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Abstract—Multiple receivers with a priori knowledge about
their own initial states are assumed to be dropped in an unknown
environment comprising multiple signals of opportunity (SOPs)
transmitters. The receivers draw pseudorange observations from
the SOPs. The receivers’ objective is to build a high-fidelity
signal landscape map of the environment, which would enable
the receivers to navigate accurately with the aid of the SOPs.
The receivers could command their own maneuvers and such
commands are computed so to maximize the information gath-
ered about the SOPs in a greedy fashion. Several information
fusion and decision making architectures are possible. This
paper studies the price of anarchy in building signal landscape
maps to assess the degradation in the map quality should the
receivers produce their own maps and make their own maneuver
decisions versus a completely centralized approach. In addition,
a hierarchical architecture is proposed in which the receivers
build their own maps and make their own decisions, but share
relevant information. Such architecture is shown to produce maps
of comparable quality to the completely centralized approach.

Index Terms—navigation, signals of opportunity, adaptive
sensing, information fusion

I. I NTRODUCTION

To overcome the limitations of global navigation satellite
systems (GNSS)-based navigation, a new paradigm, termed
opportunistic navigation (OpNav), has been proposed [1].
OpNav aims to extract positioning and timing information
from ambient radio frequency (RF) signals of opportunity
(SOPs). OpNav treats all RF signals as potential SOPs, from
GNSS signals to communications signals never intended as
navigation sources. In collaborative OpNav (COpNav), mul-
tiple OpNav receivers share information to construct and
continuously refine a global signal landscape [2].

The observability and estimability of COpNav environments
comprising multiple receivers making pseudorange observa-
tions on multiple SOPs were analyzed in [3]–[5]. While
observability is a Boolean property, i.e. it asserts whether
a system is observable or not, it does not specify which
trajectory is best for information gathering, and consequently
estimability. To address this, receiver-controlled maneuvers
were allowed, and an optimal closed-loop information-based
greedy (i.e., single-step look-ahead) strategy was proposed
for receiver motion planning [6]. Three information-theoretic
measures were compared: D-optimality, A-optimality, and E-
optimality. It was shown that all three strategies outperformed
a receiver moving randomly or in a pre-defined trajectory.

Among these measures, D-optimality outclassed A-optimality
and E-optimality. In [7], the greedy strategy was extended to
a multi-step look-ahead strategy. In [8], it was shown that
with proper reformulation, the greedy innovation-based motion
planning strategy can be cast into a tractable convex program,
the solution of which is computationally efficient.

The work in [6]–[8] considered the case of a single receiver
and the problem of simultaneous receiver localization and
signal landscape mapping with one “anchor” SOP whose
initial states are knowna priori. This is conceptually analo-
gous to robot simultaneous localization and mapping (SLAM).
In contrast, this paper focuses on signal landscape mapping
with multiple receivers. The following problem is considered.
Multiple receivers witha priori knowledge about their own
initial states (e.g., from GNSS observables) are dropped ina
completely unknown environment comprising multiple terres-
trial SOPs. The receivers draw pseudorange observations from
the SOPs. The receivers’ objective is to build a high-fidelity
signal landscape map of the environment, enabling SOP-based
navigation and removing the dependency on GNSS signals.

Several information fusion and decision making architec-
tures are possible: (i) decentralized: each receiver builds
its own map and makes its own maneuver decisions, (ii)
centralized: the receivers send their observations to a fusion
center that builds the map and makes maneuver decisions
for all receivers, and (iii) hierarchical: each receiver builds
its own local map and makes its own decisions, but shares
relevant information with a fusion center that maintains a
global map. Two variants of the hierarchical architecture are
considered: with and without feedback from the fusion center
to each receiver. This paper compares the fidelity of the maps
produced by the four architectures and assesses performance
via the game-theoretic notion known as the price of anarchy
(PoA), which quantifies the degradation in the solution quality
in a decentralized approach from a centralized one [9].

This paper is organized as follows. Section II describes the
dynamics and observation model. Section III summarizes the
extended information filter (EIF), which is utilized for optimal
fusion. Section IV states the optimal greedy control (OGC)
problem that commands the receivers maneuvers. Section V
presents the various architectures. Section VI presents simula-
tion results comparing the maps produced through the various
architectures. Conclusions are discussed in Section VII.



