
Development and Field Testing of a DSP-Based

Dual-Frequency Software GPS Receiver

Brady W. O’Hanlon, Mark L. Psiaki, Paul M. Kintner, Jr., Cornell University, Ithaca, NY

Todd E. Humphreys, The University of Texas at Austin, Austin, TX

BIOGRAPHY

Brady W. O’Hanlon is a graduate student in the School of

Electrical and Computer Engineering at Cornell

University. He received a B.S. in Electrical and

Computer Engineering from Cornell University. His

interests are in the areas of ionospheric physics, space

weather, and GNSS technology and applications.

Mark L. Psiaki is a Professor in the Sibley School of

Mechanical and Aerospace Engineering. He received a

B.A. in Physics and M.A. and Ph.D. degrees in

Mechanical and Aerospace Engineering from Princeton

University. His research interests are in the areas of

estimation and filtering, spacecraft attitude and orbit

determination, and GNSS technology and applications.

Paul M. Kintner, Jr. is a Professor of Electrical and

Computer Engineering. He received a B.S in Physics from

the University of Rochester and a Ph.D. in Physics from

the University of Minnesota. His research interests

include the electrical properties of upper atmospheres,

space weather, and developing GNSS instruments for

space science. He is a Fellow of the APS and a Jefferson

Science Fellow at the Department of State.

Todd E. Humphreys is an assistant professor in the

department of Aerospace Engineering and Engineering

Mechanics at the University of Texas at Austin. He

received a B.S. and M.S. in Electrical and Computer

Engineering from Utah State University and a Ph.D. in

Aerospace Engineering from Cornell University. His

research interests are in estimation and filtering, GNSS

technology, GNSS-based study of the ionosphere and

neutral atmosphere, and GNSS security and integrity.

ABSTRACT

A real-time software GPS receiver for the L1 C/A and L2

C codes has been implemented on a Digital Signal

Processor (DSP) and tested in both scintillating and non-

scintillating environments. This receiver is being

developed as a low-cost space weather instrument with

improved tracking robustness in comparison to a

traditional semi-codeless dual-frequency receiver and

with flexibility in its choices of signal tracking algorithms

and data outputs.

The receiver is capable of continuous background signal

acquisition and utilizes the L1 C/A code to assist in

acquisition of the L2 C signal. Efficient on-the-fly

generation of oversampled PRN code replicas for the L2

CM and CL codes, which are required for real-time

software radio signal processing, has been implemented to

ensure a manageable requirement for memory. Bit-wise

parallel correlation techniques have been implemented to

reduce the number of operations needed for correlation.

 The receiver currently tracks both the L2 CL and CM

codes for the purpose of calculating TEC.

Results are presented based on data generated by a signal

simulator, on real data taken in Ithaca, NY (42.44 N,

76.48W), and on real data taken during ionospheric

scintillation in Natal, Brazil (5.8S, 35.2W) in January

2009. Position and velocity solution accuracy is

evaluated using both real and simulated data.

I. INTRODUCTION

As the computational brawn of multi-purpose processors

has grown, processing GNSS signals using software has

become ever more manageable. The use of

programmable processors for GNSS receivers has been

well explored in recent history
1-4

 but as processors have

become more powerful, GNSS systems have continued to

add additional signals and codes. In this paper, we

explore the use of a small, low-power digital signal

processor as a dual-frequency GPS receiver utilizing the

L1 C/A and L2 Civilian codes of the Global Positioning

System. The current work can be viewed as a direct

extension of the work presented in Ref. 1. The receiver in

Ref. 1 was capable of parallel processing of 43 L1 C/A

channels and continuous background signal acquisition;

the present receiver is capable of 30 L1 C/A channels, 30

L2C channels, continuous background acquisition, and

on-board position, velocity, and time calculations. With

the planned launch of 12 Block IIF GPS satellites (that

provide the L2C signal) in the next three years
5
 in

addition to the eight Block IIRM satellites already in orbit

and providing the L2C signal, this platform is well suited

to become an inexpensive and science-worthy GNSS

receiver that utilizes these signals.

The remainder of this paper is organized as follows:

II. Hardware Overview

III. Software Overview

IV. Navigation Solution

V. L2 Civilian Codes

VI. Benchmarking

 A. Timing

 B. Memory Requirements

VII. First Field Test Results

VIII. Conclusions

This work will discuss the hardware components of the

receiver, the work done in implementing acquisition and

tracking of the L2C signal and the navigation solution,

and benchmark receiver performance in terms of power

usage and navigation accuracy. Additionally, preliminary

results from testing the receiver in a scintillating

environment during a week-long field campaign in Natal,

Brazil are presented.

