrated in Fig. 6. The RMSEE results for
the SOP’s position, clock bias, and clock drift are given in
Fig. 10.

The ML and IMM adaptive filters estimates of h0 and
h−2 are given in Table II. The estimates from both IMM
formulations (4) and (5) are reported. These ML and IMM
estimates are obtained by first time-averaging (over the
last 30 time steps) the estimates per simulation run, then
ensemble-averaging over all simulation runs.

A.3 Discussion

The following conclusions can be drawn from the pre-
sented results. First, after a short period of transience,
the mode probabilities calculated by the IMM correctly
identified the true mode. However, such identification was
not exact, and the performance degraded whenever the
true mode coincided with the lower- or upper-bounds of
Q. Second, the estimate achieved with (5), i.e., the matrix
square root, outperformed (4) in every case, except when
the true Q was close to the upper-bound Q (i.e., the worst
TCXO). This is consistent with the behavior reported in
[39]. Third, IMM outperformed ML. Fourth, the IMM
outperformed all mismatched, fixed filters, except for the
case when the true SOP clock was a best OCXO and the
mismatched filter was set to a fixed typical OCXO. This is
due to the numerical proximity of the h parameters corre-
sponding to a typical OCXO and the best OCXO. Fifth,
the convergence of the ML filter was slow and the filter
even diverged altogether in the case when the true SOP
was the worst TCXO. Sixth, the adverse effects of model
mismatch was demonstrated in the divergence of the filter
in the case when the true SOP is the worst TCXO and the
filter assumed a typical OCXO. Finally, it is worth noting
that this is a difficult adaptive estimation problem, espe-
cially that the receiver’s trajectory was not optimized for
optimal information gathering as was discussed in [15,19].
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Fig. 4. Mode probability trajectory when SOP has best OCXO
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Fig. 5. Mode probability trajectory when SOP has typical OCXO
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Fig. 6. Mode probability trajectory when SOP has worst TCXO

B. Multiple Receivers

This subsection demonstrates the improved estimates of
the SOP’s clock process noise covariance Qclk,s (equiva-
lently, the h0,s and h−2,s parameters) whenever multiple
receivers make pseudorange observations on the same SOP
and fuse such observations through a centralized adaptive
filter. The same simulation settings presented in Table I
were used, except for the initial position states of the five
receivers, which are now randomized over different MC
runs. A sample of the receivers’ trajectories is shown in
Fig. 7.

Fig. 7. Sample receivers trajectories

Similar to the single receiver case, three scenarios were
considered for the truth model of the SOP: a best OCXO,
a typical OCXO, and a worst TCXO. The average absolute
estimation error of the h-parameters over 20 MC runs,
namely |h0,s − ĥ0,s| and |h−2,s − ĥ−2,s|, are tabulated in
Tables III and IV for the IMM and ML adaptive filters,
respectively. Note that the results for the ML estimating
an SOP with the worst TCXO were excluded, since the
filter diverged for the single receiver case.

The relative reduction in the estimation error by incorpo-
rating five receivers versus one for the ML filter was greater
than that of the IMM. Nevertheless, the absolute estima-
tion error of IMM for a fixed number of receivers was much
smaller than that of the ML. Note that the estimates from
the square root formulation of the IMM defined in (5) out-
performed those of (4) for every case, except for the worst
TCXO case, which corresponds to the case when the truth
model coincided with the upper-bound of Q.
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TABLE II

Average Estimates of h0 and h
−2 Over 100 MC Runs of ML and IMM Adaptive Filters

Scenario h0 ĥ0,IMM ĥ0,IMMSD ĥ0,ML h
−2 ĥ

−2,IMM ĥ
−2,IMMSD ĥ

−2,ML

Best OCXO 2.6× 10−22 5.8× 10−21 2.1× 10−21 1.0× 10−16 4.0× 10−26 5.8× 10−21 1.7× 10−21 3.6× 10−22

Typ. OCXO 8.0× 10−20 5.9× 10−20 2.2× 10−20 1.1× 10−16 4.0× 10−23 5.9× 10−21 1.8× 10−21 3.7× 10−22

Worst TCXO 2.0× 10−19 1.3× 10−19 0.9× 10−19 1.3× 10−16 2.0× 10−20 1.3× 10−20 0.8× 10−20 0.1× 10−20
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TABLE III

Average Absolute Estimation Error of h0 and h
−2 of IMM Over 20 MC Runs for Single and Multiple Receivers

Scenario Estimator |h0 − ĥ0| ( ×10−20 ) |h
−2 − ĥ

−2| ( ×10−20 )

One receiver Five receivers One receiver Five receivers

Best OCXO IMM 2.47 1.45 0.25 0.15

IMMSD 0.54 0.26 0.04 0.02

Typical OCXO IMM 2.48 1.35 0.25 0.14

IMMSD 0.6 0.21 0.04 0.01

Worst TCXO IMM 5.24 3.67 0.53 0.37

IMMSD 7.82 5.38 0.86 0.62

TABLE IV

Average Absolute Estimation Error of h0 and h
−2 of ML Over 20 MC Runs for Single and Multiple Receivers

Scenario |h0 − ĥ0| ( ×10−16 ) |h
−2 − ĥ

−2| ( ×10−20 )