II. M ODEL DESCRIPTION

A. Dynamics Model

Consider a planar environment composed ofN receivers
that control their own maneuvers andM stationary SOPs. The
ith receiver dynamics evolve according to

xri (k + 1) = Fr xri(k)+Gr uri(k)+wri(k), i = 1, . . . , N
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whereT is the sampling period,xT
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ith receiver state vector, which is composed of the planar
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control input vector in the form of velocity commands, and
wri is the process noise vector, which is modeled as a
zero-mean white noise sequence with covarianceQri , with
Qri = diag [Qp,ri ,Qclk,ri ], Qp,ri = Tσ2

p,ri
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where the clock bias and drift process noise power spectra
Sw̃δt

and Sw̃δ̇t
, respectively, can be related to the power-

law coefficients,{hα}
2
α=−2, which have been shown through

laboratory experiments to characterize the power spectral
density of the fractional frequency deviation of an oscillator
from nominal frequency. It is common to approximate such
relationships by considering only the frequency random walk
coefficienth−2 and the white frequency coefficienth0, which
lead toSw̃δt

≈
h0

2 andSw̃δ̇t
≈ 2π2h−2 [10].

The jth SOP dynamics evolve according to

xsj (k + 1) = Fs xsj (k) +wsj (k), j = 1, . . . ,M,

whereFs = diag [I2×2, Fclk], xT

sj
,
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rTsj , x
T

clk,sj

]

is the
jth SOP state vector, which is composed of the SOP’s planar
position statesrT

sj
,

[

xsj , ysj
]

and the SOP’s clock bias and

drift statesxT

clk,sj
,

[

δtsj , δ̇tsj

]

, andwsj is the process noise
vector, which is modeled as a zero-mean white noise sequence
with covarianceQsj , with Qsj = diag

[

02×2,Qclk,sj

]

, where
Qclk,sj is identical to toQclk,ri , except that the spectraSw̃δtri

andSw̃δ̇tri

are now replaced with SOP-specific spectra,Sw̃δtsj

andSw̃δ̇tsj

, respectively.

B. Observation Model

The pseudorange observation made by theith receiver on
the jth SOP can be approximated by invoking mild approxi-
mations discussed in [3], [5], to yield the model

zri,sj (k) = h
[

xri(k),xsj (k)
]

+ vri,sj (k)

h
[

xri(k),xsj (k)
]

,‖rri(k)−rsj (k)‖2 + c ·
[

δtri(k)−δtsj (k)
]

where c is the speed of light andvri,sj is the error in the
pseudorange measurement due to modeling and measurement
errors and is modeled as a zero-mean white Gaussian sequence
with varianceσ2

ri,sj
.

III. E XTENDED INFORMATION FILTER

For optimal fusion, the estimation scheme adopted to fuse
estimates and associated estimation error covariances from
multiple receivers making observations on the same SOPs
cannot be formulated in the standard Kalman filter formula-
tion, since this leads to suboptimal fusion [11]. However, by
expressing the estimation problem in the information space
instead of the state space, optimal fusion can be derived
leading to the EIF [12], [13], a special case of which is
summarized next.

Consider the linear dynamics and nonlinear observations

x(k + 1) = Fx(k) +Gu(k) +w(k)

z(k) = h [x(k)] + v(k)

wherex ∈ R
n, u ∈ R

r, w ∈ R
n, z ∈ R

m, v ∈ R
m are the

system state, input, process noise, observation, and observation
noise vectors, respectively. Assumew andv to be zero-mean,
mutually-uncorrelated, white noise sequences with covariance
matricesQ andR, respectively.

