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ABSTRACT 

 

A real-time software GPS receiver for the L1 C/A and L2 

C codes has been implemented on a Digital Signal 

Processor (DSP) and tested in both scintillating and non-

scintillating environments.  This receiver is being 

developed as a low-cost space weather instrument with 

improved tracking robustness in comparison to a 

traditional semi-codeless dual-frequency receiver and 

with flexibility in its choices of signal tracking algorithms 

and data outputs.   

  

The receiver is capable of continuous background signal 

acquisition and utilizes the L1 C/A code to assist in 

acquisition of the L2 C signal.  Efficient on-the-fly 

generation of oversampled PRN code replicas for the L2 

CM and CL codes, which are required for real-time 

software radio signal processing, has been implemented to 

ensure a manageable requirement for memory.  Bit-wise 

parallel correlation techniques have been implemented to 

reduce the number of operations needed for correlation. 

 The receiver currently tracks both the L2 CL and CM 

codes for the purpose of calculating TEC. 

 

Results are presented based on data generated by a signal 

simulator, on real data taken in Ithaca, NY (42.44 N, 

76.48W), and on real data taken during ionospheric 

scintillation in Natal, Brazil (5.8S, 35.2W) in January 

2009.  Position and velocity solution accuracy is 

evaluated using both real and simulated data.   

 

I.  INTRODUCTION 
 

As the computational brawn of multi-purpose processors 

has grown, processing GNSS signals using software has 

become ever more manageable.  The use of 

programmable processors for GNSS receivers has been 

well explored in recent history
1-4

 but as processors have 

become more powerful, GNSS systems have continued to 

add additional signals and codes.  In this paper, we 

explore the use of a small, low-power digital signal 

processor as a dual-frequency GPS receiver utilizing the 

L1 C/A and L2 Civilian codes of the Global Positioning 

System.  The current work can be viewed as a direct 

extension of the work presented in Ref. 1.  The receiver in 

Ref. 1 was capable of parallel processing of 43 L1 C/A 

channels and continuous background signal acquisition; 

the present receiver is capable of 30 L1 C/A channels, 30 

L2C channels, continuous background acquisition, and 

on-board position, velocity, and time calculations.  With 

the planned launch of 12 Block IIF GPS satellites (that 



provide the L2C signal) in the next three years
5
 in 

addition to the eight Block IIRM satellites already in orbit 

and providing the L2C signal, this platform is well suited 

to become an inexpensive and science-worthy GNSS 

receiver that utilizes these signals.  

 

The remainder of this paper is organized as follows: 

II.  Hardware Overview 

III.  Software Overview 

IV.  Navigation Solution 

V.  L2 Civilian Codes 

VI.  Benchmarking 

    A. Timing 

    B. Memory Requirements 

VII.  First Field Test Results 

VIII.  Conclusions 

 

This work will discuss the hardware components of the 

receiver, the work done in implementing acquisition and 

tracking of the L2C signal and the navigation solution, 

and benchmark receiver performance in terms of power 

usage and navigation accuracy.  Additionally, preliminary 

results from testing the receiver in a scintillating 

environment during a week-long field campaign in Natal, 

Brazil are presented. 

 

II.  HARDWARE OVERVIEW 
 

This dual-frequency DSP-based receiver is built from a 

combination of off-the-shelf parts and custom-fabricated 

circuit boards.  In order to minimize additional 

development and to keep costs down, a frequency plan 

was devised that would allow reuse of existing radio-

frequency hardware.  An L1-only system based on the 

Plessey GP2015 has previously been developed and 

extensively used by Cornell University researchers for 

both embedded
1
 and non-embedded

2
 software receivers.  

