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Safety-of-life Carrier phase Differential Global Navigation Satellite System

(CDGNSS) positioning systems must provide guarantees that their position esti-

mates have errors that are smaller than specified levels, called alert limits (AL).

These guarantees are specified as an allowable probability, called integrity risk

(IR), that the error exceeds its AL. Typical values of IR are between 10−9 and

10−7, per hour of operation. CDGNSS positioning has been demonstrated to pro-

vide centimeter-accurate estimates of a vehicle’s location when the so-called integer

ambiguities are resolved; however, in safety-of-life applications, the probability of

incorrectly resolving the integer ambiguities frequently exceeds the allowable IR.

To address this limitation, existing algorithms bound the positioning error caused

by incorrectly resolved ambiguities. If such bounds satisfy the AL, then the integer-

resolved, or fixed, solution can be used. Unfortunately, the positioning error from
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incorrect fixing can exceed several meters, which fails to satisfy the most demand-

ing ALs for autonomous vehicles. This dissertation offers three contributions to the

science of CDGNSS positioning for safety-of-life applications.

First, a novel algorithm is developed that validates the correctness of in-

teger ambiguity estimates. This algorithm, called Generalized Integer Aperture

Bootstrapping (GIAB), establishes a rigorous, fixed-missed-detection-rate test that

provides a guarantee that the integer ambiguities have been fixed correctly. GIAB

also allows for partial fixing, where a subset of the ambiguities are resolved. Partial

fixing allows for graceful degradation of positioning when measurement quality is

poor. GIAB is derived analytically and validated via Monte Carlo simulation. Its

performance is compared with existing ambiguity validation techniques.

Second, the probability density function of the positioning estimate result-

ing from GIAB is derived. This distribution leads to a provable bound on the IR

that the estimate has errors exceeding the specified ALs. This bound allows GIAB

to be used for safety-of-life application while satisfying ALs of less than a meter.

Third, triplex CDGNSS architectures, in which the vehicle position is esti-

mated using three separate navigation systems with mid-level voting (MLV) logic,

are analyzed. Such architectures are commonly used since they are robust to sin-

gle equipment failures, but the integrity benefit of their fault-free performance has

not previously been evaluated. It is shown that integer-fixed CDGNSS solutions

improve in accuracy performance, but gain no integrity benefit. However, when

the integer constraint is not enforced, the so called CDGNSS float solution benefits

greatly from MLV in both accuracy and integrity performance.
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Chapter 1

Introduction

1.1 Carrier Phase Differential Global Navigation Satellite Sys-
tem Positioning

Global Navigation Satellite System (GNSS) receivers produce two funda-

mental types of measurement. The first, called pseudorange, is a noisy, biased

estimate of the total distance between the satellite’s antenna and the receiver’s an-

tenna. Sources of pseudorange error include atmospheric delay, multipath interfer-

ence from reflected signals, thermal noise in the electronics, receiver clock errors,

and errors in the broadcast satellite orbit and clock models. Even when corrected

using data from the Wide Area Augmentation System (WAAS), these errors exceed

2 meters in standard deviation [24, 38].

The second type of measurement, called carrier phase, is a less noisy, though

still biased measurement of the change in range between the satellite and the re-

ceiver antennas from the time that carrier phase lock was established until the time

of the measurement. Many of the error sources that afflict pseudoranges also im-

pact carrier phases, including atmospheric delays and broadcast model errors, but

these common errors are mitigated via double-difference processing, as described

in Appendix A. Whereas the uncorrected differential pseudorange errors are sev-

eral meters in magnitude, the corresponding carrier phase errors are smaller than
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a centimeter. The challenge for CDGNSS is that carrier phase only measures the

change in range, and so is ambiguous with respect to the full range to the satellite.

Fortunately, this ambiguity is an integer multiple of the wavelength of the GNSS

carrier signal.

The process of estimating the integer ambiguities is called integer ambiguity

ambiguity resolution or integer fixing. Two of the most common methods for inte-

ger fixing are Integer Bootstrapping (IB) [30] and Integer Least Squares (ILS) [32].

The probability that an integer estimator correctly resolves the ambiguities is called

the probability of correct fix, or PCF . ILS is an optimal estimator in that it has the

maximum PCF of all permissible integer estimators. The ILS probability of cor-

rect fix, PCF ,ILS has no analytical formula, but its tightest lower bound is the IB

probability of correct fix, PCF ,IB ≤ PCF ,ILS.

Prior to estimating the ambiguities as integers, they are estimated jointly

with the relative position, or baseline, b, between two GNSS antennas as real-valued

approximations. This joint estimate is called the float solution comprising the float

baseline, b̂, and the float ambiguity, â, alluding to the floating-point representation

of real-valued numbers in computers. The float solution is derived in Appendix B.

Once the fixed ambiguities, ǎ, are estimated, the float baseline is corrected

based on the residual between the float and fixed ambiguities. The resulting baseline

estimate is called the fixed baseline, denoted b̌. If the fixed ambiguities are correct,

then the fixed baseline is an unbiased estimate of the true baseline, b; however, if

the fixed ambiguities are incorrect, then the fixed baseline can have a bias that is

much larger than its standard deviation. This dissertation is concerned primarily

2



with methods to validate the correctness of the fixed ambiguity estimate and to

bound the position-domain errors in the baseline solution in the event that the fixed

ambiguities cannot be fully validated.

1.2 Required Navigation Performance

Safety-of-life navigation systems are specified using the concepts of Re-

quired Navigation Performance (RNP). RNP is assessed in terms of integrity, ac-

curacy, continuity, and availability [6]. Integrity is specified in terms of integrity

risk (IR), the probability that the solution error exceeds an alert limit (AL) without

warning. Accuracy can be specified in terms of quantiles of interest, such as 95%

accuracy, which refers to the error volume within which 95% of solutions fall. Con-

tinuity risk (CR) is the probability that the solution will become unavailable during

a critical exposure interval given that it was available at the beginning of that in-

terval. Availability is the percentage of time that the solution satisfies its required

integrity, accuracy, and continuity requirements.

RNP for CDGNSS systems has become more demanding with each new

application. The ground-based augmentation system (GBAS), originally specified

over a decade ago as a landing aid for large runways on land, required ALs of 10

m with IR on the order of 10−7 per approach. This leads to a relatively loose 95%

accuracy requirement of 2 m for a zero-mean-error Gaussian-distributed solution,

which can be met by a float CDGNSS solution. More recent navigation system

applications, such as landing aboard an aircraft carrier or a recent demonstration

of autonomous aerial refueling [1], have meter-level ALs, IR on the order of 10−7,
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and decimeter-level accuracy requirements.

The next generation of safety-of-life CDGNSS use cases includes fully au-

tonomous landing and refueling of large, unmanned aerial vehicles, and automated

land vehicle navigation. These applications will demand centimeter- to decimeter-

level position accuracy and more stringent solution integrity than all previous ap-

plications. Integrity is specified in terms of integrity risk (IR), the probability that

the solution error exceeds an alert limit (AL) without warning. The percentage of

time that a system meets its required navigation performance, including accuracy

and IR, is called solution availability. For safety-of-life applications, IR is between

of 10−9 and 10−7 per hour, with required availability in excess of 99%.

1.3 CDGNSS and RNP

The ILS probability of incorrect fix, or failure, is denoted PF,ILS = 1 −

PCF ,ILS. It is common for PF,ILS to be orders of magnitude greater than IR. PF,ILS is

a function of the measurement quality, satellite geometry, and number of measure-

ments used. Typically, 0.001 < PF,ILS < .1 for most CDGNSS applications [3,16].

Because IR � PF,ILS frequently, safety-of-life systems have not historically used

fixed solutions. To exploit the accuracy benefit of the fixed solution while pro-

tecting solution integrity, the biases induced by any incorrect fixes must be ad-

dressed. Two such methods are the Geometry Extra Redundant Almost Fixed So-

lutions (GERAFS) [42] and the Enforced Position-domain Integrity-risk of Cycle

resolution (EPIC) [17, 18] algorithms.

In both EPIC and GERAFS, the IB algorithm is used to fix the integer ambi-

4



guities because there are analytic expressions for PCF ,IB as well as the probabilities

that IB will incorrectly resolve the ambiguities to any particular integer offset from

the true ambiguity [29]. Denote the IB fixed baseline and fixed ambiguities as

b̌IB ∈ R3 and ǎIB ∈ Zm, respectively. Each potential integer offset between the

true and IB ambiguity, ∆ǎk ∈ Zm would result in a particular bias in the baseline

estimate, µk.

The total probability that the fixed baseline estimate has errors that exceed

the AL in vertical or horizontal dimensions can then be computed by considering

the alternative hypotheses that the true ambiguity is a = ǎIB −∆ǎk. Let b and b̌IB

denote the vertical components of b and b̌IB, respectively. Similarly, VAL is the AL

in the vertical direction. The IR for the IB solution is

P
(∣∣b̌IB − b

∣∣ > VAL
)

=
∑

∆ǎk∈Zm
P
(∣∣b̌IB − b

∣∣ > VAL
∣∣ ǎIB = a+ ∆ǎk

)
(1.1)

GERAFS and EPIC both bound this probability and issue an alert whenever the

bound exceeds a specified IR. A similar computation must be made for both the

vertical and horizontal components of the baseline estimate. Both GERAFS and

EPIC use measurement models to decide a priori whether to use the fixed or float

baseline estimate. Such methods called “model-driven.”

Alternatively, data-driven methods use a posteriori statistical tests on the

ambiguity residual , denoted ε̌ = â − ǎ, to choose between the float and fixed

baseline estimates. Such methods aim to reduce the probability of accepting an

incorrect fix by rejecting fixes with ambiguity residuals that are large in a statistical

sense. One class of data-driven methods is Integer Aperture (IA) estimators [28].
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Many such methods have been proposed including the ratio test [37], the difference

test [43], the projector test [39], integer aperture bootstrapping [33], ellipsoidal IA

[31], and the optimal IA estimator [36]. When extended to include partial ambiguity

resolution, IA estimators are called Generalized Integer Aperture (GIA) estimators

[4].

Existing IA methods are insufficient for safety-of-life applications, as will

be discussed in Ch. 2, but they are attractive because they validate the correctness

of the integer ambiguity estimate, eliminating the need to account for the position-

domain biases by incorrect fixes. If an IA method could be devised such that PF

can be proven to be less than a specified failure rate, P̄F < IR, then such a sys-

tem could satisfy smaller ALs since the IA method would preclude large biases in

the baseline estimate. This dissertation develops such a GIA method and demon-

strates its performance. An important result of this work is that GIA methods imply

position-domain biases when the full set of ambiguities is unable to be validated.

The concept of position-domain integrity from the model-driven EPIC algorithm is

extended to the novel data-driven method developed in this dissertation.

1.4 Triplex CDGNSS Architectures

A common design approach in safety-of-life systems to improve continuity

performance is to have three subsystems that perform the same function. Such

designs are called triplex architectures. Such architectures provide continuity of

the required function with a redundant backup even when a single subsystem fails.

The outputs of the three systems can be combined using mid-level voting (MLV),
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in which the middle value of each output from the subsystems is selected for use by

other parts of the overall system.

MLV-triplex architecture provide the additional benefit that latent faults –

faults present in the system, but not yet detected or excluded – will not corrupt the

final output from the MLV logic. This benefit reduces integrity risk since a latent

fault in a simplex (non-redundant) architecture can cause a large positioning error.

Even in a triplex architecture that averages the three solutions, a single large error

can cause the final estimate to have an error that exceeds an AL without an alarm.

Because the integrity requirements of current and future CDGNSS positioning sys-

tems are so demanding, it is worth considering the potential benefits of MLV-triplex

architectures on fault-free integrity performance.

1.5 Thesis Statement and Expected Contributions

This dissertation defends the following thesis statement:

Integer-fixed CDGNSS positioning for demanding safety-of-life applica-

tions requires a novel data-driven integer ambiguity validation method which ben-

efits further from mid-level voting triplex architectures.