II. HARDWARE OVERVIEW

This dual-frequency DSP-based receiver is built from a

combination of off-the-shelf parts and custom-fabricated

circuit boards. In order to minimize additional

development and to keep costs down, a frequency plan

was devised that would allow reuse of existing radio-

frequency hardware. An L1-only system based on the

Plessey GP2015 has previously been developed and

extensively used by Cornell University researchers for

both embedded
1
 and non-embedded

2
 software receivers.

As this design has an input bandwidth of approximately

2MHz, it is an acceptable solution for a receiver utilizing

the L2C codes. To enable reuse of this existing hardware

the input signal is split, with one path going to one

GP2015-based front end, and the other path getting mixed

with a 347.826 MHz sine wave generated by an Analog

Devices voltage controlled oscillator. This up-converted

signal is then sent to a separate and identical GP2015-

based front end. As a result of the mixing, the L2 signal

translated to a center frequency approximately 6 KHz

below the L1 frequency, and no additional modifications

to the RF hardware are required (see Fig. 1).

Figure 1. RF portion of dual-frequency GPS receiver.

After being mixed to near baseband and sampled at

roughly 5.714 MHz by the front-end units, the resultant

samples with a final intermediate frequency of about

1.405 MHz are sent to a Xilinx CPLD. The CPLD then

packs these samples into 32-bit words consisting of 8 2-

bit samples of L1 and L2 data, in the format

[L2 Mag | L1 Mag | L2 Sign | L1 Sign]

where Mag indicates a magnitude bit, and Sign indicates a

sign bit. The mapping of 2-bit data to integer values is as

given in Table 1.

Table 1: Sign/Magnitude bit mapping

 Magnitude = 0 Magnitude = 1

Sign = 0 -1 -3

Sign = 1 1 3

The CPLD also generates a frame synchronization pulse

to indicate the start of a 32-bit word. The CPLD, voltage

controlled oscillator, and both RF front ends all use the

same clock source. A schematic representation of the

receiver is shown in Fig. 2, and a picture of the receiver is

shown in Fig. 3. Note that the dual-frequency front end is

essentially the same at described in Ref. 6.

Figure 2. Schematic representation of DSP-based dual-

frequency GPS receiver.

The Digital Signal Processor used here is a 1.2 GHz

Texas Instruments TMS320C6455 DSP. This is a fixed-

point DSP, meaning that it has no hardware floating-point

unit but can do floating-point math through emulation.

The sampled data is read into the DSP via one of its

Multi-Channel Buffered Serial (MCBSP) Ports. The DSP

has two such channels, each with a maximum speed of

100 MHz. As the data is sampled at 40/7 MHz, and each

sample time produces 4 bits of data (L1 sign and

magnitude, L2 sign and magnitude), 40/7*4/100 = 23% of

the capacity of one of the ports is currently being used.

The additional unused capacity could be used in the future

for additional GNSS signals (e.g., Galileo). After the data

is read via the DSP serial port, it is stored in a set of

circular buffers for signal acquisition and tracking.

Figure 3. A photograph of the dual-frequency DSP-based

GPS receiver prototype.

The DSP does all correlations, tracking loop control, and

navigation solution calculations. The final piece of the

hardware puzzle is a personal computer, used only for

display of status indicators and data logging.

Communication between the personal computer and DSP

is currently being done via the Texas Instruments “Real

Time Data Exchange” link.

Power consumption was measured with the DSP

operating at the full 1.2 GHZ clock rate, though CPU

utilization is only 55%. The DSP development kit

consumed roughly 6 Watts of power. Presumably, some

of this is being used by parts of the development kit that

will no longer be present once the system moves to a

custom-fabricated DSP circuit board. Power consumption

could also be reduced by scaling back CPU frequency and

reducing unutilized CPU cycles. The RF portion of the

receiver consumed roughly 5 Watts. As a side note, the

entire RF portion has recently been replaced by a custom-

built dual-frequency solution that consumes only 1.75

Watts, but this will not be discussed further in this paper.

Any power consumed by the antenna preamplifier or

personal computer is neglected here, and that consumed

by the CPLD is negligible.

III. SOFTWARE OVERVIEW

The software presented here takes advantage of several

innovative processing techniques specific to GNSS

receivers in an attempt to most efficiently process the

incoming signals. For efficient code and carrier mixing,

a bit-wise parallel technique has been implemented. The

data is 2-bit quantized into a sign bit and a magnitude bit,

and then 32 samples of sign data are packed into a single

integer, while the corresponding 32 samples of magnitude

data are packed into another 32-bit integer. These 32

samples are then processed in a parallel fashion. A full

discussion of this technique can be found in Ref. 7.