As this design has an input bandwidth of approximately 

2MHz, it is an acceptable solution for a receiver utilizing 

the L2C codes.  To enable reuse of this existing hardware 

the input signal is split, with one path going to one 

GP2015-based front end, and the other path getting mixed 

with a 347.826 MHz sine wave generated by an Analog 

Devices voltage controlled oscillator.  This up-converted 

signal is then sent to a separate and identical GP2015-

based front end.  As a result of the mixing, the L2 signal 

translated to a center frequency approximately 6 KHz 

below the L1 frequency, and no additional modifications 

to the RF hardware are required (see Fig. 1). 

 

 
 

Figure 1.  RF portion of dual-frequency GPS receiver. 

 

After being mixed to near baseband and sampled at 

roughly 5.714 MHz by the front-end units, the resultant 

samples with a final intermediate frequency of about 

1.405 MHz are sent to a Xilinx CPLD.  The CPLD then 

packs these samples into 32-bit words consisting of 8 2-

bit samples of L1 and L2 data, in the format  

 

[L2 Mag | L1 Mag | L2 Sign | L1 Sign] 

 

where Mag indicates a magnitude bit, and Sign indicates a 

sign bit.  The mapping of 2-bit data to integer values is as 

given in Table 1. 

 

Table 1: Sign/Magnitude bit mapping 

 Magnitude = 0 Magnitude = 1 

Sign = 0 -1 -3 

Sign = 1 1 3 

 

The CPLD also generates a frame synchronization pulse 

to indicate the start of a 32-bit word.  The CPLD, voltage 

controlled oscillator, and both RF front ends all use the 

same clock source.  A schematic representation of the 

receiver is shown in Fig. 2, and a picture of the receiver is 

shown in Fig. 3.  Note that the dual-frequency front end is 

essentially the same at described in Ref. 6. 

 

 
 

Figure 2.  Schematic representation of DSP-based dual-

frequency GPS receiver. 

 

The Digital Signal Processor used here is a 1.2 GHz 

Texas Instruments TMS320C6455 DSP.  This is a fixed-

point DSP, meaning that it has no hardware floating-point 

unit but can do floating-point math through emulation.  

The sampled data is read into the DSP via one of its 

Multi-Channel Buffered Serial (MCBSP) Ports.  The DSP 

has two such channels, each with a maximum speed of 

100 MHz.  As the data is sampled at 40/7 MHz, and each 

sample time produces 4 bits of data (L1 sign and 

magnitude, L2 sign and magnitude), 40/7*4/100 = 23% of 

the capacity of one of the ports is currently being used.  

The additional unused capacity could be used in the future 

for additional GNSS signals (e.g., Galileo).  After the data 

is read via the DSP serial port, it is stored in a set of 

circular buffers for signal acquisition and tracking. 

 



 
Figure 3.  A photograph of the dual-frequency DSP-based 

GPS receiver prototype. 

 

The DSP does all correlations, tracking loop control, and 

navigation solution calculations.  The final piece of the 

hardware puzzle is a personal computer, used only for 

display of status indicators and data logging.  

Communication between the personal computer and DSP 

is currently being done via the Texas Instruments “Real 

Time Data Exchange” link. 

 

Power consumption was measured with the DSP 

operating at the full 1.2 GHZ clock rate, though CPU 

utilization is only 55%.  The DSP development kit 

consumed roughly 6 Watts of power.  Presumably, some 

of this is being used by parts of the development kit that 

will no longer be present once the system moves to a 

custom-fabricated DSP circuit board.  Power consumption 

could also be reduced by scaling back CPU frequency and 

reducing unutilized CPU cycles.  The RF portion of the 

receiver consumed roughly 5 Watts.  As a side note, the 

entire RF portion has recently been replaced by a custom-

built dual-frequency solution that consumes only 1.75 

Watts, but this will not be discussed further in this paper.  

Any power consumed by the antenna preamplifier or 

personal computer is neglected here, and that consumed 

by the CPLD is negligible. 