The following is a summary of the contributions of this dissertation:

1. Generalized Integer Aperture Bootstrapping: The Generalized Integer

Aperture Bootstrapping (GIAB) algorithm is develop to provide provable

guarantees that the fixed integer ambiguities are correct. The performance of

GIAB is compared to existing IA methods, and the theoretical performance
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of the algorithm is validated via Monte Carlo simulation. This work has been

published in [11, 15].

2. Data-Driven Position-Domain Integrity for Generalized Integer Aper-

ture Bootstrapping: The several important conditional probability density

functions are derived for the baseline estimate produced by the GIAB algo-

rithm. It is proven that baseline estimates produced from data-driven par-

tial ambiguity resolution methods have biased a posteriori error distributions

even when the baseline estimate is only constrained based on correctly val-

idated ambiguities. The a posteriori distribution of the GIAB baseline es-

timate is used to derive a data-driven position-domain integrity approach,

ensuring that GIAB is fully appropriate for safety-of-life applications. The

theoretical distributions derived in this paper are validated via Monte Carlo

simulation. The performance of GIAB is compared to the EPIC. This work

has been published in [12, 15].

3. Correlation-Aware Integrity Protection for Fault-Free MLV-Triplex

CDGNSS Solutions: Integrity risk monitors are derived for MLV-triplex

CDGNSS architectures using float, fixed, or position- domain integrity so-

lutions. The performance of all monitors is compared using a world-wide

covariance analysis tool, called the availability model (AM). Improvements

for each type of CDGNSS solution are shown by comparison to simplex ver-

sions of the same algorithms. This work has been published in [10, 13, 14].
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1.6 Published Works

The publications to which the author contributed during the course of car-

rying out the contributions described in this dissertation are as follows:

Journal Publications

1. G. Nathan Green and Todd E. Humphreys. Data-driven generalized integer

aperture bootstrapping for high-integrity positioning. IEEE Transactions on

Aerospace and Electronic Systems, 2017. Submitted for review.

2. G. Nathan Green and Todd E. Humphreys. Position-domain integrity anal-

ysis for generalized integer aperture bootstrapping. IEEE Transactions on

Aerospace and Electronic Systems, 2017. Submitted for review.

3. G. Nathan Green and Todd E. Humphreys. Correlation-aware integrity pro-

tection for fault-free federated triplex CDGNSS solutions. Navigation, Jour-

nal of the Institute of Navigation, 2018. In preparation.

Conference Publications

1. G. Nathan Green, Martin King, and Todd E. Humphreys. Fault free integrity

of mid-level voting for triplex differential GPS solutions. In Proceedings of

the ION GNSS+ Meeting, Tampa, FL, 2015.

2. G. Nathan Green, Martin King, and Todd E. Humphreys. Data-driven gener-

alized integer aperture bootstrapping for real-time high integrity applications.

In Proceedings of the IEEE/ION PLANS Meeting, Savannah, GA, 2016.
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3. G. Nathan Green and Todd E. Humphreys. World-wide triplex CDGNSS

performance. In ”The Proceedings of the Royal Institute of Navigation”,

Glasgow, Scotland, UK, 2016.

1.6.1 Dissertation Organization

Chapter 2 develops the GIAB algorithm, including a method to establish

the acceptance thresholds to rigorously control PF while nearly maximizing PCF .

Chapter 3 derives important conditional probability density functions of the GIAB-

produced baseline estimate, validates the correctness of the distributions via Monte

Carlo simulation, extends model-driven position-domain integrity concepts to data-

driven position-domain integrity, and demonstrates the performance improvement

of GIAB over the existing state-of-the-art algorithm, EPIC. Chapter 4 develops

MLV-triplex CDGNSS integrity risk monitors and compares their performance via

the AM tool. Chapter 5 concludes this dissertation with a summary of the contribu-

tions.

Some of the longer derivations of important results from the contributions

are collected in appendices. Appendix A provides a detailed derivation of a GNSS

measurement model. Appendix B derives the linearized least-squares estimator

called the float solution. Appendix C explores important properties of the float

ambiguity error and the IB algorithm. Appendix D derives a method to efficiently

search all non-negligible integer ambiguity alternatives while providing a provable

bound on the integrity risk taken by neglecting unexplored alternatives. Appendix E

derives an integrity monitor for MLV-triplex solutions when the correlations among
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the three solutions are unknown.

1.7 Nomenclature

AL Alert Limit

AM Availability Model

BIE Best Integer Equivariant

BRSD Between Receiver Single Difference

CCD Code Carrier Divergence

CDF Cumulative Density Function

CF Correct Fix

CR Continuity Risk

CSC Carrier Smoothed Code

DFS Divergence Free Smoothing

EPIC Enforced Position-domain Integrity-risk of Cycle resolution

EPIR Enlarged Pull-In Region

GBAS Ground Based Augmentation System

GERAFS Geometry Extra Redundant Almost Fixed Solutions

GIA Generalized Integer Aperture



GIAB Generalized Integer Aperture Bootstrapping

GNSS Global Navigation Satellite System

IA Integer Aperture

IAB Integer Aperture Bootstrapping

IB Integer Bootstrapping

ILS Integer Least Squares

IR Integrity Risk

LPF Low Pass Filter

MAP Maximum A Posteriori

ML Maximum Likelihood

MLV Mid-Level Voting

MMSE Miminum Mean Square Error

PAR Partial Ambiguity Resolution

PDF Probability Density Function

RF Radio Frequency

RNP Required Navigation Performance

SV Space Vehicle

WAAS Wide Area AugmentationSystem
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Chapter 2

Generalized Integer Aperture Bootstrapping

2.1 Introduction

This chapter focuses on the portion of the IR budget allocated to incor-

rect resolution, or fixing, of the carrier-phase integer ambiguities that are a central

feature of CDGNSS positioning. This portion is specified as the acceptable proba-

bility of incorrect fix, or failure rate, P̄F . High-integrity CDGNSS techniques must

provably satisfy demandingly low P̄F . Two such methods are the Geometry Ex-

tra Redundant Almost Fixed Solutions (GERAFS) [42] and the Enforced Position-

domain Integrity-risk of Cycle resolution (EPIC) [17,18] algorithms. Both of these

rely exclusively on a priori error models to determine, before the measurements are

processed, whether a fixed solution or a float backup solution will be selected. This

approach is termed model-driven because the solution selection logic is entirely

dependent on the prior error model. Because the EPIC and GERAFS algorithms at-

tempt to bound IR using the a priori distribution, they are inherently conservative.

Their conservatism arises from the need to protect against potentially-incorrect fixes

without the benefit of conditioning on the observed carrier phase measurements.

In contrast to the model-driven approach, data-driven methods decide a pos-

teriori whether to accept the fixed or float solution. Conditioning the selection on
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the observed measurements can reduce the risk of incorrect fixing. A subset of

data-driven methods is called integer aperture (IA) estimation. In IA methods, the

integer ambiguity vector is estimated using either integer bootstrapping (IB) [26]

or integer least squares (ILS) [34], after which a test statistic is computed from

the ambiguity residual, i.e., the difference between the float and fixed ambiguities.

This test statistic is compared to a threshold to decide between the fixed and float

solution.

Perhaps the simplest IA method is IA bootstrapping (IAB), which resolves

the integer ambiguities via IB and then tests the fixed solution by applying IB to a

scaled-up version of the ambiguity residual [33]. If the test returns the zero vector,

which occurs only when the residual is small, then the fixed solution is selected;

otherwise the float solution is selected. IAB is sub-optimal in the sense that IB

does not always find the maximum likelihood integer ambiguity, as opposed to ILS,

which is guaranteed to do so. It is also sub-optimal in the sense that it does not max-

imize the probability of successfully fixing the ambiguities for a given probability

of incorrectly fixing them. But it has the advantage that all of these probabilities

have analytically computable values, which allows the decision threshold to be set

analytically as a function of P̄F . More generally, IAB enables the strict performance

requirements that safety-of-life applications demand to be provably satisfied.

The remaining IA methods discussed in this section solve for the integer

ambiguity with ILS, which is optimal in the maximum likelihood sense for Gaus-

sian measurement noise. Ellipsoidal IA takes the covariance weighted norm of the

ILS ambiguity residual as its test statistic [31]. As with IAB, the simplicity of this
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statistic allows the decision threshold to be set analytically, but the probability of

successfully fixing the ambiguities is sub-optimal. While ellipsoidal IA can have

a higher probability of success than IAB for models with a few ambiguities of ap-

proximately equal conditional variance, IAB tends to provide a higher probability

of success for models in which the conditional variances of the ambiguities differ by

more than about 10%, which tends to be the case for realistic measurement models.

Other ILS-based IA methods employ test statistics that are a function of the

ambiguity residuals of the ILS fix and of one or more higher-cost alternate fixes.

These include the ratio test [37], the difference test [43], and the optimal test [36].

Unlike IAB and ellipsoidal IA, none of these methods’ test statistics has an analyt-

ical probability distribution or decision threshold [35]. In practice, decision thresh-

olds are set based on one of a few ad hoc methods. The crudest of these, which

applies a fixed threshold for all measurement models, does not allow one to control

the actual probability of incorrect fix, PF , for time-varying measurement models.

More sophisticated methods determine the decision threshold that approximately

satisfies P̄F via Monte Carlo simulation, lookup tables [37], or functional approx-

imations [3, 40]. But these techniques are inapt for safety-of-life systems because

the resulting thresholds cannot be analytically proven to satisfy P̄F for any particu-

lar model. At best, they incorporate sufficient conservatism to protect the solution

at the expense of decreased availability. Of course, in the limit as the number of test

points becomes exceedingly large, Monte Carlo simulation for a given measure-

ment model can yield an arbitrarily exact decision threshold, but such simulation is

hardly feasible for real-time operation.
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The optimal IA algorithm takes as its test statistic the a posteriori probabil-

ity of correct fix [27]. Counterintuitively, the threshold corresponding to a particular

P̄F for this statistic is not analytically computable. Also, the optimal IA estimator

involves an infinite sum over all possible integer ambiguities. The search can be

truncated once a sufficiently large number of integer fixes has been evaluated, but

the number required depends on the strength of the model and on the required P̄F .

To satisfy the most demanding integrity requirements, the search often extends to

several hundred candidate fixes in realistic scenarios, which becomes impractical

for real-time applications.

This chapter’s focus on IAB is motivated by the alternative IA approaches’

computational complexity or lack of an analytical connection between P̄F and the

decision threshold.

This chapter extends the IAB technique to a generalized form in which sub-

sets of the full set of integer ambiguities are considered for resolution if the full

set cannot be resolved confidently. This generalization makes IAB a member of

the family of Generalized Integer Aperture (GIA) estimators [4]. These algorithms

evaluate successively smaller subsets until either a satisfactory fix is found or the

float solution is applied as a last resort. Also known as partial ambiguity resolution

(PAR), this technique ensures gradual degradation of performance for weak models.

In summary, to meet the increasingly stringent performance requirements

of safety-of-life applications there is a need for a data-driven ambiguity resolution

and validation method whose decision threshold for choosing between a fixed and

float solution can be set analytically for a desired P̄F . To maximize availability,
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the method must be generalized to accommodate PAR. Extant methods in the high-

integrity CDGNSS literature do not satisfy this need.

This chapter offers three contributions to address this need. First, IAB is

extended to encompass PAR. The extended technique is called Generalized Integer

Aperture Bootstrapping (GIAB). Second, analytical characterizations of the prob-

ability of incorrect fix, correct partial fix, and correct full fix are developed and

validated. Third, a method for setting the integer aperture size and shape is devel-

oped that ensures GIAB’s availability exceeds IAB’s subject to a given P̄F . These

contributions are validated with a set of Monte Carlo simulations, and algorithm

performance is compared to the optimal IA, ellipsoidal IA, and IAB methods.

2.2 Generalized Integer Aperture Bootstrapping
2.2.1 Integer Bootstrapping Overview

The basic theory of IB is reproduced here from [26] with a few amplifica-

tions for ease of understanding and notational consistency. The treatment begins

with the linearized, short-baseline GNSS measurement model

y = Bb+ Aa+ ν (2.1)

where y ∈ Rn contains the “observed-minus-modeled” double-difference carrier-

phase and, optionally, pseudorange measurements, b ∈ R3 is the unknown, real-

valued correction to the modeled baseline between GNSS antennas, a ∈ Zm holds

the unknown carrier phase integer ambiguities, B and A are appropriately dimen-

sioned measurement sensitivity matrices, and ν ∈ Rn is the zero-mean, double-
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difference measurement noise with variance Qy. See Appendix B for a derivation

of this measurement equation and Appendix A for a derivation of an appropriate

model for Qy.