C/A code replicas for all PRNs, each with a

predetermined number of code phases, are pre-computed

and stored in memory, as are local carrier replicas

spanning a predetermined frequency range. Pre-

generation of the L2C codes is not feasible, as will be

discussed in Section V, so a method is implemented to

efficiently create these up-sampled codes in real-time.

The default PLL discriminator used for tracking the L1

C/A signal is a decision-directed two-quadrant arctangent.

Note, however, that two-quadrant arctangent, 4-quadrant

arctangent, and other discriminators are also available.

The default PLL bandwidth is 7.5 Hz, and the default

accumulation interval (pre-detection time) is 10 ms. The

only difference between tracking of L1 C/A signals and

L2 C signals is the selection of tracking loop; for L2C the

receiver leverages the lack of data bit modulation by

implementing a 4-quadrant arctangent discriminator.

Figure 4. Tracking sensitivity for L1 C/A and L2 CL.

Tracking sensitivity for both L1 C/A and L2 CL was

tested using data generated by a Spirent Simulator that

included graded reductions in signal power. These results

are shown in Fig. 4. Note that the transmitted power on

L2C was less than on L1 C/A so that the plots would be

offset. The L1 C/A and L2 CL signals were both

successfully tracked down to a carrier-to-noise ratio of

about 25 dB-Hz without any cycle slips.

The majority of the code is written in object-oriented

C/C++. This coding paradigm was found to be the most

conducive for code reuse and easy addition of new GNSS

signals to the receiver.

IV. NAVIGATION SOLUTION

In the previous version of this receiver, the navigation

solution was computed in post-processing using the

pseudoranges measured by the receiver. Calculating the

navigation solution on-board the DSP was the preferred

solution as this would move all computation onto the

embedded processor, thereby obviating the need for an

external computer for anything other than displaying the

data. This was the last thing required to make the DSP-

based receiver a truly stand-alone solution. However, as

has been noted, the CPU utilized for this project was a

fixed point processor, with no hardware unit for doing

floating point math. It was unknown whether or not

implementing the navigation solution entirely in fixed

point would be possible given the required numerical

precision. For example, to get accuracy on the order of

one meter in resolving the satellite locations, one needs an

angular resolution of approximately

deg10*2)600,26*/(180 6 km

where the satellite orbital radius has been taken to be

26,600 km. Implementing in fixed point the various

trigonometric functions required with this degree of

accuracy would either necessitate staggeringly large

lookup tables or functions so complicated they would

likely be slower than the emulated floating-point version.

The alternative to this is using floating-point math, which

the CPU can do via emulation. This was the first

approach attempted in the interest of minimizing

development time.

The navigation solution was written in accordance with

the object-oriented paradigm utilized elsewhere; each

satellite was considered its own object with associated

state variables (e.g., position, velocity) and data (e.g.,

ephemeris data). Similarly, the navigation solution is

considered an object with its state variables (such as

position, velocity, and time), and data (pointers to the

satellite objects used in the solution, the observables).

This approach allows easy inclusion of additional GNSS

signals in the navigation solution calculations.

Receiver position and velocity are calculated using only

the L1 C/A code range. Although the receiver tracks the

L2 CM and CL codes, they are currently used only for

estimating TEC and observing effects due to signal

propagation. Corrections to the pseudoranges due to

ionospheric delay are calculated using the Klobuchar

model
8
 parameters transmitted in the navigation message.

In the future, the ionospheric delay will be measured in

real-time and corrections based on this applied to the

pseudoranges, but due to the current incomplete

population of the GPS constellation with satellites that

transmit the L2C codes, it was decided that rather than

apply measured corrections to some signals and modeled

corrections to others, a single approach would be taken

for all satellites. Additionally, corrections to the

pseudoranges due to tropospheric delay are calculated

using a combination of the Saastamoinen model
9
 and the

Neill mapping function
10

.

The accuracy of the navigation solution has been

evaluated in several different circumstances. First, testing

was done using a Spirent signal simulator. This solution

includes no multipath, ionospheric, or tropospheric

effects; horizontal solution accuracy is shown in Fig. 5.

The larger variance in the East direction is most likely due

to satellite geometry, and there is a roughly 1 meter bias,

the source of which is not fully understood. This solution

was calculated using 10 satellites.