 

III. SOFTWARE OVERVIEW 

 

The software presented here takes advantage of several 

innovative processing techniques specific to GNSS 

receivers in an attempt to most efficiently process the 

incoming signals.   For efficient code and carrier mixing, 

a bit-wise parallel technique has been implemented.  The 

data is 2-bit quantized into a sign bit and a magnitude bit, 

and then 32 samples of sign data are packed into a single 

integer, while the corresponding 32 samples of magnitude 

data are packed into another 32-bit integer.  These 32 

samples are then processed in a parallel fashion.  A full 

discussion of this technique can be found in Ref. 7.   

 

C/A code replicas for all PRNs, each with a 

predetermined number of code phases, are pre-computed 

and stored in memory, as are local carrier replicas 

spanning a predetermined frequency range.  Pre-

generation of the L2C codes is not feasible, as will be 

discussed in Section V, so a method is implemented to 

efficiently create these up-sampled codes in real-time.   

 

The default PLL discriminator used for tracking the L1 

C/A signal is a decision-directed two-quadrant arctangent.  

Note, however, that two-quadrant arctangent, 4-quadrant 

arctangent, and other discriminators are also available.  

The default PLL bandwidth is 7.5 Hz, and the default 

accumulation interval (pre-detection time) is 10 ms.  The 

only difference between tracking of L1 C/A signals and 

L2 C signals is the selection of tracking loop; for L2C the 

receiver leverages the lack of data bit modulation by 

implementing a 4-quadrant arctangent discriminator.  

 

 
 

Figure 4.  Tracking sensitivity for L1 C/A and L2 CL. 

 

Tracking sensitivity for both L1 C/A and L2 CL was 

tested using data generated by a Spirent Simulator that 

included graded reductions in signal power.  These results 

are shown in Fig. 4.    Note that the transmitted power on 

L2C was less than on L1 C/A so that the plots would be 

offset.  The L1 C/A and L2 CL signals were both 

successfully tracked down to a carrier-to-noise ratio of 

about 25 dB-Hz without any cycle slips. 

 

The majority of the code is written in object-oriented 

C/C++.  This coding paradigm was found to be the most 

conducive for code reuse and easy addition of new GNSS 

signals to the receiver. 

 

IV.  NAVIGATION SOLUTION 
 

In the previous version of this receiver, the navigation 

solution was computed in post-processing using the 

pseudoranges measured by the receiver.  Calculating the 

navigation solution on-board the DSP was the preferred 

solution as this would move all computation onto the 

embedded processor, thereby obviating the need for an 

external computer for anything other than displaying the 

data.  This was the last thing required to make the DSP-

based receiver a truly stand-alone solution.  However, as 

has been noted, the CPU utilized for this project was a 

fixed point processor, with no hardware unit for doing 

floating point math.  It was unknown whether or not 

implementing the navigation solution entirely in fixed 



point would be possible given the required numerical 

precision.  For example, to get accuracy on the order of 

one meter in resolving the satellite locations, one needs an 

angular resolution of approximately  

deg10*2)600,26*/(180 6 km  

where the satellite orbital radius has been taken to be 

26,600 km.  Implementing in fixed point the various 

trigonometric functions required with this degree of 

accuracy would either necessitate staggeringly large 

lookup tables or functions so complicated they would 

likely be slower than the emulated floating-point version.  

The alternative to this is using floating-point math, which 

the CPU can do via emulation.  This was the first 

approach attempted in the interest of minimizing 

development time.   

 

The navigation solution was written in accordance with 

the object-oriented paradigm utilized elsewhere; each 

satellite was considered its own object with associated 

state variables (e.g., position, velocity) and data (e.g., 

ephemeris data).  Similarly, the navigation solution is 

considered an object with its state variables (such as 

position, velocity, and time), and data (pointers to the 

satellite objects used in the solution, the observables).  

This approach allows easy inclusion of additional GNSS 

signals in the navigation solution calculations. 

 

Receiver position and velocity are calculated using only 

the L1 C/A code range.  Although the receiver tracks the 

L2 CM and CL codes, they are currently used only for 

estimating TEC and observing effects due to signal 

propagation.  Corrections to the pseudoranges due to 

ionospheric delay are calculated using the Klobuchar 

model
8
 parameters transmitted in the navigation message.  