One receiver Five receivers One receiver Five receivers

Best OCXO 3.05 0.12 0.370 0.07

Typical OCXO 1.36 0.01 0.23 0.05

V. EXPERIMENTAL RESULTS

A field experimental demonstration was conducted to il-
lustrate the improvements gained from adaptive filters
versus mismatched, fixed filters in estimating the states
of an unknown cellular SOP. To this end, two antennas
were mounted on a vehicle to acquire and track: (i) mul-
tiple Global Positioning System (GPS) signals and (ii)
a signal from a nearby cellular phone tower whose sig-
nal was modulated through code division multiple access
(CDMA). The GPS and cellular signals were simultane-
ously downmixed and synchronously sampled via two Na-
tional Instruments R© vector Radio Frequency Signal Ana-
lyzers (RFSAs). These front-ends fed their data to a Gen-
eralized Radionavigation Interfusion Device (GRID) soft-
ware receiver [44], which simultaneously tracked all GPS
L1 C/A signals in view and the signal from the cellular
tower with unknown states, producing pseudorange ob-
servables for all tracked signals. Fig. 11 illustrates the
hardware setup of the conducted experiment. The observ-
ables were fed into four MATLAB R©-based filters:

Mismatched two mismatched, fixed filters: one assumed
the SOP to be equipped with a typical OCXO, while the
other assumed the SOP to be equipped with an average
clock (i.e., whose process noise covariance is Qavg)
Adaptive two adaptive filters: ML and IMM

Since the states of the GPS satellite vehicles (SVs) were
known, and since the receiver was tracking more than four
GPS SVs throughout the experiment, the receiver’s state

vector xr was fully-known. The cellular tower state vec-
tor consisted of its planar position states, clock bias, and
clock drift, as defined in (1). The EKF initial state esti-
mate x̂(0| − 1) was generated according to x̂(0| − 1) ∼

N [x(0),P(0| − 1)], where x(0) ,
[

rT

s (0), cδts(0), 0
]T

,

where rT

s , [xs(0), ys(0)] is the projection of the true
cellular tower location from the Earth-Centered Earth-
Fixed (ECEF) coordinate frame system to a planar sys-
tem, cδts(0) = ‖rr(0) − r̂s(0| − 1)‖2 − ρ(0) + cδtr(0),
rT

r (0) , [xr(0), yr(0)] is the planar projection of the re-
ceiver’s initial location from ECEF, and P(0| − 1) =
diag

[

1× 103, 1× 103, 3× 103, 3× 102
]

is the EKF initial
estimation error covariance matrix. Fig. 12 shows the
receiver traversed trajectory during the collection of the
pseudorange observations, the true and estimated location
of the cellular phone tower by the four filters, and the as-
sociated 2σ uncertainty ellipse produced by each filter’s es-
timation error covariance. Fig. 13 shows the mode proba-
bility trajectory for the IMM filter. Note that after a short
period of transience, the mode probabilities identified the
cellular CDMA oscillator to have around 70% best OCXO
value and 30% worst TCXO value. Note that while the cel-
lular tower was within the estimation uncertainty ellipses
of all filter, the cellular tower position estimates from the
two adaptive filters were closer to the true tower location
than the estimates produced by the fixed, mismatched fil-
ters. This performance was consistent among multiple MC
runs with randomized initial estimates x̂(0| − 1). Table V
presents the average absolute distance error between the
true tower location and the estimated tower location, i.e.
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|rs − r̂s|, over 10 MC runs. It is noted that the IMM out-
performed the ML adaptive filter. Moreover, these results
along with the mode probability trajectories suggest that
the cellular oscillator is less stable than a typical OCXO,
but more stable than an average clock. Table VI presents
the average estimated h0 and h−2 parameters by the ML
and IMM filters over 10 MC runs.

GRID Software
Receiver MATLAB-Based

Filter

S
to
ra
g
e

National Instruments RFSA

Fig. 11. Experiment hardware setup

true tower true vehicle
trajectory

ML

AvgIMMTyp. OCXO

location

Fig. 12. Receiver traversed trajectory, true cellular tower location,
estimated tower location with fixed filters that assumed a typical
OCXO and an average clock, estimated tower location with ML and
IMM adaptive filters, and associated estimation error ellipses
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TABLE V

Average Absolute Distance Error Between True Tower

Location and Estimated Tower Location

Filter |rs − r̂s| (m)

Typical OCXO 28.06

Average clock 21.66

ML 20.82

IMM 20.04

TABLE VI

Cellular CDMA Tower Oscillator h0 and h
−2 Estimates

Adaptive Filter ĥ0 ĥ
−2

ML 4.3× 10−19 2.7× 10−22

IMM 3.6× 10−20 7.0× 10−21

VI. CONCLUSIONS

This paper studied the problem of adaptive estimation of
unknown SOPs. To exploit unknown SOPs for position-
ing and navigation, the receiver must not only estimate
the states of such SOPs, but also must estimate a set of
parameters that characterize the stability of the SOPs’ os-
cillators. This necessitates the development of adaptive fil-
ters. Two candidate adaptive filters were studied: a simple
ML innovation-based filter and a more involved IMM fil-
ter. Numerical and experimental results demonstrated the
superiority of IMM over ML. Moreover, numerical simu-
lation results demonstrated the adverse effects of model
mismatch in fixed filters in that a fixed, mismatched filter
may diverge altogether.
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