Assume the initial knowledge about the system state to be
captured in the state estimatex̂(0|0) and associated estimation
error covarianceP(0|0). The EIF maintains the information
state vector and information matrix, defined asŷ(i|j) ,

Y(i|j)x̂(i|j) and Y(i|j) , P−1(i|j), respectively, where
x̂(i|j) andP(i|j) are the state vector estimate and associated
estimation error covariance at timei given all the observations
up to and including timej. The EIF recursive prediction and
correction equations are given by

Prediction : ŷ(k + 1|k)=Y(k + 1|k) [F x̂(k|k) +Gu(k)]

Y(k + 1|k)=
[

FY−1(k|k)FT +Q
]−1

Correction : ŷ(k + 1|k + 1) = ŷ(k + 1|k) + i(k + 1)

Y(k + 1|k + 1) = Y(k + 1|k) + I(k + 1),

wherei(k+1) andI(k+1) denote the information state contri-
bution and its corresponding information matrix, respectively,
associated with observationz(k + 1), and are given by

i(k + 1) = HT(k + 1)R−1 [ν(k + 1) +H(k + 1)x̂(k + 1|k)]

I(k + 1) = HT(k + 1)R−1H(k + 1)

ν(k + 1) = z(k + 1)− h [x̂(k + 1|k)] ,

whereH(k+1) is the Jacobian matrix evaluated atx̂(k+1|k).

IV. OPTIMAL GREEDY CONTROL

The OGC defines the optimal greedy maneuveru⋆
ri
(k)

that receiveri must take so to minimize the constrained D-
optimality criterion, which is equivalent to minimizing the
volume of the uncertainty ellipsoid, given by

minimize
uri

(k)
J [uri(k)] = log det[Pi(k + 1|k + 1)]

subject to ‖uri(k)‖2 ≤ uri,max

‖uri(k)− u⋆
ri
(k − 1)‖2 ≤ T ari,max,

(1)

where uri,max and ari,max are the maximum speed and
acceleration, respectively, with which the receiver can move.



Note that the optimization vector isuri(k), whereasu⋆
ri
(k−1)

is a known constant vector representing the velocity commands
that resulted from solving the optimization problem in the
previous time-stepk − 1 and has already been applied.

V. ACTIVE SIGNAL LANDSCAPE MAP BUILDING AND

INFORMATION FUSION ARCHITECTURES

This section presents the various active signal landscape
map building architectures. All architectures contain thefol-
lowing common blocks: (i) RF front-end (FE) processing and
tracking loops (TL), (ii) extended information filter (EIF), (iii)
optimal greedy control (OGC) solver, and (iv) receiver actua-
tor to command the receiver maneuvers. The architectures are
essentially classified according to where active decisionsabout
the maneuvers are made, what information is communicated,
and where the information is processed.

A. Decentralized

In this architecture (depicted in Fig. 1), each receiver acts
individually: it fuses the observations made on the various
SOPs to produce its own signal landscape map and makes its
own decisions. The observations made by theith receiver on
all the SOPs in the environment are augmented into the vector
zi , [zri,s1 , · · · , zri,sM ]

T, which is subsequently processed
by the EIF to yield thelocal signal landscape state estimate
x̂i(k|k) and associated estimation error covariancePi(k|k).
Based on these local estimates, each receiver solves for its
own optimal greedy maneuveru⋆

ri
(k) defined in (1).

This architecture has the advantages of simplicity and self-
containment, but suffers from the drawback that receivers do
not exploit information gathered by other concurrent receivers.

B. Centralized

In this architecture (depicted in Fig. 2), the signal landscape
map and decision making are made at a central fusion and de-
cision center (CF & DC). The receivers send their observation
vectors{zi}

N

i=1 to the CF & DC, which fuses such observa-
tions through an EIF to produce aglobal signal landscape map
with estimatex̂(k|k) and associated estimation error covari-
anceP(k|k). The CF & DC OGC problem is identical to (1),
except that it solves for theglobal optimal greedy maneuver
for all receiversu⋆(k) ,

[

[u⋆
r1
(k)]T, · · · , [u⋆

rN
(k)]T

]T

. The
optimal maneuvers are communicated to each receiver.

This architecture is optimal; however, it requires two-way
communication between the receivers and the CF & DC.
Another drawback is that the CF & DC needs to solve a
potentially large-scale OGC problem.

C. Hierarchical without Feedback

In this architecture (depicted in Fig. 3), the receivers pro-
duce their own signal landscape maps and make their own
decisions. Additionally, they send their information vectors
{iri}

N

i=1 and information matrices{Iri}
N

i=1 to a central fu-
sion center (CFC). The CFC is composed of an EIF, which
maintains aglobal signal landscape map. The CFC EIF’s
prediction stage computations are made according to the EIF

prediction equations given in Section III, while the correction
stage computations are made according to

ŷ(k + 1|k + 1) = ŷ(k + 1|k) +

N
∑

i=1

iri(k + 1)

Y(k + 1|k + 1) = Y(k + 1|k) +

N
∑

i=1

Iri(k + 1).