Figure 5. Navigation solution accuracy using simulated

data from 10 satellites over 1 hour, 1 Hz solutions.

Navigation solution precision was also calculated using

live data from a rooftop antenna located in Ithaca, New

York (42.44 E, 76.48 W). There was a roughly 3 meter

bias in this solution (as compared to a 3-day averaged

position from a Cornell SCINTMON GPS receiver
11

),

possibly due to differences in ionospheric or tropospheric

correction implementations between the two receivers.

This result is shown in Fig. 6. The standard deviation of

the East and North errors in the navigation solution are

each on the order of a meter, and the vertical error

standard deviation is roughly 2 meters. No averaging or

smoothing was done in the calculation of these solutions,

though the software has the capability to do so.

Figure 6. Horizontal navigation solution accuracy using

data from a rooftop antenna in Ithaca, NY over 15

minutes, 1 Hz solutions.

The receiver velocity is also calculated as a part of the

navigation solution. Velocity is calculated using the

Doppler shift of the L1 C/A signal. To verify the velocity

calculation, a simulated data set was created using a

Spirent signal simulator wherein the receiver was moving

in a circle of radius 6 km with a speed of 500 m/s. To

track this signal, the phase-locked loop bandwidth was

increased to 10 Hz and the integration time (pre-detection

interval) was decreased to 2 ms. A plot of error in

horizontal speed is shown in Fig. 7.

Figure 7. Error in horizontal speed when traveling at

500 m/s in a circle with a radius of 6 km (in the local

horizontal plane).

V. L2 CIVILIAN CODES

With the ongoing modernization of the GPS constellation

and expansion of other global navigation satellite systems,

the number of signals available to the civilian user is

rapidly expanding. Multiple-frequency measurements are

of paramount importance for resolving ionospheric delays

and producing more reliable estimates of user position,

velocity, and time. The new GPS L2 civilian codes (CM,

the medium length code, and CL, the long code) are

particularly well suited for use in a software receiver due

to their relatively low combined chipping rate of 1.023

MHz. The low chipping rate of the codes means the

signals have a corresponding low bandwidth and can thus

be processed by a receiver that samples at a lower rate.

Processing requirements are roughly proportional to

sampling rate, so a lower sampling rate eases the

computational burden on the CPU.

Pre-generation and storage of the L2C PRN codes at the

front-end sampling frequency is not practical due to the

large amount of space required (approximately 2 MB per

PRN per code phase offset). Similarly, brute-force

generation of the codes in real time and upsampling to the

RF front end sampling frequency is not practical because

of the large computational cost, partly due to using

floating point operations to achieve the necessary code

timing precision and partly for sample-by-sample code

generation and repackaging into 32-sample integer words.

To allow the use of L2C, the technique presented in Ref.

12 has been implemented in a slightly modified form.

This algorithm has been modified to ignore the effect of

the Doppler shift on the code chipping rate over a single

millisecond of code. Estimates of code phase are done

each millisecond taking into account the effect of Doppler

shift on chipping rate, but each 1-millisecond portion of

the PRN code replica is created assuming chipping at the

nominal rate. The net effect is a negligible loss in power

(assuming Doppler shift magnitude less than about

5KHz). This technique has been previously used in a

software receiver
2
, but not in an embedded processor as in

the current work.

The receiver currently acquires the L2 signals using a

scheme whereby the acquisition is aided by the L1 C/A

signal from the same satellite. Given that the Doppler

shift depends mostly on the satellite motion and on

transmitter and receiver clock rate errors (which affect the

L1 and L2 signals similarly after accounting for their

frequency difference), one can determine the expected

Doppler shift of the L2 signal if one is tracking the L1

signal from the same SV. This is given as

121,2, / LLLdoppLdopp FFFF 

Similarly, if one knows the L1 C/A code phase at a

particular time, one can set bounds on the range of

probable start times of the L2C code. The L2 CL code is

nominally 1.5 seconds in length, and once every 4 periods

its start time is coincident with the start of a data

subframe ,which is 6 seconds in length. Since the

beginning of data subframes on the L1 C/A signal are

being tracked for purposes of data decoding, the receiver

starts with these times as the base time for L2C code

acquisition; let this time be T0 for a particular channel.

 There are several effects which cause the L2C code start

time and the L1 C/A code start times to not be coincident.

These effects are often collectively referred to as

differential code bias. First, and usually most

prominently, there is an unknown inter-frequency bias

due to the different signal paths, hardware, and processing

on the receiver plus antenna combination. Secondly,

there is a similarly unknown inter-frequency bias due to

satellite hardware. Let the receiver plus antenna portion

of these biases be T1.