In the future, the ionospheric delay will be measured in 

real-time and corrections based on this applied to the 

pseudoranges, but due to the current incomplete 

population of the GPS constellation with satellites that 

transmit the L2C codes, it was decided that rather than 

apply measured corrections to some signals and modeled 

corrections to others, a single approach would be taken 

for all satellites.  Additionally, corrections to the 

pseudoranges due to tropospheric delay are calculated 

using a combination of the Saastamoinen model
9
 and the 

Neill mapping function
10

. 

 

The accuracy of the navigation solution has been 

evaluated in several different circumstances.  First, testing 

was done using a Spirent signal simulator.  This solution 

includes no multipath, ionospheric, or tropospheric 

effects; horizontal solution accuracy is shown in Fig. 5.  

The larger variance in the East direction is most likely due 

to satellite geometry, and there is a roughly 1 meter bias, 

the source of which is not fully understood.  This solution 

was calculated using 10 satellites. 

 
Figure 5.  Navigation solution accuracy using simulated 

data from 10 satellites over 1 hour, 1 Hz solutions. 

 

Navigation solution precision was also calculated using 

live data from a rooftop antenna located in Ithaca, New 

York (42.44 E, 76.48 W).  There was a roughly 3 meter 

bias in this solution (as compared to a 3-day averaged 

position from a Cornell SCINTMON GPS receiver
11

), 

possibly due to differences in ionospheric or tropospheric 

correction implementations between the two receivers.  

This result is shown in Fig. 6.  The standard deviation of 

the East and North errors in the navigation solution are 

each on the order of a meter, and the vertical error 

standard deviation is roughly 2 meters.  No averaging or 

smoothing was done in the calculation of these solutions, 

though the software has the capability to do so. 

 

 
Figure 6.  Horizontal navigation solution accuracy using 

data from a rooftop antenna in Ithaca, NY over 15 

minutes, 1 Hz solutions. 

 



The receiver velocity is also calculated as a part of the 

navigation solution.  Velocity is calculated using the 

Doppler shift of the L1 C/A signal.  To verify the velocity 

calculation, a simulated data set was created using a 

Spirent signal simulator wherein the receiver was moving 

in a circle of radius 6 km with a speed of 500 m/s.  To 

track this signal, the phase-locked loop bandwidth was 

increased to 10 Hz and the integration time (pre-detection 

interval) was decreased to 2 ms.  A plot of error in 

horizontal speed is shown in Fig. 7. 

 

 
Figure 7.  Error in horizontal speed when traveling at 

500 m/s in a circle with a radius of 6 km (in the local 

horizontal plane). 

 

V.  L2 CIVILIAN CODES 
 

With the ongoing modernization of the GPS constellation 

and expansion of other global navigation satellite systems, 

the number of signals available to the civilian user is 

rapidly expanding.  Multiple-frequency measurements are 

of paramount importance for resolving ionospheric delays 

and producing more reliable estimates of user position, 

velocity, and time.  The new GPS L2 civilian codes (CM, 

the medium length code, and CL, the long code) are 

particularly well suited for use in a software receiver due 

to their relatively low combined chipping rate of 1.023 

MHz.  The low chipping rate of the codes means the 

signals have a corresponding low bandwidth and can thus 

be processed by a receiver that samples at a lower rate.  

Processing requirements are roughly proportional to 

sampling rate, so a lower sampling rate eases the 

computational burden on the CPU. 

 

Pre-generation and storage of the L2C PRN codes at the 

front-end sampling frequency is not practical due to the 

large amount of space required (approximately 2 MB per 

PRN per code phase offset).  Similarly, brute-force 

generation of the codes in real time and upsampling to the 

RF front end sampling frequency is not practical because 

of the large computational cost, partly due to using 

floating point operations to achieve the necessary code 

timing precision and partly for sample-by-sample code 

generation and repackaging into 32-sample integer words.  