Applying weighted least squares estimation to (2.1), with H = [B A], pro-

duces real-valued estimates of b and a:b̂
â

 =
(
HTQ−1

y H
)−1

HTQ−1
y y (2.2a)

E


b̂
â


 =

b
a

 (2.2b)

cov


b̂
â


 =

Qb̂ Qb̂â

QT
b̂â

Qâ

 =
(
HTQ−1

y H
)−1

(2.2c)

The estimates â ∈ Rm and b̂ ∈ R3, called the float ambiguity and float baseline,

ignore the integer constraint a ∈ Zm.

Integer ambiguity resolution techniques map the float ambiguity â to a vec-

tor of integers ǎ ∈ Zm. Such processes can be represented by the map

ǎ = M(â, Qâ) : Rm × Sm++ 7→ Zm (2.3)

where Sm++ is the set of positive definite matrices of size m × m. The IB variant

of M operates in such a way that when Qâ has non-zero off-diagonal elements, the

probability that ǎ = a depends on the ordering of the elements of â [26]. To ensure

near-optimal IB performance, an integer-preserving transformation is applied to
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decorrelate, insofar as possible, the elements of â; details of this transformation,

referred to as the Z-transform, may be found in [25, 32]. The decorrelated float

ambiguity is ẑ = ZT â, and the transformed true ambiguity is z = ZTa, with

Z being the integer-preserving transformation matrix. Likewise, Qâ and Qb̂â are

transformed as Qẑ = ZTQâZ and Qb̂ ẑ = Qb̂âZ. All integer-related operations

hereafter will be performed in the decorrelated space, with ẑ referred to as the float

ambiguity.

The functional map M(ẑ, Qẑ) partitions Rm into disjoint subsets, called

pull-in regions, that collectively cover Rm. Each region is an integer-valued trans-

lation of the subset

S0 , {ẑ |M(ẑ, Qẑ) = 0} (2.4)

The pull-in region Sζ ⊂ Rm is the set of all ẑ mapped by M(ẑ, Qẑ) to the integer

vector ζ ∈ Zm:

Sζ , {ẑ |M(ẑ, Qẑ) = ζ, ζ ∈ Zm} = S0 + ζ (2.5)

For IB, the pull-in regions are m-dimensional parallelotopes centered on the inte-

gers.

For presentation of the IB algorithm, it will be convenient to decompose the

covariance of the float ambiguity asQẑ = LDLT , where L is a unit lower triangular

matrix and D is a diagonal matrix, and to model the float ambiguity as the true

ambiguity plus zero-mean Gaussian noise, ẑ = z+ε, ε ∼ N(0, Qẑ). Multiplication

by L−1 transforms ε into a vector whose elements are mutually uncorrelated: εc ,

L−1ε, εc ∼ N(0, D). Letting lij denote the ijth element of L, di the ith element of
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the diagonal of D, and εi and εci the ith elements of ε and εc, respectively, εi and its

variance can be computed from the first i components of εc as

εi =
i∑

k=1

likεck, var (εi) =
i∑

k=1

l2ikdk (2.6)

IB can be interpreted as greedy constrained maximum likelihood estimation

in which the integer constraint z ∈ Zm is applied sequentially. Application of the

integer constraint can also be viewed as conditioning on an assumed value of ε.

For convenience in what follows, let the shorthand notation vI denote the vector

composed of the first i−1 elements of any vector v of sufficient length. Thus, εI =

[ε1, . . . , εi−1]T . Let εj|εI represent the jth element of ε conditioned on εI being

known. Starting with (2.6), and exploiting the lack of correlation in the elements of

εc, it is shown in Section C.1 that

εj|εI ∼ N

(
i−1∑
k=1

ljkεck,

j∑
k=i

l2jkdk

)
, j = i, ...,m (2.7)

Note that var(εi|εI) = di. Thus, di can be interpreted as the conditional variance

of the ith ambiguity. A larger value of di indicates that correct integer resolution of

the ith ambiguity will be more difficult.

One may alternatively find the mean of εj|εI via the standard expression for

conditional mean. Assume εI ∼ N(0, QI), and let QjI ∈ R1×(i−1) be the cross-

correlation matrix between εj and εI , for j ≥ i. Then the mean of εj conditioned

on knowledge of εI is [2]

E[εj|εI ] = QjIQ
−1
I εI (2.8)
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With these preliminaries, the algorithm for a single step of IB is straightfor-

ward. Let zI = [z1, . . . , zi−1]T , and suppose that one assumes zI = žI for some

known žI = [ž1, . . . , ži−1]T ∈ Zi−1. Then, starting from ẑ = z+ε, the constrained

maximum likelihood estimate of zi given zI = žI is

ẑi|I = ẑi −QiIQ
−1
I (ẑI − žI) (2.9)

Defining ε̌ , ẑ− ž and ε̌c , L−1ε̌, and referencing (2.7) and (2.8), one recognizes

(2.9) as equivalent to

ẑi|I = ẑi − E [εi| εI = ε̌I ]

= ẑi −
i−1∑
k=1

lik ε̌ck

= zi +
i∑

k=1

likεck −
i−1∑
k=1

lik ε̌ck

(2.10)

where the last equality makes use of ẑi = zi + εi and (2.6). The quantities ẑi|I , i =

1, 2, ...,m are called the sequentially-constrained float ambiguity estimates; these

are stacked to form the vector ẑc.

It is shown in Appendix C.2 that ε̌c = ẑc−ž, which evokes an interpretation

of ε̌c as the sequentially-constrained ambiguity residual. When ε̌ci, the ith element

of ε̌c, is small, this implies that the sequentially-constrained float estimate ẑci = ẑi|I

is close to ži, meaning the assumption zi = ži is likely correct. If the assumption is

correct for all zk, k ∈ {1, . . . , i− 1}, then εck = ε̌ck for all k ∈ {1, . . . , i− 1}, and

(2.10) simplifies to

ẑi|I = zi + εci (2.11)

21



The appearance of εci as the sole noise element in this equation indicates that, given

the true value of zI , ẑi|I is uncorrelated with εI , and, by extension, with ẑI . This

important property allows the integer constraint zi ∈ Z to be enforced directly

on ẑi|I by simple rounding, yielding the sequentially-maximum-likelihood integer

estimate

ži = bẑi|Ie (2.12)

where b·e denotes nearest integer rounding. The set of successively-obtained in-

teger estimates are stacked to form the vector ž = [ž1, . . . , žm]T , which is called

the fixed ambiguity, as distinguished from the float ambiguity ẑ. Note that ž is not

necessarily the maximum-likelihood (ML) estimate; rather it is a greedy approxi-

mation to the ML estimate. Note also that if one or more of the elements in zI are

constrained incorrectly, i.e. the integer error vector ∆zI , žI −zI is nonzero, then

(2.10) instead becomes

ẑi|I = zi + εci +
i−1∑
k=1

lik∆zk (2.13)

where ∆zk is the kth element of ∆zI .

To summarize, the ith IB iteration starts by assuming zI = žI , calculates

ẑi|I subject to this constraint as in the center equation in (2.10), then rounds ẑi|I to

the nearest integer to obtain ži. The full IB algorithm becomes clear by mention

of two additional points: (1) žI is taken to be composed of the integer-rounded

estimates from previous steps, and (2) for i = 1, ẑi|I = ẑi.

An efficient implementation of IB is given in pseudocode below. This im-

plementation, which is functionally equivalent to that given in [26] although its
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internal details differ, is the starting point for the new algorithm developed in this

chapter.

Algorithm 2.1: IB(ẑ, L)

Input : ẑ ∈ Rm, L ∈ Rm×m
Output: ž ∈ Zm

1 ẑc = ẑ
2 for i = 1:m do
3 ži = bẑcie
4 ε̌ci = ẑci − ži
5 for j = i+1:m do
6 ẑcj = ẑcj − lij ε̌ci
7 end
8 end

Once the fixed ambiguity ž is computed, an integer-constrained baseline

estimate, called the fixed baseline, is produced as

b̌ = b̂−Qb̂ ẑQ
−1
ẑ ε̌

= b̂−Qb̂ ẑL
−TD−1ε̌c

(2.14)

The corresponding covariance matrix reflects the improved precision of the baseline

estimate due to integer fixing, assuming all ambiguities were fixed correctly:

Qb̌ = Qb̂ −Qb̂ ẑQ
−1
ẑ QT

b̂ ẑ
(2.15)

The distribution of the fully-fixed baseline conditioned on a particular fixed ambi-

guity ž = z + ∆z is [32](
b̌ |ž = z + ∆z

)
∼ N

(
b+Qb̂ ẑQ

−1
ẑ ∆z, Qb̌

)
(2.16)

Thus, when the integer ambiguity is fixed correctly (∆z = 0), the fully-fixed base-

line has a Gaussian distribution whose mean equals the true baseline b.
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2.2.2 Integer Aperture Bootstrapping (IAB)

IAB extends the IB concept by adding a validation test [33]. The test statistic

for IAB can be expressed as a function of the ambiguity residual ε̌ , ẑ − ž and a

parameter β ∈ [0, 1] called the aperture parameter:

T (ε̌, L, β) =

∥∥∥∥IB

(
1

β
ε̌, L

)∥∥∥∥
0

(2.17)

Here, ‖v‖0 , |{i | vi 6= 0}| denotes the number of non-zero elements in the vector

v. It can be shown that T (ε̌, L, β) = 0 ⇐⇒ |ε̌ci| < β
2
, ∀i ∈ {1, . . . ,m} [33].

Thus, a small β ensures that T (ε̌, L, β) = 0 only when the sequentially-constrained

ambiguity residuals are small, implying that ž = z with high probability. Accord-

ingly, IAB accepts the integer fix produced by IB whenever T = 0, but otherwise

rejects it. In the event that the fix is rejected, IAB resorts to the float solution ẑ.

The overall IAB process can be represented by the map

IAB (ẑ, L, β) ,


IB(ẑ, L) if T (ε̌, L, β) = 0

ẑ otherwise

Note that, since IB(ε̌, L) = 0, a fixed solution can be forced by choosing β = 1;

likewise, a float solution is forced by β = 0.

The set of all float ambiguities mapped to the vector ζ, called Ωζ , is a subset

of the corresponding pull-in region of IB(ẑ, L), with equality if and only if β = 1:

Ωζ = {ẑ | IAB (ẑ, L, β) = ζ } ⊆ Sζ (2.18)

Such sets are called apertures. Due to the integer invariance of IB, Ωζ = Ω0 + ζ.
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Figure 2.1: IAB aperture regions for a two-dimensional example model. This is a
visual representation of the possible outcomes of IAB(ẑ − z, L, β). The central,
darkly shaded region is the success region, in which ž = z. The lightly shaded
regions correspond to incorrect ambiguity fixes, in which ž 6= z. The unshaded
region is the fix-rejection region.
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The IAB apertures have the same shape as the IB pull-in region but are

scaled by a factor of β. Accordingly, gaps between integer-shifted apertures emerge

whenever β < 1, as illustrated in Fig. 2.1. Three important regions can be identi-

fied in Fig. 2.1, each corresponding to a possible IAB outcome. The central, dark

region corresponds to the success event in which the full ambiguity set is resolved

correctly. The union of the many lightly shaded regions corresponds to the fail-

ure event in which one or more integer ambiguities are fixed incorrectly. Values of

ε = ẑ − z falling in the unshaded region result in the fix being rejected. This is the

undecided event. The probabilities of these events are [33]

PS =
m∏
i=1

(
2Φ

(
β/2√
di

)
− 1

)
(2.19a)

PF =
∑

z̃∈Zm\{0}

m∏
i=1

(
Φ

(
β
2
− Liz̃
√
di

)
− Φ

(
−β

2
− Liz̃
√
di

))
(2.19b)

PU = 1− PF − PS (2.19c)

where Li is the ith row of L−1, and Φ (·) is the CDF of the standard normal random

variable.