Precisely measuring this receiver bias is a notable

challenge that must be addressed for accurate

measurements of ionospheric total electron content

(TEC). This is an area of active research, and discussion

of it can be found elsewhere
13,14

. It can, however, be

roughly estimated, which will be shown to be useful for

this acquisition technique. It should be noted that the

typical value for this receiver (times the speed of light) is

on the order of 13 meters.

A third source of differential code bias is the ionosphere.

Electrons in the signal path alter the index of refraction,

and the amount by which diffraction delays a given signal

is inversely proportional to frequency squared. Let this

ionosphere-induced delay be T2. One can very

conservatively estimate a maximum value for T2 by using

a very large value for TEC; 150 TEC units (1 TEC unit =

10
16

 electrons / m
2
) gives a differential code delay of T2 =

52 ns.

Putting this together, the total amount of (code) space that

the receiver must search to acquire the L2 CL signal spans

T2, and starts at T0+T1. To account for multipath errors,

bias estimation errors, and other noise, the receiver

expands this search space by a factor of 1.5. This code

space is then searched with a brute-force algorithm using

some predetermined step size that gives a minimal power

loss due to code misalignment. A step size of roughly

0.05 chips has been used.

The L2C signal is composed of the “medium length”

(CM) code interleaved with the “long” (CL) code. The

CL code is a data-less pilot signal, while the CM code is

modulated with data bits (though at the time of writing,

CM code does not yet have data bit modulation). If one is

interested in tracking only the CL (or CM) code, a method

must be devised for separating the two. A naïve approach

would be to interleave the desired code with zeros, and

then perform the accumulations. However, because this

receiver makes use of the bitwise parallel processing

technique previously mentioned a value of zero has

meaning for our processing algorithms (i.e., it indicates

either a low value for sign or magnitude). The solution is

to produce two replicas of the code for the period desired.

Let these two PRN codes be defined as

CMCLCL 2 and)(!2 CMCLCL 

where ! indicates logical inversion and + indicates logical

OR. Accumulations are then done with both of these

replicas. To recover CL code accumulations, the receiver

takes take the sum of L2C+ and L2C- (and gets 2*CL),

and for the CM code it takes the difference (and gets

2*CM). For determining the data bits modulating the CM

code, this is the method that would need to be

implemented.

If one uses only one of the two resultant pairs of

accumulations, either 2*CL or 2*CM, then the tracking

PLL and DLL experience a reduction in SNR of 3 dB.

For illustration purposes, assume that the L1 C/A and

L2C signals are received with exactly the same strength,

and that both are subjected to the same intensity of

additive white Gaussian noise. By creating accumulations

using only CM or CL code, the receiver is using half the

integration time as compared to a similar (temporal)

length of C/A code since the CM and CL codes

individually have a chipping rate half that of the C/A

code. Suppose one defines the accumulation Signal-to-

Noise ratio (SNRA) to be

SNRA = C/(N0*Ba)

where C is carrier power, N0 is noise power density, and

Ba is the effective (single-sided) noise bandwidth of the

integrate-and-dump operation. If one integrates the sinc

function that results from integrate-and-dump integration,

then one finds that the effective (single-sided) noise

bandwidth Ba is equal to 1/(2*Ti) where Ti is the

integration time (also referred to as the pre-detection

interval). Substituting this in, one gets

SNRA = (2*Ti*C)/N0

One can then deduce that the SNRA for the CM or CL

codes alone, is half that of the C/A code over the same

length of data even though the carrier-to-noise ratio

(C/N0) is the same for all of the signals because the

effective integration time Ti for the two L2C codes is half

that of the L1 C/A code due to the interleaving of the two

codes. Note, however, that this 3dB loss could be

avoided in a PLL or DLL which combined accumulations

from the two L2 C signals.

There were no data bits modulating the CM code at the

time of this writing, so a shortcut was taken. Observation

indicates that the CM code is currently being modulated

with the a constant +1 data bit value. Therefore, the best

of both worlds can be had: only the L2C+ replica needs to

be generated and the corresponding accumulations

computed. These accumulations have a higher SNRA than

either the CL or CM code alone, and the receiver can use

a four-quadrant arctangent PLL discriminator for better

tracking robustness. This ad-hoc modification nicely

illustrates the flexibility of software receivers.

VI. BENCHMARKING

In this section, we will examine the computational costs

of operations being performed and memory requirements.