To allow the use of L2C, the technique presented in Ref. 

12 has been implemented in a slightly modified form.  

This algorithm has been modified to ignore the effect of 

the Doppler shift on the code chipping rate over a single 

millisecond of code.  Estimates of code phase are done 

each millisecond taking into account the effect of Doppler 

shift on chipping rate, but each 1-millisecond portion of 

the PRN code replica is created assuming chipping at the 

nominal rate.  The net effect is a negligible loss in power 

(assuming Doppler shift magnitude less than about 

5KHz).  This technique has been previously used in a 

software receiver
2
, but not in an embedded processor as in 

the current work. 

 

The receiver currently acquires the L2 signals using a 

scheme whereby the acquisition is aided by the L1 C/A 

signal from the same satellite.  Given that the Doppler 

shift depends mostly on the satellite motion and on 

transmitter and receiver clock rate errors (which affect the 

L1 and L2 signals similarly after accounting for their 

frequency difference), one can determine the expected 

Doppler shift of the L2 signal if one is tracking the L1 

signal from the same SV.  This is given as 

 

121,2, / LLLdoppLdopp FFFF   

 

Similarly, if one knows the L1 C/A code phase at a 

particular time, one can set bounds on the range of 

probable start times of the L2C code.  The L2 CL code is 

nominally 1.5 seconds in length, and once every 4 periods 

its start time is coincident with the start of a data 

subframe ,which is 6 seconds in length.  Since the 

beginning of data subframes on the L1 C/A signal are 

being tracked for purposes of data decoding, the receiver 

starts with these times as the base time for L2C code 

acquisition; let this time be T0 for a particular channel. 

 

 There are several effects which cause the L2C code start 

time and the L1 C/A code start times to not be coincident. 

These effects are often collectively referred to as 

differential code bias.  First, and usually most 

prominently, there is an unknown inter-frequency bias 

due to the different signal paths, hardware, and processing 

on the receiver plus antenna combination.  Secondly, 

there is a similarly unknown inter-frequency bias due to 

satellite hardware.  Let the receiver plus antenna portion 

of these biases be T1. 

 

Precisely measuring this receiver bias is a notable 

challenge that must be addressed for accurate 

measurements of ionospheric total electron content 

(TEC).  This is an area of active research, and discussion 

of it can be found elsewhere
13,14

.  It can, however, be 

roughly estimated, which will be shown to be useful for 

this acquisition technique.  It should be noted that the 

typical value for this receiver (times the speed of light) is 

on the order of 13 meters. 

 

A third source of differential code bias is the ionosphere.  

Electrons in the signal path alter the index of refraction, 

and the amount by which diffraction delays a given signal 



is inversely proportional to frequency squared.  Let this 

ionosphere-induced delay be T2.  One can very 

conservatively estimate a maximum value for T2 by using 

a very large value for TEC; 150 TEC units (1 TEC unit = 

10
16

 electrons / m
2
) gives a differential code delay of T2 = 

52 ns. 

 

Putting this together, the total amount of (code) space that 

the receiver must search to acquire the L2 CL signal spans 

T2, and starts at T0+T1.  To account for multipath errors, 

bias estimation errors, and other noise, the receiver 

expands this search space by a factor of 1.5.  This code 

space is then searched with a brute-force algorithm using 

some predetermined step size that gives a minimal power 

loss due to code misalignment.  A step size of roughly 

0.05 chips has been used. 

 

The L2C signal is composed of the “medium length” 

(CM) code interleaved with the “long” (CL) code.  The 

CL code is a data-less pilot signal, while the CM code is 

modulated with data bits (though at the time of writing, 

CM code does not yet have data bit modulation).  If one is 

interested in tracking only the CL (or CM) code, a method 

must be devised for separating the two.  A naïve approach 

would be to interleave the desired code with zeros, and 

then perform the accumulations.  However, because this 

receiver makes use of the bitwise parallel processing 

technique previously mentioned a value of zero has 

meaning for our processing algorithms (i.e., it indicates 

either a low value for sign or magnitude).  The solution is 

to produce two replicas of the code for the period desired.  