A few observations should be made about the event probabilities. First,

calculation of PF involves an infinite sum over all integer ambiguities other than

the correct one. One can calculate an approximate PF by summing over a large

number of alternative ambiguities, but this may still be computationally expensive

if the specified acceptable PF , written P̄F , is small or if m is large. Second, PF is

a monotonically increasing function of β, which implies that PF decreases as the

integer aperture is made smaller. Thus, the aperture parameter β controls the failure
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probability. Third, PS is also monotonically increasing in β, which implies that any

increase in PS comes at the expense of an increase in PF .

2.2.3 Generalization to Partial Ambiguity Resolution

Accepting or rejecting the whole of ž, as IAB does, is an extreme approach

that limits the range of useful outcomes. Consider instead a variant of IAB in which

a subset of the elements of ž may be accepted. IAB is well suited to such gen-

eralization from full to partial ambiguity resolution, for two reasons. First, the

lack of correlation between the elements of ε̌c allows an aperture test to be ap-

plied separately to each element. Moreover, the test can be tailored for each ele-

ment: the ith ambiguity can be tested against aperture parameter βi, with the vector

β = [β1, . . . , βm]T chosen such that PF ≤ P̄F . A later section will discuss the ben-

efits of such element-specific aperture sizing. Second, one need not consider every

possible subset of IAB ambiguities, which, besides being computationally demand-

ing, would involve so many aperture tests that satisfying PF ≤ P̄F would require

such small βi values that PS would become intolerably small. Instead, one can

achieve good performance even when considering only the subset corresponding to

the first q ≤ m elements of ẑ, where q is the number that pass the validation test.

This is because any of the commonly-accepted Z transform techniques (e.g., those

in [25,32]) tend to arrange ẑ to greatly increase (though not necessarily maximize)

PS relative to what would have been possible with the un-transformed system1. And

1For any of the common LAMBDA methods, the ordering ensures that σi|I < σi+1|I . The two
variants in [25] further enhance PS by enforcing the constraints that either σi|I < σj|I ,∀ j ≥ i or
σi|I > σj|I ,∀ j ≤ i. The first constraint means that the integers are ordered so that the each integer
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since the expected value of q can be shown to increase with PS , attempted fixing

from the first to last element of ẑ ensures that q will be maximized, or nearly so.

The new algorithm, generalized integer aperture bootstrapping (GIAB), is

given in pseudocode below. GIAB successively fixes ambiguities until it determines

that the next one cannot be fixed without PF exceeding P̄F . The output q is the

number of ambiguities fixed; q < m implies the (q + 1)th validation test failed, so

the last m− q ambiguities were left unfixed.

Algorithm 2.2: GIAB (ẑ, L,β)

Input : ẑ ∈ Rm, L ∈ Rm×m, β ∈ [0, 1]m

Output: q ∈ {0, . . . ,m}, ž ∈ Zmin(q+1,m)

1 q = 0
2 ẑc = ẑ
3 for i = 1:m do
4 ži = bẑcie
5 ε̌ci = ẑci − ži
6 if |ε̌ci| < βi

2
then

7 q = i
8 for j = i+1:m do
9 ẑcj = ẑcj − ljiε̌ci

10 end
11 else
12 break
13 end
14 end

Whereas IAB has three outcome events (success, failure, and undecided),

fixed has the lowest conditional variance from among those not yet fixed. The second constraint
means that the ith ambiguity fixed has the maximum conditional variance from among the first i
ambiguities when conditioned on the other i− 1 ambiguities.
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GIAB has m + 2. These are defined in terms of the random variables ž and q as

follows, where z1:n indicates the vector composed of the first n elements of the

vector z:

F : ž1:q 6= z1:q, q ∈ {1, . . . ,m} (2.20a)

U : q = 0 (2.20b)

Si : ž1:i = z1:i, q = i ∈ {1, . . . ,m} (2.20c)

The failure event F occurs upon acceptance of any incorrect integers. The

undecided event U occurs when no ambiguity is fixed. There are m success events

Si defined for each possible number of correct integer fixes from 1 to m.

The aperture Ωζ ∈ Rm, ζ ∈ Zm, introduced earlier for IAB, can be gener-

alized for partial ambiguity resolution as Ωi,ζ ∈ Rm, ζ ∈ Zi, i ∈ {1, . . . ,m}. Let

ž and q be the outputs of GIAB (ẑ, L,β). Then

Ωi,ζ = {ẑ ∈ Rm | ž1:i = ζ, q = i ∈ {1, . . . ,m}} (2.21)

In other words, Ωi,ζ is the set of all float ambiguity vectors whose first i elements

are mapped and validated by GIAB to ζ ∈ Zi, but whose (i + 1)th element is not

validated. Note that when βi = β for all i ∈ {1, . . . ,m}, then Ωm,ζ = Ωζ, ζ ∈ Zm.

The success event Si can be defined in terms of Ωi,ζ as

Si : ẑ ∈ Ωi,ζ, ζ = z1:i, q = i ∈ {1, . . . ,m} (2.22)

and the failure event can be defined as

F : ẑ ∈

 ⋃
i∈{1,...,m}

 ⋃
ζ∈Zi\z1:i

Ωi,ζ

 (2.23)
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The regions corresponding to the F , U , and Si events are illustrated in Fig. 2.2 for

m = 2.

2.2.4 Partial Ambiguity Resolution Probabilities

To assess GIAB’s theoretical performance, the probability of each possible

event must be computed. For the ith ambiguity reached during GIAB processing,

there are three possibilities: the fix is accepted correctly, accepted erroneously, or

rejected. Conditioned on the event that the first i − 1 integers have been fixed

correctly (i.e., žI = zI), the probabilities for these three events, for i ∈ {1, . . . ,m},

follow from (2.19):

PCi = P

(
|εci| <

βi
2

∣∣∣∣ žI = zI

)
= 2Φ

(
βi/2√
di

)
− 1 (2.24a)

PEi =
∑

ζ∈Z\{0}

P

(
|εci − ζ| <

βi
2

∣∣∣∣ žI = zI

)

=
∑

ζ∈Z\{0}

(
Φ

(
βi
2
− ζ
√
di

)
− Φ

(
−βi

2
− ζ
√
di

))
(2.24b)

PRi = P

(
βi
2
≤ |εci|

∣∣∣∣ žI = zI

)
= 1− PEi − PCi (2.24c)

Note that, for i = 1, žI and zI become empty vectors and the conditioning has no

effect.

The failure event probability, PF , is computed by noting that one or more

fixing errors entail the failure event and that, if an ambiguity is rejected, no further

ambiguities are considered. Thus PEi only contributes to PF if all previous ambi-

guities were fixed correctly. The probability of the ith success event, PSi , can be
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Figure 2.2: Regions of the float ambiguity error, ε ∈ Rm, that are mapped by GIAB
to failure, undecided, and success events for an example model with m = 2. Event
F results if one or more ambiguities are fixed incorrectly. Event Si occurs when
exactly i ∈ {1, . . . ,m} ambiguities are fixed and each of these is correct. Event U
occurs when the first ambiguity is rejected, leaving all ambiguities unfixed.
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computed by applying similar logic. The probability of the undecided event, PU , is

simply PR1. The failure, success, and undecided probabilities are thus

PF = PE1 +
m∑
i=2

PEi

i−1∏
j=1

PCj (2.25a)

PSi =


m∏
j=1

PCj i = m

PR(i+1)

i∏
j=1

PCj i ∈ {1, . . . ,m− 1}
(2.25b)

PU = PR1 (2.25c)

Note that if βi = β for all i ∈ {1, . . . ,m}, then PSm is equal to PS as defined for

IAB in (2.19a).

A bound can be introduced to avoid the infinite sum in calculating PEi.

Consider the region βi
2
≤ |εci| ≤ 1 − βi

2
, which is a subset of the rejection region

βi
2
≤ |εci|, so that PRi ≥ P

(
βi
2
≤ |εci| ≤ 1− βi

2

∣∣ žI = zI
)
. Appending to this

region the correct acceptance region |εci| < βi
2

from (2.24a), and working out the

probability for the combined region, it follows that

PCi + PRi ≥ 1− 2Φ

(
βi/2− 1√

di

)
(2.26)

From this and (2.24c), one obtains the following upper bound on PEi:

PEi ≤ 2Φ

(
βi/2− 1√

di

)
(2.27)

Provided P̄F is small and the measurement model is strong enough that
√
di < 0.2,

as is typical, this bound on PEi is tight. The next section invokes the bound, together

with P̄F , to set the aperture parameters βi.
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2.3 Setting the Integer Aperture Parameters

In IAB, PF is controlled by adjusting a single aperture parameter β. GIAB

is more flexible, as it allows a tailored parameter βi for each validation test. For

any specified P̄F , a parameter vector β = [β1, . . . , βm]T can almost always be

found so that GIAB’s probability of fixing all m integers,PSm , exceeds IAB’s PS .

This section shows how β can be computed analytically to satisfy PF ≤ P̄F , and

develops a technique that chooses β to nearly maximize PSm .

2.3.1 Allocation from Probability of Failure

Each validation test that GIAB performs contributes to PF . The parameter

βi determines the amount of incorrect fixing risk that gets allocated to ith ambiguity,

from an overall risk budget P̄F . (The word risk here and elsewhere in this chapter

refers to the probability of an undesirable event.) Suppose wiP̄F is allocated to the

ith ambiguity, where wi < 1, and suppose the aperture parameters preceding βi

have all been set, which implies that PCj is known for all j ∈ {1, . . . , i− 1}. Then

the maximum allowable βi—the one that maximizes PSi subject to the allocation

wiP̄F—is found in two steps. First, PEi is written as a function of wiP̄F by isolating

its contribution to PF in (2.25a):

PEi(wiP̄F ) =


w1P̄F i = 1

wiP̄F∏i−1
j=1 PCj

i = 2, . . . ,m

(2.28)

Second, the correponding value of βi is found by treating (2.27) as an equality

and inverting it to find βi. Applying the constraint βi ∈ [0, 1], one has βi =
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βmax (PEi, di), with

βmax (PEi, di) , min
[
1,max

[
0, 2

(
1 +

√
diΦ

−1 (PEi/2)
)]]

(2.29)

Note that if any βi = 0, then the ith and following ambiguities cannot be fixed

while satisfying PF ≤ P̄F . Conversely, if βi = 1 for all i ∈ {1, . . . ,m}, then all m

ambiguities can be fixed while satisfying PF ≤ P̄F .

The functions PEi(wiP̄F ) and βmax (PEi, di), which are constructed from

well-known and readily-computable operations, constitute an analytical mapping

from wiP̄F to βi. This analytical relationship is a key benefit of GIAB, as it allows

data-driven partial ambiguity resolution to be applied in safety-of-life systems that

must provably satisfy PF ≤ P̄F .

2.3.2 Optimization for Availability of Full Ambiguity Resolution

Consider how thewi should be chosen. Assuming a nonzero risk is allocated

to each ambiguity, and assuming the full risk budget P̄F is to be exhausted, the wi

should satisfy

0 < wi < 1, ∀i ∈ {1, . . . ,m} and
m∑
i=1

wi = 1 (2.30)

One could allocate an equal fraction of P̄F to each of the m ambiguities by setting

wi = 1/m for all i ∈ {1, . . . ,m}, but this may not be optimal in the sense of max-

imizing the probability PSm of correctly resolving all m ambiguities. The optimal

allocation problem can be posed in terms of β as

β∗ = arg max
β

[PSm (β)]

s.t. PF (β) ≤ P̄F and conditions in (2.30)
(2.31)
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This problem can be approached by gradient ascent, but PSm and PF are

both non-convex functions of β and give rise to many local maxima in the region

of the global maximum. Thus, gradient ascent offers no guarantee of finding the

global optimum, besides which the gradient calculation for this problem is compu-

tationally expensive.