A. Timing
For performing timing benchmarks the processor used is

the aforementioned Texas Instruments C6455 Digital

Signal Processor running at 1.2 GHz, with an RF front-

end sampling frequency of MHzFs 714.5 and 2-bit

signal quantization. This subsection examines the

processing time required for both L1 C/A and L2 C signal

acquisition, for tracking of both the L1 C/A and L2 C

signals, and for navigation solution computation.

Acquisition time for the L1 C/A signal using a Doppler

search range of ± 6000 Hz, A Doppler search step size of

350 Hz, and a 2 ms non-coherent integration time is

roughly 60.8 ms per attempt. The details of the

acquisition routine used here are identical to those in Ref.

1; only the speed of the processor has increased. With the

current hardware, a search of all 32 PRNs can be done in

only 1.9 seconds with reliable acquisition down to C/N0 =

42 dB-Hz.

Tracking the L1 C/A signal for 1 ms takes approximately

10 μs per channel. About three-fourths of this time is

spent computing the prompt and early-minus-late in-phase

and quadrature accumulations. The rest of the time is

used by tracking loop updates, data bit decoding, and

assorted bookkeeping operations.

As previously stated, the L2 C acquisition technique is

aided by the L1 C/A signal. Acquisition attempts are

limited to once per channel per subframe (i.e., once every

6 seconds). The main computation expense related to L2

C tracking is generation of the up-sampled code replicas.

Generating one millisecond of L2 CM+CL code currently

takes 17 μs; doing all of the other required operations for

updating the channel (e.g., accumulations) takes only 10

μs. If one were treating the CM and CL signals separately

rather than taking advantage of the lack of data

modulation on the CM signals and treating CM+CL as a

unified pilot signal, then the computational burden would

increase. Time required for code generation would

increase to roughly 19 μs, and the time required for

performing the accumulations, tracking loop updates, and

other required operations would increase to roughly 16 μs.

Figure 8. Computation time required for computing a

navigation solution versus number of satellites used in the

solution.

The navigation solution was implemented using floating

point math. Although floating point operations are on the

order of 100 times more expensive than fixed point

operations on this platform, relatively large execution

times can be tolerated if the navigation solution is being

computed infrequently (compared to the frequency of

operations related to signal tracking). The navigation

solution was written to be fully interruptible by other

processes that may have real-time deadlines, and the

computed processing times shown below include such

interrupts. It should be noted that if one is utilizing more

satellites for the navigation solution, then more signals are

being tracked, and there will be a correspondingly higher

number of interrupts during the navigation solution

calculations to service the real-time needs of those

signals. Thus, the increase in computation time for larger

numbers of satellites is due to both the non-linear growth

in computational cost for certain operations (e.g., matrix

inversion), and the fact that the calculation is interrupted

more. The computational burden ranges from less than 2

ms to about 15 ms for 4 and 11 satellites, respectively.

See Fig. 8 for a plot of navigation solution computation

times. If at some point in the future navigation solutions

are required at a rate higher than that possible using the

current algorithm the viability of a fixed-point solution

will be further explored.

A graphical representation of the distribution of

computing time is shown in Fig. 9. This chart assumes

the receiver is operating in steady-state (not doing

acquisition), tracking 12 L2C signals and 12 L1 C/A

signals, and computing position, navigation, and time at a

1 Hz rate using 12 C/A channels.

Figure 9. Distribution of computation time per second

while tracking 12 L2C and 12 L1C/A channels.

B. Memory Requirements
The DSP currently being used has 2 MB of on-chip

random access memory, and 256 MB of off-chip random

access memory. There is a significant performance

penalty imposed when using data or code stored in off-

Carrier and

Code

Replicas for

FFT-based

Acquisition

(1525 KB)

Unused (600 KB)

C/A code replicas

(493 KB)

Carrier Replicas

(217 KB)

Application Code

(183 KB)

L2C Tables (64KB)

Buffers (50KB)

Bios, etc. (47KB)

Buffers and complex

factors for FFT

acquisition (213 KB)

Heap (140 KB)

On-chip memory Off-chip memory

Carrier and

Code

Replicas for

FFT-based

Acquisition

(1525 KB)

Unused (600 KB)

C/A code replicas

(493 KB)

Carrier Replicas

(217 KB)

Application Code

(183 KB)

L2C Tables (64KB)

Buffers (50KB)

Bios, etc. (47KB)

Buffers and complex

factors for FFT

acquisition (213 KB)

Heap (140 KB)

On-chip memory Off-chip memory

Figure 10. Memory usage for both on-chip and off-chip

memory.

chip memory, so it behooves the developer to attempt to

fit as much as possible into on-chip memory. The only

things not stored in on-chip memory are the code and

carrier replicas used in the FFT acquisition routine. The

memory usage is shown in Fig. 10. Note that almost the

entirety of off-chip memory is not being used (~253 MB),

and there is ample room left in on-chip memory. The

entire on-chip memory footprint is only roughly 1.4 MB.