Let these two PRN codes be defined as 

 

CMCLCL 2  and )(!2 CMCLCL   

 

where ! indicates logical inversion and + indicates logical 

OR.  Accumulations are then done with both of these 

replicas.  To recover CL code accumulations, the receiver 

takes take the sum of L2C+ and L2C- (and gets 2*CL), 

and for the CM code it takes the difference (and gets 

2*CM).  For determining the data bits modulating the CM 

code, this is the method that would need to be 

implemented. 

 

If one uses only one of the two resultant pairs of 

accumulations, either 2*CL or 2*CM, then the tracking 

PLL and DLL experience a reduction in SNR of 3 dB.  

For illustration purposes, assume that the L1 C/A and 

L2C signals are received with exactly the same strength, 

and that both are subjected to the same intensity of 

additive white Gaussian noise.  By creating accumulations 

using only CM or CL code, the receiver is using half the 

integration time as compared to a similar (temporal) 

length of C/A code since the CM and CL codes 

individually have a chipping rate half that of the C/A 

code.  Suppose one defines the accumulation Signal-to-

Noise ratio (SNRA) to be 

 

SNRA = C/(N0*Ba) 

 

where C is carrier power, N0 is noise power density, and 

Ba is the effective (single-sided) noise bandwidth of the 

integrate-and-dump operation.  If one integrates the sinc 

function that results from integrate-and-dump integration, 

then one finds that the effective (single-sided) noise 

bandwidth Ba is equal to 1/(2*Ti) where Ti is the 

integration time (also referred to as the pre-detection 

interval).  Substituting this in, one gets 

 

SNRA = (2*Ti*C)/N0 

 

One can then deduce that the SNRA for the CM or CL 

codes alone, is half that of the C/A code over the same 

length of data even though the carrier-to-noise ratio 

(C/N0) is the same for all of the signals because the 

effective integration time Ti for the two L2C codes is half 

that of the L1 C/A code due to the interleaving of the two 

codes.  Note, however, that this 3dB loss could be 

avoided in a PLL or DLL which combined accumulations 

from the two L2 C signals. 

 

There were no data bits modulating the CM code at the 

time of this writing, so a shortcut was taken.  Observation 

indicates that the CM code is currently being modulated 

with the a constant +1 data bit value.  Therefore, the best 

of both worlds can be had: only the L2C+ replica needs to 

be generated and the corresponding accumulations 

computed.  These accumulations have a higher SNRA than 

either the CL or CM code alone, and the receiver can use 

a four-quadrant arctangent PLL discriminator for better 

tracking robustness.  This ad-hoc modification nicely 

illustrates the flexibility of software receivers. 

 

VI.  BENCHMARKING 
 

In this section, we will examine the computational costs 

of operations being performed and memory requirements. 

 

A.  Timing 
For performing timing benchmarks the processor used is 

the aforementioned Texas Instruments C6455 Digital 

Signal Processor running at 1.2 GHz, with an RF front-

end sampling frequency of MHzFs 714.5 and 2-bit 

signal quantization.  This subsection examines the 

processing time required for both L1 C/A and L2 C signal 

acquisition, for tracking of both the L1 C/A and L2 C 

signals, and for navigation solution computation. 

 

Acquisition time for the L1 C/A signal using a Doppler 

search range of ± 6000 Hz, A Doppler search step size of 

350 Hz, and a 2 ms non-coherent integration time is 

roughly 60.8 ms per attempt.  The details of the 

acquisition routine used here are identical to those in Ref. 

1; only the speed of the processor has increased.  With the 



current hardware, a search of all 32 PRNs can be done in 

only 1.9 seconds with reliable acquisition down to C/N0 = 

42 dB-Hz.   