Mercifully, a nearly-optimal choice of the wi can be found by a simple

heuristic. Because both PSm and PF are functions of the conditional variances

di, it is reasonable to compute the weights as functions of di as well. The most

general function satisfying (2.30) is

wi =
f (di)∑m
j=1 f (dj)

(2.32)

where f (di) is a weighting function. Guided by the intuition that more risk must

be allocated to the ambiguities that are most difficult to resolve (those having the

largest di), lest their resulting small βi reject fixing too often, four variants of f(di),

shown in the following table, are considered: Equal-weighting, σ-weighting, σ2-

weighting, and PE-weighting. Note that PE-weighting simply sets f(di) equal to

PEi from (2.27) with βi = 1.

Table 2.1: Weighting Function Alternatives Considered

Equal σ σ2 PE

f (di) 1
√
di di 2Φ

(
−1/2√
di

)

When tested on a variety of models with bootstrap probability of correct

fix ranging from .85 to .9999 and for a wide range of P̄F , it was found that PE-
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weighting produces the highest PSm for all models studied, including cases of flat

spectra (e.g., max {di}m1 /min {di}m1 < 1.1), and spectra with significant variation

(e.g., max {di}m1 /min {di}m1 > 7). When performing gradient ascent optimization

starting from the PE-weighted β, or starting from a large number of random initial

β distributed across its whole range, there was never observed more than a 0.03%

increase in PSm . Moreover, compared to the common-parameter case in which βi =

β for all i ∈ {1, . . . ,m}, the probability PSm for PE-weighting was never lower,

and almost always higher—often by several percent. PE-weighting can thus be

considered nearly optimal, and is the recommended strategy for aperture sizing. The

overall aperture sizing algorithm is given in the following pseudocode. Note that

even when the algorithm’s output β does not quite maximize PSm, it nevertheless

guarantees PF ≤ P̄F , which is most important for safety-of-life systems.

Algorithm 2.3: SetBeta
(
P̄F ,d

)
Input : P̄F ∈ [0, 1], d ∈ Rm
Output: β ∈ [0, 1]m

1 Σ = 0;
2 A = 1;
3 for i = 1:m do
4 PEi = 2Φ

(
− 1/2√

di

)
5 Σ = Σ + PEi
6 end
7 for i = 1:m do
8 wi = PEi

Σ

9 βi = min
(

max
[
2
(

1 +
√
diΦ

−1
(
wiP̄F

2A

))
, 0
]
, 1
)

10 A =
(

2Φ
(
βi/2√
di

)
− 1
)
A

11 end
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2.4 The GIAB Baseline

Analogous to the float baseline b̂ and the fixed baseline b̌, a partially-fixed

baseline can be calculated from the inputs and outputs of GIAB. Let (2.14) be

rewritten as

b̌ = b̂−
m∑
j=1

Qj

b̂ ẑc

ε̌cj
dj

(2.33)

whereQb̂ ẑc , Qb̂ ẑL
−T and whereQj

b̂ ẑc
denotes the jth column ofQb̂ ẑc . Rewriting

b̌ in this way reveals that each element of the sequentially-constrained ambiguity

residual ε̌c makes a separate correction to b̂ in the direction defined by the vector

Qj

b̂ ẑc
. To obtain a partially-fixed baseline, one simply truncates the summation.

Thus, the baseline constrained only by the first i ambiguities, denoted b̌i, is

b̌i = b̂−
i∑

j=1

Qj

b̂ ẑc

ε̌cj
dj

(2.34)

Its covarianceQb̌i , assuming all fixed ambiguities are correctly fixed, can be derived

from (2.15):

Qb̌i = Qb̂ −
i∑

j=1

1

dj
Qj

b̂ ẑc

(
Qj

b̂ ẑc

)T
(2.35)

For high-integrity positioning, the probability distribution of the baseline

vector is of great importance. It can be shown that the float baseline b̂ ∼ N(0, Qb̂).

On the other hand, the fixed IB baseline from (2.14) is distributed as an infinite sum

of Gaussians, though, like b̂, it is unbiased [26].

Analysis of the baseline resulting from GIAB is complicated by the effects

of data-driven partial fixing. If, for some reason, one decides a priori to fix only
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i ambiguities (e.g., based on the strength of the model), then, given that all fixed

ambiguities are fixed correctly, b̌i has a simple distribution:

b̌i| (ž1:i = z1:i) ∼ N(0, Qb̌i), i ∈ {1, . . . ,m}

One might expect the same distribution to apply for GIAB when q = i < m.

However, there is key difference between these two cases: q = i < m implies that

GIAB has rejected fixing the (i + 1)th ambiguity. The data-driven (a posteriori)

decision to reject yields a different baseline distribution than that of a priori partial

fixing:

b̌i| (ž1:i = z1:i, q = i < m) � N(0, Qb̌i)

To understand why, recall that q = i < m implies GIAB rejected fixing the (i+1)th

ambiguity upon finding that |ε̌c(i+1)| ≥ β(i+1)/2, as fixing it would violate PF < P̄F .

Even so, the most likely fix for the (i+ 1)th ambiguity, given ε̌c(i+1) and given that

ž1:i = z1:i, is the same one that would have been produced by IB, which GIAB

outputs in ži+1. The next most likely fix, which is the next nearest integer, and its

associated conditional ambiguity residual are

ži+1,alt = ži+1 + sgn
(
ε̌c(i+1)

)
(2.36a)

ε̌c(i+1),alt = ε̌c(i+1) − sgn
(
ε̌c(i+1)

)
(2.36b)

Equation (2.34) indicates that if the (i+ 1)th integer were to be fixed, the

adjustments to b̌i in the most likely and alternate cases would be

b̌i+1 − b̌i = −Q(i+1)

b̂ ẑc

ε̌c(i+1)

di+1

(2.37a)

b̌i+1,alt − b̌i = −Q(i+1)

b̂ ẑc

ε̌c(i+1),alt

di+1

(2.37b)
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It is shown in Section 3.4.6 that either b̌i+1 or b̌i+1,alt is unbiased with prob-

ability near 1. It follows that, having examined ε̌c(i+1), but having rejected the

correction it offers, and the correction ε̌c(i+1),alt offers, GIAB will, with probability

near 1, produce a biased b̌i. Therefore, for data-driven partial fixing, it is wrong—

and potentially hazardous—to assume the resulting constrained baseline estimate

is unbiased. For a complete discussion on the integrity implications of partial ambi-

guity resolution, and for development of the a priori and a posteriori partially-fixed

baseline distributions, see Ch. 3.

2.5 Validation via Monte Carlo Simulation

To validate the GIAB event probabilities PF , PU , and PSi ,∀i ∈ {1, . . . ,m},

extensive Monte Carlo simulations were performed on float solution models with

varying measurement error but the same satellite geometry. For each model, the

simulation was initialized by computing the decorrelating Z-transform and using

PE-weighting to set the integer aperture parameters. Then a large sample was drawn

from the distribution described by (2.2) to generate the float solution errors, the

float baseline, and float ambiguities. The float ambiguities were then Z-transformed

and the GIAB algorithm was applied to the transformed float ambiguity solution.

Finally, the outputs were logged, including the number of correctly fixed samples,

tabulated by q, the number of incorrectly fixed samples, tabulated by the first errant

ambiguity, and the partially-fixed baseline error, tabulated by q.

The sample size for each simulation was chosen to ensure that a statistically

significant number of failures occurred or a significant number of solutions was
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available for each value of q. This chapter’s theoretical event probabilities were then

compared to the simulated results. To examine the goodness of fit between theory

and simulation, the differences between predicted and simulated probabilities were

calculated, normalized by the expected standard deviation in the measured rate.

Several models were simulated to illustrate a range of failure rates and fixing

probabilities. Only small models with 7 ambiguities are presented in full detail, but

similar results were obtained for m ∈ {14, 21, 28}. In the following tables, E is an

event, whether F , U , or Si for i ∈ {1, . . . ,m}, PE is the predicted event probability,

P̂E is the event probability as measured from the Monte Carlo simulation, and kPE
is

the normalized difference between the predicted and estimated event probabilities.

The predicted probability of failure was computed using the bound on PEi given in

(2.27). The difference is normalized by the standard deviation of the Beta distribu-

tion, β (nMCPE, nMC (1− PE)), which is the posterior distribution of PE given the

Monte Carlo results. Thus,

kPE
=

P̂E − PE√
PE(1−PE)
nMC

(2.38)

The value of kPE
is interpreted as follows: if |kPE

| < N , then the predicted and

measured probabilities differ by no more than N standard deviations.

Table 2.2 shows the simulation results for nMC = 4 × 108 Monte Carlo

samples from a float distribution with a bootstrap probability of correct fix PCF ,B =

1 − 2 × 10−5 for P̄F = 10−8. This strong model was chosen to validate the event

probabilities when partial fixing is rarely needed. Table 2.3 shows the simulation

results for nMC = 2.2 × 107 Monte Carlo samples from a float distribution with
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Table 2.2: Predicted vs Simulated Event Probabilities for a Strong Model

E PE P̂E kPE

F 10−8 5e-9 1.0000

U 0.0007217 0.0007204 1.0098

S1 0.0004399 0.0004396 0.2180

S2 0.0005133 0.0005131 0.1440

S3 0.0011997 0.0012005 -0.4574

S4 0.0009000 0.0009023 -1.4966

S5 0.0018919 0.0018902 0.7913

S6 0.0003955 0.0003956 0.0896

S7 0.9939380 0.9939380 -0.0864
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a bootstrap probability of correct fix PCF ,B = 0.988 and P̄F = 10−5. This weak

model was chosen to validate the event probabilities when partial fixing must be

employed frequently.

Table 2.3: Predicted vs Simulated Event Probabilities for a Weak Model

E PE P̂E kPE

F 0.00001 0.0000101 -0.2673

U 0.13872 0.138628 1.1858

S1 0.09308 0.093210 -2.2452

S2 0.08423 0.084117 1.9596

S3 0.09987 0.099910 -0.8364

S4 0.07162 0.071578 0.6782

S5 0.08010 0.080070 0.2955

S6 0.03362 0.033647 -0.7922

S7 0.39878 0.398801 -0.2348

As can be seen in Tables 2.2 and 2.3, both the strong and weak model pre-

dictions match the simulation results well.
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2.6 Comparison against Existing IA Methods

To demonstrate the improved performance of the GIAB aperture sizing al-

gorithm, GIAB was compared with existing IA methods within Monte Carlo simu-

lations for m ∈ {2, 7}. For the m = 7 simulation, a single representative satellite

geometry was used with the measurement covariance scaled in the same way as

described in section 2.5 to give a weak model that would test GIAB in the least fa-

vorable circumstance for comparison with the optimal IA method. IAB and GIAB

compare similarly to the m = 2 case, so results are not tabulated for IAB for com-

pactness. Table 2.4 shows the results for GIAB. Note the greatest benefit of GIAB

is in partial ambiguity resolution: whereas optimal IA correctly resolves the full set

of ambiguities less than 84.2% of the time, GIAB correctly fixes some ambiguities

almost 95% of the time, and more than half the ambiguities over 82% of time.

For the m = 2 simulation, the same set of 106 float ambiguity samples was

processed using the optimal IA method, the ellipsoidal IA method, IAB, and GIAB.

The results are visualized by a scatter plot of the float ambiguities in Fig. 2.3. Each

point is shaded according the results of the optimal IA method: dark gray points

were correctly fixed, light gray points were left floating, and large, red points were

fixed incorrectly.

The apertures of the ellipsoidal, IAB, GIAB, and optimal methods are plot-

ted over the scatter plot to illustrate the comparative probability of successfully fix-

ing all integers for P̄F = 10−5. The threshold for the optimal method was set using a

larger Monte Carlo simulation of 107 samples such that exactly nMC× P̄F −1 = 99

failures occur. This threshold was then used to determine the outcome of the opti-
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Table 2.4: Joint Probability Mass Function of GIAB (Rows) and Optimal IA
(Columns) Fixing Decision for Weak m = 7 Model

Sopt Uopt Fopt Marginal

S7,GIAB 0.6992 0.0064 0 0.7056

S6,GIAB 0.0009 0.0231 0 0.0239

S5,GIAB 0.0279 0.0253 5E-6 0.0532

S4,GIAB 0.0051 0.0360 7.5E-6 0.0411

S3,GIAB 0.0170 0.0340 0 0.0510

S2,GIAB 0.0227 0.0144 0 0.0370

S1,GIAB 0.0286 0.0089 0 0.0374

UGIAB 0.0403 0.0103 5.8E-5 0.0506

FGIAB 0 5E-5 2.8E-5 7.8E-5

Marginal 0.8415 0.1584 9.8E-5 1
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mal IA method for the smaller simulations. For visualization, the optimal aperture

region was approximated by solving for its location along a polar grid with spacings

of 0.1◦.