If memory becomes a constraint in the future, L1 C/A

code generation could be done using the same scheme

being applied to L2 C code generation, at the cost of

additional computational expense.

VII. FIRST FIELD TEST RESULTS

A week-long field campaign was conducted in Natal,

Brazil during January, 2009 with the hopes of observing

(simultaneous) scintillation of the L1 C/A and L2 C

signals. Observations were made using the prototype

DSP-based receiver that is the subject of this paper, as

well as two “digital storage receivers” and a Cornell

SCINTMON receiver. The digital storage receivers use

the exact same RF front-end as used in the DSP receiver,

but the data are stored on a hard drive for later processing.

These data were processed using the same code running

on the DSP, but not in real-time, and on a personal

computer. All operating parameters were identical (e.g.,

tracking loop bandwidths, integrations times), with the

sole exception being that the observables were available

at a higher rate because there was no communications

bandwidth constraint when not operating in real-time. A

diagram of the receiver locations is shown in Fig. 11. The

digital storage receivers are indicated with “DSR.”

Figure 11. GPS receiver locations in Natal, Brazil

(5.836° W, 35.207 ° S)

Moderate scintillation of signals from satellites

transmitting the L2 C codes was observed on all three

receivers, with the largest S4 index of the scintillation

being around 0.6. Plots of carrier-to-noise (C/N0) ratio

for the three receivers during a period of such scintillation

are shown in Fig. 12. In this plot, receivers 1 and 3 are

digital storage receivers (50 Hz amplitude measurements),

and receiver 2 is the DSP receiver (10 Hz amplitude

measurements). The amplitude fades seen by all three

receivers are quite similar, and show a slight time lag with

the fades appearing first on receiver 1 and propagating

eastward to receivers 2 and 3 after slight delays. It is

believed that the apparent higher level of noise in the

receiver 3 C/N0 data is due to the antenna environment for

this receiver. Although the fades are quite deep in places

(exceeding 25 dB on L2), none of the receivers lost lock

on the signal.

Figure 12. Amplitude scintillations of the L1 C/A and L2

C signals from PRN 15 observed by three dual-frequency

receivers.

Measurements of phase-derived TEC were calculated as

follows:

)(
10)(3.40

2211162

2

2

1

2

2

2

1 N
FF

FF
TECU LLLL

LL

LL 



 

Where TECU indicates total electron content units (1

TECU = 10
16

 electrons / m
2
), F, φ and λ indicate

frequency, carrier phase and wavelength on either L1 or

L2, respectively, and N indicates the unknown difference

in initial phase between the L1 and L2 signals. The

presence of N means that when using phase to measure

TEC, there is an unknown (and possibly large) bias in the

estimate.

This simple formula for TECU assumes that the phase

scintillations are caused entirely by fluctuations in a

presumed uniform "bulk" TEC of the ionosphere. In

reality, fine-scale spatial TEC variations and the effects of

diffraction imply that the true TEC is not quite equal to

this computed value
15

. Nevertheless, this pseudo-TEC

provides a useful indication of the phase effects of

scintillation.

A plot of phase-derived differential TEC is shown in Fig.

13. The plotted TEC has been band-pass filtered with a

pass-band of 0.01 – 1.0 Hz to remove the background

TEC and high-frequency (measurement) noise. This plot

shows variations in TEC as measured by receivers 1 and 3

over a roughly 20 minute period, and was taken in the

absence of measurable amplitude scintillation. A high

degree of correlation between the TEC fluctuations

measured on the two receivers can be seen, again with a

slight time lag between the two.

Figure 13. Band-pass filtered phase-derived TEC as

measured by two receivers.

This limited field campaign has shown promising results

in terms of the receiver operation and the quality of its

observables in a scintillating environment.

VIII. CONCLUSIONS

A civilian dual-frequency GPS receiver has been

implemented on a DSP and tested both in the field in

scintillating and non-scintillating conditions, and in the

laboratory. Tracking of the L2 C code has been added,

and both position and velocity are being computed on the

DSP. Approximately 55% of the available CPU cycles

and 75% of the on-chip memory are being used. Reliable

tracking of the L1 C/A and L2 C codes down to C/N0 =

25 dB-Hz has been demonstrated.