This architecture has the following advantages: (i) receivers
possess their own local maps and (ii) a more accurate global
map is available at the CFC. However, it suffers from the
drawback that receivers have no access to the global map.

D. Hierarchical with Feedback

This architecture (depicted in Fig. 3), is identical to the
one described in subsection V-C, except that once the CFC
fuses the information from the various receivers to produce
theglobal signal landscape map, such map is fed-back to each
receiver to replace each receiver’s local corrected map.

This architecture eliminates the drawback of the hierarchical
without feedback architecture at the expense of requiring
communication from the CFC to the receivers.
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VI. SIMULATION RESULTS

This section compares the architectures discussed in Section
V numerically in an environment comprising two receivers
whose initial states were chosen randomly and four SOPs. For
purposes of numerical stability, the clock bias and drift states
were defined ascδt and cδ̇t, respectively. The receivers’ and
SOPs’ clocks were assumed to be temperature-compensated
and oven-controlled crystal oscillators (TCXOs and OCXOs),
respectively. The simulation settings are given in Table I,
wherei = 1, 2 andj = 1, . . . , 4.

TABLE I
SIMULATION SETTINGS

Param. Values Param. Values

x
T
s1
(0) [0, 150, 10, 0.1] Pri 104 · diag [1, 1, 1, 0.01]

x
T
s2
(0) [100,−150, 20, 0.2] x̂sj (0|0) ∼ N

[

xsj(0),Psj(0|0)
]

x
T
s3
(0) [200, 200, 30, 0.3] Psj (0|0) 104 · diag [1, 1, 1, 0.01]

x
T
s4
(0) [−150, 50, 40, 0.4] h0,sj

, h
−2,sj

8×10−20, 4×10−23

xri(0) ∼ N [x̄ri ,Pri ] h0,ri
, h

−2,ri
2×10−19, 2×2−20

x̄
T
r1

[60, 15, 100, 10] σ2
p,ri

, σ2
ri,sj

0.1 (m/s2)2, 500 (m)2

x̄
T
r2

[−55, 50, 100, 10] T, umax, amax 0.1 s, 10m/s, 5m/s2

Fig. 4 compares the quality of the maps produced by the
four architectures for a single run, as measured by the optimal
value of the objective function, denotedJ ⋆. Here, the same
initial conditions and the same process and observation noise
realizations were used. Fig. 5 shows the receivers trajectories
due to the four architectures. Note that the trajectory for the
hierarchical without feedback was identical to the decentral-
ized, since receivers had no access to the global map.

The PoA is defined as the ratio of the objective function
value worst case scenario and that of the optimal outcome.
A PoA close to one means that the candidate solution is
comparable to an optimal centralized one. The PoA was
calculated as the ensemble average at the end of the simulation
time for 25 Monte Carlo simulation runs, where the receivers’
initial states, SOPs initial estimates, and noise realizations
were randomized, and is tabulated in Table II. Note that,
somewhat surprisingly, the hierarchial approach with feedback
is comparable to a completely centralized approach.

TABLE II
PRICE OFANARCHY

Architecture Average Standard Deviation

Decentralized 1.92 0.15
Hierarchical without Feedback 1.19 0.12

Hierarchical with Feedback 1.03 0.04

VII. C ONCLUSIONS

This paper studied the PoA in active signal landscape map
building of environments comprising multiple receivers with a
priori knowledge about their own states and multiple unknown
terrestrial stationary SOPs. The objective of such maps are
to enable non-GNSS SOP-based navigation and remove the
dependency on GNSS signals. Four information fusion and
decision making architectures were studied: decentralized,
centralized, and hierarchical (with and without feedback). It
was demonstrated that the hierarchical with feedback archi-
tecture performed comparably to the centralized architecture.
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Fig. 4. Signal landscape map uncertainty

(a)

SOP1

SOP2

SOP3

SOP4

Receiver 2

Receiver 1

x

y

(a) (b)

(c)

Fig. 5. Receiver trajectories for (a) centralized, (b) hierarchical with feedback,
and (c) decentralized and hierarchical without feedback architectures
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