It is visually apparent that both IAB, which applies a single threshold, and

GIAB, which applies two different risk-allocated thresholds, are superior to ellip-

soidal IA for the model considered. There is also a visually perceptible improve-

ment from IAB to GIAB; the exact improvement is quantified in Tables 2.5 and 2.6.

The similarity between the GIAB and optimal apertures is clear. It is not visible,

but is important to note that the GIAB aperture is slightly wider than the optimal

aperture in the region of highest density. Since the optimal threshold must be set

by Monte Carlo simulation, it is possible that it will perform worse than GIAB in

practice though it is optimal in theory. This is the case for the results shown in Table

2.6.

Table 2.5 compares the baseline performance of IAB with a single aperture

threshold to that of the optimal IA estimator. This example was for a relatively lax

incorrect fix risk of P̄F = 10−5, so the performance is quite similar: the percent of

samples where IAB rejects a fix that the optimal method correctly accepts is only

0.26%. Compare these results to Table 2.6, in which the percent of samples where

GIAB rejects a fix that the optimal method correctly accepts is significantly lower,

0.0074%. Moreover, GIAB correctly accepts more fixes that the optimal method

rejects. The main advantage of GIAB over optimal IA is that GIAB allows partial

ambiguity resolution. GIAB correctly partially fixes 4.1% of all samples, all of

which are rejected by the optimal method.
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Figure 2.3: Comparison of the integer aperture acceptance regions for integer aper-
ture bootstrapping (IAB), ellipsoidal IA, GIAB, and optimal IA. All apertures allow
the same expected number of incorrect fixes, but yield different rates of accepting
the correct fix. Listed in ascending order of success are the ellipsoidal, IAB, GIAB,
and optimal IA acceptance regions. There is a significant improvement from IAB
to GIAB as many more correct fixes are admitted. The optimal IA decisions only
differ from the GIAB decisions in a small fraction of cases. The scatter plot are
color coded by optimal IA event: dark gray for success, light gray for undecided,
and large red for failure.
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Table 2.5: Joint Probability Mass Function of IAB (Rows) and Optimal IA
(Columns) Fixing Decision for m = 2 Model

Sopt Uopt Fopt Marginal

SIAB 0.954108 0.001876 0 0.955984

UIAB 0.002623 0.041382 0 0.044005

FIAB 0 0 0.000011 0.000011

Marginal 0.956731 0.043258 0.000011 1

Table 2.6: Joint Probability Mass Function of GIAB (Rows) and Optimal IA
(Columns) Fixing Decision for m = 2 Model

Sopt Uopt Fopt Marginal

S2 0.956657 0.001791 0 0.958448

S1 0 0.041416 0 0.041416

UGIAB 0.000074 0.000051 0 0.000125

FGIAB 0 0 0.000011 0.000011

Marginal 0.956731 0.043258 0.000011 1
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2.7 Conclusions

A new data-driven CDGNSS partial ambiguity resolution and validation al-

gorithm has been developed analytically and validated with Monte Carlo simula-

tion. The new algorithm has advantages over the state-of-the-art in that (1) data-

driven methods offer improved availability of integrity over model-driven methods,

(2) the integrity risk due to incorrect fixing is precisely controlled analytically as

compared to functional approximation methods used with the ratio test and sim-

ilar integer aperture methods, and (3) it provides superior probability of success

when compared to IAB or ellispoidal IA and approaches that of optimal IA. In sim-

ulation testing, the new algorithm was shown to provide superior performance to

the current state-of-the-art methods for a range of measurement models. GIAB’s

partial fixing, together with its analytical connection between the allowable failure

rate and its validation thresholds, make GIAB attractive for safety-of-life systems

in challenging environments.
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Chapter 3

Data-Driven Position Domain Integrity for
Generalized Integer Aperture Bootstrapping

3.1 Introduction

State-of-the-art methods in high-integrity CDGNSS enforce IR constraints

in the position domain by accounting for baseline biases induced by incorrect in-

teger fixing. Two such methods are the Geometry Extra Redundant Almost Fixed

Solutions (GERAFS) [42] and the Enforced Position domain Integrity-risk of Cy-

cle resolution (EPIC) [17,18] algorithms. Both of these rely exclusively on a priori

error models to determine, before the measurements are processed, whether a fixed

solution or a float backup solution will be selected. This approach is termed model-

driven because the solution selection logic is entirely dependent on the prior error

model. Because GERAFS and EPIC attempt to bound IR using the a priori distri-

bution, they are inherently conservative. Their conservatism arises from the need

to protect against position domain biases induced by a large number of potentially-

incorrect fixes without the benefit of conditioning on the observed carrier-phase

measurements.

In contrast to the model-driven approach, data-driven methods exploit mea-

sured data to decide whether to accept the fixed or float solution. Conditioning
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selection on the observed measurements reduces the risk of incorrect ambiguity

resolution. Foremost among data-driven techniques is the integer aperture (IA) ap-

proach [28]. In this approach, the integer ambiguity vector is first estimated by some

means, e.g., integer bootstrapping (IB) [26] or integer least squares (ILS) [34], after

which a test statistic is computed from the ambiguity residual, i.e., the difference

between the float and fixed ambiguities. Based on this statistic, a hypothesis test

decides whether to accept or reject the fixed solution.

IA bootstrapping (IAB) is a particularly simple type of IA estimation in

which the integer ambiguities are fixed via IB and the test statistic is produced by

a second application of IB, this time to a scaled-up version of the ambiguity resid-

ual [33]. If the statistic is the zero vector, the fixed solution is selected; otherwise

the float solution is selected. IAB is sub-optimal in two respects: First, IB does not

always find the maximum likelihood integer ambiguity, as opposed to ILS, which is

guaranteed to do so. Second, IAB fails to maximize the probability of successfully

fixing the ambiguities for a given probability of incorrectly fixing them. Although

sub-optimal, IB enjoys a significant advantage: its fixing probabilities are analyti-

cally calculable, which allows the residual scaling parameter to be set analytically

as a function of a desired probability of incorrect fix, or failure rate, P̄F . Crucially,

this property enables a system to provably satisfy the strict performance require-

ments of safety-of-life applications.

It was noted in Section 2.4 that GIAB’s partially-integer-constrained base-

line estimate exhibits non-negligible biases, even when all fixed integers pass val-

idation. But no prior work has characterized these biases or assed their effect on

50



integrity risk.

This chapter makes four novel contributions to the literature: First, it shows

that baseline estimate biases are present in any data-driven partial ambiguity res-

olution algorithm that corrects the float baseline with the validated fixes. Second,

it develops and validates an analytical characterization of the a priori and a pos-

teriori distributions of the GIAB baseline. Third, it extends the position domain

integrity concepts originally developed for EPIC to data-driven algorithms for use

in safety-of-life applications. Fourth, it validates GIAB’s performance via Monte

Carlo simulation and compares this with EPIC.

3.2 Generalized Integer Aperture Bootstrapping Overview

The most important elements of Ch. 2 are collected in this overview for ease

of reference.

Beginning from the LAMBDA-decorrelated float solution, b̂ and ẑ (2.2),

GIAB’s objective is to fix and validate as many of the ambiguities as possible

while ensuring that the probability that a validated ambiguity is incorrect is less

than a specified level, P̄F . GIAB outputs the number of validated ambiguities,

q ∈ {0, . . . ,m}, and the vector, ž ∈ Zmin(q+1,m), whose first q elements are the

fixed and validated ambiguities, and whose (q + 1)th element, if q < m, is the first

fixed but rejected ambiguity.

The outputs of GIAB can be mapped to various events defined in terms of

the random variables ž and q. In the following event definitions, z1:n indicates the
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vector composed of the first n elements of the vector z:

F : ž1:q 6= z1:q, q ∈ {1, . . . ,m} (3.1a)

U : q = 0 (3.1b)

Si : ž1:i = z1:i, q = i ∈ {1, . . . ,m} (3.1c)

Zi : ž1:i = z1:i, q = i ∈ {0, . . . ,m} (3.1d)

Ci : ž1:i = z1:i, i ∈ {1, ...,m} (3.1e)

Ri+1 : q = i < m (3.1f)

The failure event F occurs upon validation of any incorrect integers. The undecided

event U occurs when no ambiguity is fixed. There are m success events Si defined

for each possible number of correctly validated integer fixes from 1 to m. The

event Zi is identical to Si except that it includes the q = 0 (no fixes) case. Note

that the null vector ž1:0 is assumed to be identical to z1:0 so that Z0 = U . The

correct validation event Ci occurs when the first i ≥ 1 integers are fixed correctly,

irrespective of the value of q. The rejection event Ri+1 occurs when GIAB refuses

to fix the (i+ 1)th ambiguity.

GIAB requires that the variance of the float ambiguity be decomposed into

LDLT form such that

Qẑ = LDLT (3.2)

where L is a unit-lower triangular matrix and D is a diagonal matrix. The float

ambiguity can be modeled as the true ambiguity plus zero-mean Gaussian noise,

ẑ = z + ε, ε ∼ N(0, Qẑ). Multiplication by L−1 transforms ε into a vector whose
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elements are mutually uncorrelated: εc , L−1ε, εc ∼ N(0, D).The quantity εc,

called the decorrelated float ambiguity error, plays a key role in the analysis that

follows.

GIAB takes as input a vector, β, called the aperture parameter vector, that

determines the validation threshold for each ambiguity. β also determines the prob-

abilities of the failure, success, and undecided events, PF , PSi , and PU . β is set as

a function of D that ensures PF < P̄F . GIAB can be represented as the function

[q, ž] = GIAB (ẑ, L,β) (3.3)

The event probabilities, PF , PSi , and PU , are defined in (2.24) and (2.25).

These probabilities are determined by β, which is set as a function ofD (Algorithm

2.3) that ensures PF < P̄F .

Let r = min{q + 1,m} for notational simplicity. The ambiguity residual is

defined as ε̌ , ẑ1:r − ž. Note that if ž = z1:r, then ε̌ = ε. Denote the upper

r × r sub-matrix of L as L1:r,1:r. An important quantity, called the sequentially-

constrained ambiguity residual, is defined as ε̌c , L−1
1:r,1:rε̌. This vector has a con-

venient property: if the first i integer ambiguities GIAB fixes are correctly fixed

(i.e., if ž1:i = z1:i), then the (i+ 1)th element of ε̌c, denoted ε̌c(i+1), is uncorrelated

with the previous i elements. This property will be exploited later on. GIAB de-

cides whether to fix the ith ambiguity based on the value of ε̌ci. It operates in such

a way that

|ε̌ci| ≤
βi
2

for i ∈ {1, . . . , q}, q > 0

βi
2
< |ε̌ci| ≤

1

2
for i = q + 1, q < m

(3.4)
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In other words, all i ∈ {1, . . . , q} ambiguities that GIAB validates have small

sequentially-constrained ambiguity residuals ε̌ci, but the (q+1)th ambiguity, which

GIAB refuses to fix (assuming q < m), has ε̌c(q+1) too large for GIAB to confidently

fix. Note that a rounding operation within GIAB ensures |ε̌ci| ≤ 1/2.

If the full set of ambiguities is fixed and validated, the float baseline can be

constrained by the float ambiguity residual, resulting in the so-called fixed baseline

estimate:

b̌ = b̂−Qb̂ ẑQ
−1
ẑ ε̌

= b̂−Qb̂ ẑ
(
L−TD−1L−1

)
Lε̌c

= b̂−Qb̂ ẑL
−TD−1ε̌c

= b̂−Qb̂ ẑcD
−1ε̌c

(3.5)

where Qb̂ ẑc , Qb̂ ẑL
−T .