ACKNOWLEDGMENTS

This work was generously supported in part by grant No.

NNX08AM33G from NASA, grant No. N00014-09-1-

0295 from the Office of Naval Research, and grant No.

ATM-0720209 from the NSF.

REFERENCES

[1] Humphreys, T.E., Psiaki, M.L., Kintner, Jr., P.M, Ledvina, B.M.,

“GNSS Receiver Implementation on a DSP: Status, Challenges,
and Prospects,” Proc. 2006 ION GNSS Conf., Institute of

Navigation, Fort Worth TX, pp. 2370-2382.

[2] Ledvina, B.M., Psiaki, M.L., Sheinfeld, D.J., Cerruti, A.P., Powell,

S.P., and Kintner, Jr., P.M. “A Real-Time GPS Civilian L1/L2

Software Receiver,” Proc. 2004 ION GNSS Conf., Institute of

Navigation, Long Beach, CA, pp 986-1005.

[3] Akos, D. M., Normark, P., Hansson, A., Rosenlind, A., Stahlberg,

C., and Svensson, F., “Global Positioning System Software
Receiver (gpSrx) Implementation in Low Cost/Power

Programmable Processors," Proc. 2001 ION GPS Conf., Institute

of Navigation, Salt Lake City, UT, September 2001, pp. 2851-
2858.

[4] Won, J.-H., Pany, T., and Hein, G.W., “GNSS Software Defined
Radio," Inside GNSS, Vol. 1, No. 5, July 2006, pp. 48-56.

[5] Anon., “Boeing Satellite Launch Schedule,” The Boeing
Company, September 25, 2009, http://www.boeing.com/defense-

space/space/bss/launch/launch_sched.html

[6] Ledvina, B.M, Psiaki, M.L., Powell, S.P., and Kintner, Jr., P.M.

"Real-Time Software Receiver Tracking of GPS L2 Civilian

Signals using a Hardware Simulator," Proc. 2005 ION GNSS
Conf., Institute of Navigation, Long Beach, CA, pp. 1598-1610.

[7] Ledvina, B. M., Psiaki, M. L., Powell, S. P., and Kintner, Jr., P.
M., “Bit-Wise Parallel Algorithms for Efficient Software Cor-

relation Applied to a GPS Software Receiver," IEEE Transactions

on Wireless Communications, Vol. 3, No. 5, September 2004.

[8] J. A. Klobuchar, “Ionospheric Effects on GPS,” in Global

Positioning System: Theory and Applications, Vol. I, B. W.
Parkinson and J. J. Spilker Jr. , Eds., American Institute of

Aeronautics and Astronautics, (Washington, 1996), pp. 485–515.

[9] Saastamoinen, J., “Contributions to the Theory of Atmospheric

Refraction,” Bulletin Géodésique, Vol. 105, September 1972, Vol.

106, December 1972, Vol. 107, March 1973.

[10] Niell, A.E., “Global mapping functions for the atmosphere delay at

radio wavelengths,” Journal of Geophysical Research, Vol. 101,
No. B2, February, 1996, pp. 3227-3246.

[11] Beach, T.L. and Kintner, Jr., P.M., “Development and Use of a
GPS Ionospheric Scintillation Monitor,” IEEE Transactions on

Geoscience and Remote Sensing, Vol. 39 No. 5, May 2001 pp 918-

928.

[12] Psiaki, M. L., “Real-Time Generation of Bit-Wise Parallel

Representations of Over-Sampled PRN Codes," IEEE
Transactions on Wireless Communications, Vol. 5, No. 3, March

2006, pp. 487-491.

[13] Komjathy A., Sparks, L., Wilson, B.D., Mannucci, A.J., (2005),

“Automated daily processing of more than 1000 ground-based

GPS receivers for studying intense ionospheric storms,” Radio
Science, Vol. 40, RS6006, doi:10.1029/2005RS003279.

[14] Coster, A., and S. Skone (2009), “Monitoring storm-enhanced
density using IGS reference station data”, Journal of Geodesy,

Vol. 83, No. 3-4, March 2009, pp. 345-351.

[15] Psiaki, M.L., Bust, G.S., Cerruti, A.P., Kintner, P.M., Jr., and

Powell, S.P., "Diffraction Tomography of the Disturbed

Ionosphere Based on GPS Scintillation Data," Proc. of the ION
GNSS 2008, Sept. 16-19, 2008, Savannah, GA, pp. 289-308.