 

Tracking the L1 C/A signal for 1 ms takes approximately 

10 μs per channel.  About three-fourths of this time is 

spent computing the prompt and early-minus-late in-phase 

and quadrature accumulations.  The rest of the time is 

used by tracking loop updates, data bit decoding, and 

assorted bookkeeping operations. 

 

As previously stated, the L2 C acquisition technique is 

aided by the L1 C/A signal.  Acquisition attempts are 

limited to once per channel per subframe (i.e., once every 

6 seconds).  The main computation expense related to L2 

C tracking is generation of the up-sampled code replicas.  

Generating one millisecond of L2 CM+CL code currently 

takes 17 μs; doing all of the other required operations for 

updating the channel (e.g., accumulations) takes only 10 

μs.  If one were treating the CM and CL signals separately 

rather than taking advantage of the lack of data 

modulation on the CM signals and treating CM+CL as a 

unified pilot signal, then the computational burden would 

increase.  Time required for code generation would 

increase to roughly 19 μs, and the time required for 

performing the accumulations, tracking loop updates, and 

other required operations would increase to roughly 16 μs. 

 

 
Figure 8.  Computation time required for computing a 

navigation solution versus number of satellites used in the 

solution. 

 

The navigation solution was implemented using floating 

point math.  Although floating point operations are on the 

order of 100 times more expensive than fixed point 

operations on this platform, relatively large execution 

times can be tolerated if the navigation solution is being 

computed infrequently (compared to the frequency of 

operations related to signal tracking). The navigation 

solution was written to be fully interruptible by other 

processes that may have real-time deadlines, and the 

computed processing times shown below include such 

interrupts.  It should be noted that if one is utilizing more 

satellites for the navigation solution, then more signals are 

being tracked, and there will be a correspondingly higher 

number of interrupts during the navigation solution 

calculations to service the real-time needs of those 

signals.  Thus, the increase in computation time for larger 

numbers of satellites is due to both the non-linear growth 

in computational cost for certain operations (e.g., matrix 

inversion), and the fact that the calculation is interrupted 

more.  The computational burden ranges from less than 2 

ms to about 15 ms for 4 and 11 satellites, respectively.  

See Fig. 8 for a plot of navigation solution computation 

times.   If at some point in the future navigation solutions 

are required at a rate higher than that possible using the 

current algorithm the viability of a fixed-point solution 

will be further explored. 

 

A graphical representation of the distribution of 

computing time is shown in Fig. 9.  This chart assumes 

the receiver is operating in steady-state (not doing 

acquisition), tracking 12 L2C signals and 12 L1 C/A 

signals, and computing position, navigation, and time at a 

1 Hz rate using 12 C/A channels. 

 
Figure 9.  Distribution of computation time per second 

while tracking 12 L2C and 12 L1C/A channels.  

 

B. Memory Requirements 
The DSP currently being used has 2 MB of on-chip 

random access memory, and 256 MB of off-chip random 

access memory.  There is a significant performance 

penalty imposed when using data or code stored in off-  
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Figure 10.  Memory usage for both on-chip and off-chip 

memory. 

chip memory, so it behooves the developer to attempt to 

fit as much as possible into on-chip memory.  The only 

things not stored in on-chip memory are the code and 

carrier replicas used in the FFT acquisition routine. The 

memory usage is shown in Fig. 10.  Note that almost the 

entirety of off-chip memory is not being used (~253 MB), 

and there is ample room left in on-chip memory.  The 

entire on-chip memory footprint is only roughly 1.4 MB. 

 

If memory becomes a constraint in the future, L1 C/A 

code generation could be done using the same scheme 

being applied to L2 C code generation, at the cost of 

additional computational expense. 

 

VII.  FIRST FIELD TEST RESULTS 
 

A week-long field campaign was conducted in Natal, 

Brazil during January, 2009 with the hopes of observing 

(simultaneous) scintillation of the L1 C/A and L2 C 

signals.  Observations were made using the prototype 

DSP-based receiver that is the subject of this paper, as 

well as two “digital storage receivers” and a Cornell 

SCINTMON receiver.  The digital storage receivers use 

the exact same RF front-end as used in the DSP receiver, 

but the data are stored on a hard drive for later processing.  