The distribution of the fully-fixed baseline conditioned on a particular fixed

ambiguity ž = z + ∆z is [32](
b̌ |ž = z + ∆z

)
∼ N

(
b+Qb̂ ẑQ

−1
ẑ ∆z, Qb̌

)
(3.6)

where Qb̌ , Qb̂ − Qb̂ ẑcD
−1QT

b̂ ẑc
. Thus, when the integer ambiguity is fixed cor-

rectly (∆z = 0), the fully-fixed baseline has a Gaussian distribution whose mean

equals the true baseline b.

3.3 Prior Distribution of the GIAB Baseline

Analogous to the float baseline b̂ and the fixed baseline b̌, a partially-fixed

baseline, denoted b̄, can be calculated from the inputs and outputs of GIAB. The a
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priori and a posteriori distributions of b̄ are important performance indicators. This

section derives the a priori distribution of b̄.

Let Qb̂ ẑcj indicate the jth column of the matrix Qb̂ ẑc , and dj the jth entry

on the diagonal of D. Because D is diagonal, (3.5) can be written

b̌ = b̂−
m∑
j=1

Qb̂ẑcj
ε̌cj
dj

(3.7)

The baseline constrained by only the first i ambiguities, written b̌i, can be calculated

by truncating the summation in (3.7) at i:

b̌i = b̂−
i∑

j=1

Qb̂ẑcj
ε̌cj
dj

(3.8)

The event q = i < m implies that GIAB could not fix the (i + 1)th am-

biguity without violating the specified probability of failure. For the moment, let

b̄ = b̌q be GIAB’s partially-fixed baseline solution; alternative assignments for b̄

will be explored later on. Denote by F c the complement of the failure event, F ,

and let fb̄|F and fb̄|F c be the probability density functions (PDFs) of b̄ conditioned

respectively on F and F c. It follows from the total probability theorem that the

prior (unconditioned) PDF of the partially-fixed baseline b̄ is

fb̄ (ξ) = fb̄|F c (ξ) (1− PF ) + fb̄|F (ξ)PF (3.9)

Since, by design, PF ≤ P̄F � 1, momentarily neglect the second term on the right-

hand side of (3.9). This term is not important for the average performance of the

GIAB algorithm, though it is central to position domain integrity considerations in

Section 3.6. A detailed expression for fb̄|F c (ξ), from the first term, is derived along

with other conditional PDFs in the following section.
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3.4 Conditional distributions of the Generalized Integer Aper-
ture Baseline

Various conditional distributions of b̄ offer valuable insight into its behavior

under partial ambiguity resolution. This section presents a conceptual overview of

the various distributions, followed by detailed derivations of the same.

3.4.1 Conceptual Overview

Consider fb̄|Ci(ξ), the PDF of b̄ conditioned on GIAB correctly resolv-

ing the first i ambiguities. Note that this conditioning makes no assumption that

GIAB resolved only i ambiguities; in fact, GIAB may have resolved more than i—

correctly or not. The conditioning on Ci assumes only that the first i were correctly

resolved. One would expect this conditional PDF to be Gaussian with a mean of

b, since, as (2.16) indicates, the fully-fixed baseline b̌ conditioned on ∆z = 0 is

Gaussian with mean b. Indeed, this turns out to be the case.

Now consider fb̄|Zi(ξ) for i < m. The event Zi implies ž1:i = z1:i but

when i < m it further implies that GIAB refused to fix one or more ambiguities.

Thus, conditioning on Zi when i < m indicates that the magnitude of the (i +

1)th sequentially-constrained ambiguity residual ε̌c(i+1) was larger than βi+1/2. No

assumption is made about the particular value of ε̌c(i+1), only that it was too large

to confidently fix the corresponding integer. In this case will fb̄|Zi(ξ) be Gaussian

with mean b? The answer is no: fb̄|Zi(ξ) has mean b but is not Gaussian. This can

be explained by considering (3.8) and recognizing that, although ε̌c(i+1) being large

has no bearing on ε̌cj for j ∈ {1, . . . , i} (because these are uncorrelated with ε̌c(i+1)
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under Zi), it does imply something about b̂, namely, that its PDF does not have a

mode at b: the most probable values of b̂ are offset from b.

Finally, consider fb̄|ε̌c(i+1),Zi
(ξ|ε), which is the PDF of b̄ conditioned on

Zi for i < m and on the particular value of the sequentially-constrained ambiguity

residual, ε̌c(i+1), that caused GIAB to refuse to fix the (i+1)th ambiguity. Somewhat

surprisingly, this PDF turns out to be neither Gaussian nor of mean b. This key

result, unknown in the existing literature, is critical because fb̄|ε̌c(i+1),Zi
(ξ|ε) informs

decision making about b̄: it is the best indicator of whether a particular b̄ will be

accurate enough for a high-integrity application.

Manipulation in the following subsections leads to detailed expressions for

fb̄|F c(ξ), fb̄|Zi(ξ), and fb̄|ε̌c(i+1),Zi
(ξ|ε).

3.4.2 Finding fb̄|F c

The conditional PDF fb̄|F c , which appears in (3.9), can be written in terms

of fb̄|Zi(ξ), the PDF of b̄ conditioned on successful validation of q = i ambiguities,

as follows:

fb̄|F c (ξ) =
m∑
i=0

P (Zi|F c)fb̄|Zi (ξ)

=
m∑
i=0

P (Zi, F
c)

P (F c)
fb̄|Zi (ξ)

=
m∑
i=0

PZi
1− PF

fb̄|Zi (ξ)

(3.10)

where PZi is the probability of the event Zi, and where the final simplification

follows from Zi ⊂ F c.
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3.4.3 Finding fb̄|Zi(ξ)

The PDF fb̄|Zi(ξ), which appears in (3.10), can be expressed in terms of

GIAB’s output ž ∈ Zr, where r = min(m, q + 1). When conditioned on Zi with

i < m, the first i ambiguities in ž, are correct, but the (i + 1)th may not be;

in other words, ž = [z1, . . . , zi, zi+1 + ∆z]T for some ∆z ∈ Z. Recalling that

ε̌c , L−1
1:r,1:r(ẑ1:r − ž), and recognizing L−1

1:r,1:r as unit lower triangular, then given

Zi it follows that ε̌c(1:i) = εc(1:i) , L−1
1:i,1:i(ẑ1:i−z1:i) and that ε̌c(i+1) = εc(i+1)−∆z.

From standard probability theory, the PDF of the difference ε̌c(i+1) = εc(i+1) −∆z

can be expressed in terms of the joint PDF of εc(i+1) and ∆z, which, in turn can be

expressed as the product of the conditional and marginal PDFs of ∆z and εc(i+1),

respectively:

f ε̌c(i+1)|Zi(ε) =
∑
k∈Z

fεc(i+1),∆z|Zi (ε+ k, k)

=
∑
k∈Z

f∆z|εc(i+1),Zi (k|ε+ k) fεc(i+1)|Zi (ε+ k)
(3.11)

This expression can be simplified by noting from (3.4) that under Zi the rejected

sequentially-constrainted ambiguity residual ε̌c(i+1) satisfies

βi+1

2
<
∣∣ε̌c(i+1)

∣∣ ≤ 1

2

Expressed another way, the support of ε̌c(i+1) under Zi is

Ai+1 ,

{
ε

∣∣∣∣βi+1

2
< |ε| ≤ 1

2

}
Thus, given that ε̌c(i+1) = εc(i+1) −∆z ∈ Ai+1, the conditioning on εc(i+1) = ε+ k

in (3.11) implies ∆z = k. (The condition |ε| = 1/2 upsets this unique mapping but
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happens with probability 0.) Therefore,

f∆z|εc(i+1),Zi (k|ε+ k) = 1 ∀k ∈ Z, ∀ε ∈ Ai+1

and (3.11) simplifies to

fε̌c(i+1)|Zi(ε) =
∑
k∈Z

fεc(i+1)|Zi (ε+ k) (3.12)

With these preliminaries, fb̄|Zi (ξ) can be constructed as the marginal of the joint

PDF of b̄ and ε̌c(i+1), and the latter can be expressed in terms of a sum of joint PDFs

with εc(i+1) by the same reasoning that led to (3.12):

fb̄|Zi (ξ) =

∫
Ai+1

fb̄,ε̌c(i+1)|Zi (ξ, ε) dε

=

∫
Ai+1

∑
k∈Z

fb̄,εc(i+1)|Zi (ξ, ε+ k) dε
(3.13)

3.4.4 Finding fb̄,εc(i+1)|Zi (ξ, ε+ k)

To find fb̄,εc(i+1)|Zi (ξ, ε+ k), which appears in (3.13), it is helpful to express

the rejection event Ri+1 in terms of εc(i+1), as follows:

Ri+1 : εc(i+1) ∈ {ε+ k | ε ∈ Ai+1, k ∈ Z}

Fig. 3.1 illustrates the bands of εc(i+1) that trigger rejection. In the context of (3.13),

where conditioning is on Zi with i < m [the (i + 1)th ambiguity was rejected], Zi

is the intersection of the correct validation event Ci and the rejection event Ri+1.

Accordingly, the PDF fb̄,εc(i+1)|Zi (ξ, ε) is identical to fb̄,εc(i+1)|Ci (ξ, ε) but with two

modifications: (1) support of εc(i+1) is restricted to Ri+1, and (2) a normalization
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Figure 3.1: The rejection event Ri+1 is triggered when εc(i+1) falls within the indi-
cated bands. For compactness, βi+1 is abbreviated as β.

by PRi+1
, given in (2.24c), is applied to ensure the PDF integrates to unity. Let

1Ri+1
(ε) be the indicator function for the rejection event, equal to unity for those

values of ε that trigger Ri+1, and zero otherwise. Then the joint PDF is

fb̄,εc(i+1)|Zi (ξ, ε) =
1Ri+1

(ε)

PRi+1

fb̄,εc(i+1)|Ci (ξ, ε) (3.14)

To find fb̄,εc(i+1)|Ci (ξ, ε) note that, under the event Ci, b̌i and εc(i+1) are jointly

Gaussian:  b̌i

εc(i+1)

 ∼ N


 ξ
ε

 ;

 b
0

 , Qb̌iεc(i+1)

 (3.15)

with

Qb̌iεc(i+1)
=

 Qb̌i Qb̂ẑc(i+1)

QT
b̂ẑc(i+1)

di+1

 (3.16)

where Qb̂ẑc(i+1)
is the (i+ 1)th column of Qb̂ẑc , introduced in (2.14), and

Qb̌i = Qb̂ −
i∑

j=1

1

dj
Qb̂ ẑcj

(
Qb̂ ẑcj

)T
(3.17)

is found by exploiting the independence of each element of εc. Then the conditional

mean error of b̄ = b̌i, given Ci and εc(i+1) = ε + k, follows from the standard
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expression for the Gaussian conditional mean:

µk(ε) , E
[
b̄− b

∣∣εc(i+1) = ε+ k, Ci
]

= Qb̂ẑc(i+1)

(
ε+ k

di+1

) (3.18)

Its covariance is found by extending the summation in (3.17) to (i+ 1):

cov
(
b̄
∣∣εc(i+1) = ε+ k, Ci

)
= Qb̌i+1

(3.19)

Hence the partially-fixed baseline b̄, when conditioned on εc(i+1) and Ci, is Gaus-

sian distributed and biased away from the true baseline b by µk(ε):

fb̄|εc(i+1),Ci
(ξ|ε+ k) = N(ξ; b+ µk(ε), Qb̌i+1

) (3.20)

Then, recognizing that εc ∼ N(0, D) implies

fεc(i+1)|Ci(ε) = N(ε; 0, di+1) (3.21)

and factoring the joint PDF in (3.14) into its conditional-times-marginal form yields

this subsection’s desired PDF:

f b̄,εc(i+1)|Zi (ξ, ε+ k) =

1Ri+1
(ε)

PRi+1

N(ξ; b+ µk(ε), Qb̌i+1
)N(ε+ k; 0, di+1)

(3.22)

Moreover, substituting (3.22) into (3.13), yields fb̄|Zi , and substituting (3.13) into

(3.10) yields a detailed expression for fb̄|F c:

fb̄|F c (ξ) =
PSm

1− PF
N(ξ; b, Qb̌m)