These data were processed using the same code running 

on the DSP, but not in real-time, and on a personal 

computer.  All operating parameters were identical (e.g., 

tracking loop bandwidths, integrations times), with the 

sole exception being that the observables were available 

at a higher rate because there was no communications 

bandwidth constraint when not operating in real-time.  A 

diagram of the receiver locations is shown in Fig. 11.  The 

digital storage receivers are indicated with “DSR.”   

 

 
 

Figure 11.  GPS receiver locations in Natal, Brazil 

(5.836° W, 35.207 ° S) 

 

Moderate scintillation of signals from satellites 

transmitting the L2 C codes was observed on all three 

receivers, with the largest S4 index of the scintillation 

being around 0.6.  Plots of carrier-to-noise (C/N0) ratio 

for the three receivers during a period of such scintillation 

are shown in Fig. 12.  In this plot, receivers 1 and 3 are 

digital storage receivers (50 Hz amplitude measurements), 

and receiver 2 is the DSP receiver (10 Hz amplitude 

measurements).  The amplitude fades seen by all three 

receivers are quite similar, and show a slight time lag with 

the fades appearing first on receiver 1 and propagating 

eastward to receivers 2 and 3 after slight delays.  It is 

believed that the apparent higher level of noise in the 

receiver 3 C/N0 data is due to the antenna environment for 

this receiver.  Although the fades are quite deep in places 

(exceeding 25 dB on L2), none of the receivers lost lock 

on the signal. 

 

 
 

Figure 12.  Amplitude scintillations of the L1 C/A and L2 

C signals from PRN 15 observed by three dual-frequency 

receivers. 

 

Measurements of phase-derived TEC were calculated as 

follows: 
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Where TECU indicates total electron content units (1 

TECU = 10
16

 electrons / m
2
), F, φ and λ indicate 

frequency, carrier phase and wavelength on either L1 or 

L2, respectively, and N indicates the unknown difference 

in initial phase between the L1 and L2 signals.  The 

presence of N means that when using phase to measure 

TEC, there is an unknown (and possibly large) bias in the 

estimate.   

 

This simple formula for TECU assumes that the phase 

scintillations are caused entirely by fluctuations in a 

presumed uniform "bulk" TEC of the ionosphere.  In 

reality, fine-scale spatial TEC variations and the effects of 

diffraction imply that the true TEC is not quite equal to 

this computed value 
15

.  Nevertheless, this pseudo-TEC 



provides a useful indication of the phase effects of 

scintillation. 

 

A plot of phase-derived differential TEC is shown in Fig. 

13.  The plotted TEC has been band-pass filtered with a 

pass-band of 0.01 – 1.0 Hz to remove the background 

TEC and high-frequency (measurement) noise.  This plot 

shows variations in TEC as measured by receivers 1 and 3 

over a roughly 20 minute period, and was taken in the 

absence of measurable amplitude scintillation.  A high 

degree of correlation between the TEC fluctuations 

measured on the two receivers can be seen, again with a 

slight time lag between the two. 

 

 
 

Figure 13.  Band-pass filtered phase-derived TEC as 

measured by two receivers. 

 

This limited field campaign has shown promising results 

in terms of the receiver operation and the quality of its 

observables in a scintillating environment.  

 

VIII.  CONCLUSIONS 
 

A civilian dual-frequency GPS receiver has been 

implemented on a DSP and tested both in the field in 

scintillating and non-scintillating conditions, and in the 

laboratory.  Tracking of the L2 C code has been added, 

and both position and velocity are being computed on the 

DSP.  Approximately 55% of the available CPU cycles 

and 75% of the on-chip memory are being used.  Reliable 

tracking of the L1 C/A and L2 C codes down to C/N0 = 

25 dB-Hz has been demonstrated. 
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