+
m−1∑
i=0

PZi/PRi+1

1− PF

×
∑
k∈Z

∫
Ai+1

N(ξ; b+ µk(ε), Qb̌i+1
)N(ε+ k; 0, di+1)dε
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3.4.5 Finding fb̄|ε̌c(i+1),Zi
(ξ|ε)

After the foregoing steps, one can find the important PDF fb̄|ε̌c(i+1),Zi
(ξ|ε)

starting with

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

fb̄,ε̌c(i+1)|Zi (ξ, ε)

fε̌c(i+1)|Zi(ε)
(3.23)

Substituting the integrand of (3.13) for the numerator and (3.12) for the denomina-

tor yields

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

∑
k∈Z fb̄,εc(i+1)|Zi (ξ, ε+ k)∑
j∈Z fεc(i+1)|Zi (ε+ j)

(3.24)

Now substituting (3.22) and (3.21), where the normalization for the rejection event

cancels out, and constraining ε ∈ Ai+1 to eliminate the indicator functions, yields

f b̄|ε̌c(i+1),Zi
(ξ|ε) =

=

∑
k∈ZN(ξ; b+ µk(ε), Qb̌i+1

)N(ε+ k; 0, di+1)∑
j∈ZN(ε+ j; 0, di+1)

(3.25)

This PDF can be interpreted as a mixture of Gaussian densities with different means

but equal variances. The mixture probabilities are in fact the conditional probabili-

ties that ∆z = k given the sequentially-constrainted ambiguity residual ε̌c(i+1) and

the event Zi:

pk(ε) , P (∆z = k|ε̌c(i+1) = ε ∈ Ai+1, Zi)

=
N(ε+ k; 0, di+1)∑
j∈ZN(ε+ j; 0, di+1)

, ε ∈ Ai+1

(3.26)

Simplifying (3.25) with the mixture probability notation of (3.26) yields, for ε ∈

Ai+1,

fb̄|ε̌c(i+1),Zi
(ξ|ε) =

∑
k∈Z

pk(ε) ·N(ξ; b+ µk(ε), Qb̌i+1
) (3.27)
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3.4.6 Discussion

Two important observations can be drawn from the foregoing conditional

distributions. First consider (3.27). Note that pk(ε) and µk(ε) are evaluated only

for ε 6= 0, since ε ∈ Ai+1, which does not contain the origin. From (3.18), one

observes that, for ε 6= 0 and assumingQb̂žc(i+1)
is nonzero, the biasµk(ε) is nonzero

for any value of k ∈ Z. Thus, the means of the Gaussian PDFs that get summed in

(3.27) are all shifted away from the true baseline b. It is possible for a weighting

function pk(ε) to be chosen to counteract this shifting and thereby restore symmetry

in fb̄|ε̌c(i+1),Zi
(ξ|ε), but the actual weighting that applies, given by (3.26), does not

do this. As a result, fb̄|ε̌c(i+1),Zi
(ξ|ε) is asymmetric about b with respect to ξ.

To be explicitly clear, the PDF of the partially-fixed baseline b̄ = b̌q that

results from correction of the float baseline b̂ with GIAB-produced ε̌cj , as in (3.8)

with i = q < m, when conditioned on ε̌c(i+1) = ε ∈ Ai+1, will not have a mean

coincident with the true baseline b even when all validated ambiguity fixes are cor-

rect.

The second important observation is that, for i < m, fb̄|Zi (ξ) given by

(3.13) is symmetric about b but lacks a mode at b. To see this, note that fb̄|Zi (ξ)

can be written

fb̄|Zi (ξ) =

∫
Ai+1

fb̄|ε̌c(i+1),Zi
(ξ|ε)fε̌c(i+1)|Zi(ε) dε (3.28)

with fb̄|ε̌c(i+1),Zi
(ξ|ε) given by (3.27) and fε̌c(i+1)|Zi(ε) by (3.12). The first of these,

fb̄|ε̌c(i+1),Zi
(ξ|ε), is symmetric about b when integrated over ε because both pk(ε)

from (3.26) and µk(ε) from (3.18) are symmetric about the origin with respect to
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ε when summed over all k ∈ Z. The second, fε̌c(i+1)|Zi(ε), is symmetric about the

origin with respect to ε because the summand fεc(i+1)|Zi(ε + k) of (3.12), with ε

restricted to Ai+1, is simply a normalized version of fεc(i+1)|Ci(ε + k) from (3.21).

Thus, since fεc(i+1)|Ci(ε+k) andAi+1 are symmetric with respect to ε, so is the PDF

fε̌c(i+1)|Zi(ε). Taken together, these facts imply that fb̄|Zi (ξ) is symmetric about b.

Critically however, the support Ai+1 does not contain the origin, so µk(ε) 6= 0 for

all ε ∈ Ai+1 and all k ∈ Z. This implies that, although fb̄|Zi (ξ) with i < m is

symmetric about b, it does not have a mode at b.

The above two observations can be understood intuitively as follows: GIAB

refusing to fix the (i+1)th ambiguity indicates the float ambiguity ẑ is biased away

from z, which implies the float baseline b̂ is biased away from b. If GIAB with

b̄ = b̌i fixes only i = q < m ambiguities, the correction to the float baseline given

by (3.8) is incomplete, leaving some residual bias in b̄. When b̄ is conditioned

on the particular value ε̌c(i+1) = ε ∈ Ai+1 under Zi, the bias manifests as an ε-

dependent shift of the mean away from b. When b̄ is conditioned only on Zi, the

bias manifests as a symmetric exodus of probability density away from b, leaving

no mode at b. Figures of these distributions will be presented in the next subsection.

Note that the above reasoning is not unique to GIAB: the conditional PDF

of b̄will behave similarly for any data-driven partial ambiguity resolution algorithm

that corrects the float baseline with the validated fixes.
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3.4.7 GIAB variants

The foregoing conditional PDFs and discussion assume b̄ = b̌i with i = q,

which, according to (3.8), implies the float baseline b̂ is only corrected by the q

sequentially-constrained ambiguity residuals ε̌c(1:q) that pass validation (those satis-

fying |ε̌ci| ≤ βi/2). If q < m, the next sequentially-constrained ambiguity residual,

ε̌c(q+1), is ignored, which means that the component of b̂ that might have been cor-

rected by ε̌c(q+1) is left unchanged at its float value. This approach, hereafter called

float GIAB, is the typical practice in the existing literature on partial ambiguity res-

olution. However, the existing literature’s calculation of integrity risk IR does not

appear to recognize that b̄ = b̌q is biased as described above [3, 4, 16].

Setting b̄ = b̌q (thus ignoring ε̌c(q+1)) is of course not the only way to handle

the first ambiguity that fails validation. This paper considers three variants of GIAB,

each distinguished by its treatment of the (q + 1)th ambiguity. The first is float

GIAB, described above. The second, called MAP GIAB by analogy to maximum

a posteriori estimation, applies the most likely fix candidate, which, given GIAB’s

operation as defined in [11], is equivalent to choosing b̄ = b̌q+1 for q < m. The

PDF fb̄|ε̌c(i+1),Zi
(ξ|ε) for b̄ = b̌q+1 is the same as that of the float variant (for which

b̄ = b̌q), except that all µk(ε) are shifted by the (i+1)th correction in (3.8), namely

−Qb̂ẑc(i+1)

ε̌c(i+1)

di+1
. Recalling that εc(i+1) = ε̌c(i+1) + ∆z, one notes that the additional

correction removes the fractional part from εc(i+1), leaving

µk(ε) = Qb̂ẑc(i+1)

k

di+1

(MAP GIAB) (3.29)

which is zero if ∆z = k = 0. [The argument ε in µk(ε) is retained for functional
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consistency with (3.18).] Thus, for b̄ = b̌q+1, the conditional PDF fb̄|ε̌c(i+1),Zi
(ξ|ε)

is unbiased about b if the non-validated fix is correct. MAP GIAB monitors the

effect of incorrect fixes on IR by calculating each alternate fix’s probability and

position domain bias. This approach is similar to the concept of position domain

integrity (PDI) in the EPIC and GERAFS algorithms.

The third variant of GIAB, called MMSE GIAB by analogy to minimum

mean squared error estimation, computes a weighted average of the MAP GIAB

baseline solution and the alternative fixed solutions. Because the baseline correc-

tions are applied linearly, MMSE GIAB’s partially-fixed baseline b̄ can be written

b̄ = b̌i −Qb̂ẑc(i+1)

ε+
∑

j∈Z pj(ε)j

di+1

(MMSE GIAB) (3.30)

This baseline solution is analogous to the Best Integer Equivariant (BIE) estimator

of [5, 41], with the difference that MMSE GIAB limits the number of fixes consid-

ered by sizing the aperture according to [11].

The ideal corrected baseline, which has a zero-mean-error PDF if ∆z = k,

is

b̄ideal = b̌i −Qb̂ẑc(i+1)

ε+ k

di+1

(3.31)

The bias in the MMSE solution is thus

µk(ε) = b̄− b̄ideal (MMSE GIAB)

= Qb̂ẑc(i+1)

k −
∑

j∈Z jpj(ε)

di+1

= Qb̂ẑc(i+1)

∑
j∈Z(k − j)pj(ε)

di+1

(3.32)

where the last equality makes use of
∑

j∈Z pj(ε) = 1.
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For small values of ε, p0(ε)� pj(ε), ∀j 6= 0, meaning that the MAP fix is

much more likely than the alternatives, in which case the MMSE and MAP GIAB

baselines will differ only slightly. At the other extreme, in the zero-probability

event that |ε̌c(i+1)| = 1/2, the MMSE and float GIAB baselines are equivalent.

Analysis has shown that when PCi+1
> 0.7, which is attainable for even

relatively weak models, neglecting all but the two most likely fix candidates for

the (i + 1)th ambiguity raises the integrity risk by less than PEi+1
for all values

of di+1. This makes the third most likely fix, and all less likely fixes, negligi-

bly likely. In particular, when PCi+1
> 0.7 the three highest values of pk(ε) are

p0(ε) > p−sgn(ε)(ε) � psgn(ε)(ε). Neglecting all but the two most likely fixes, the

partially-fixed baseline b̄ for each of the three GIAB variants can be approximated

by the following conditional PDF, with µk(ε) given by (3.18), (3.29), or (3.32), as

appropriate:

fb̄|ε̌c(i+1),Zi
(ξ|ε) ≈

∑
k∈{0,−sgn(ε)}

pk(ε) ·N(ξ; b+ µk(ε), Qb̌i+1
) (3.33)

The PDFs of (3.33), (3.13), and (3.10) are illustrated in Figs. 3.2, 3.3, and

3.4, respectively. The PDFs have been shifted so the horizontal axis’s origin coin-

cides with the component value of the true baseline b. Note that the MMSE GIAB

PDF in Fig. 3.2 lies between those of the MAP and float variants. Note also that the

float GIAB PDF in Fig. 3.3 is bimodal, with both modes shifted away from zero,

whereas both MAP and MMSE GIAB have strong modes at zero but wider tails.

Finally, observe from Figs. 3.3 and 3.4 that MMSE GIAB has narrower tails than

MAP GIAB. This is because MAP GIAB does not change its baseline estimate for
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Figure 3.2: A single component of fb̄|ε̌c(i+1),Zi
(b+ ξ|ε) from (3.33) for float, MAP,

and MMSE GIAB for q = i < m and a large ambiguity residual ε. Because
the distributions differ only by the variant-specific bias µk(ε), the three PDFs are
merely shifted versions of each other, with that of MMSE GIAB between those of
float and MAP GIAB.

large residuals like MMSE GIAB does.

3.5 Validation of Baseline Distributions

In recognition of the possibility that the derived conditional PDFs of b̄ suffer

from some error in reasoning or probabilistic book-keeping, extensive Monte Carlo

simulations were conducted to cross-check the analytical expressions. A float solu-

tion model was chosen with eight satellites above a 5◦ mask. The simulation was

initialized by computing the decorrelating Z-transform and setting the integer aper-

ture according to the optimization described in [11]. A total of 4×108 Monte Carlo
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Figure 3.3: A single component of fb̄|Zi (b+ ξ) for float, MAP, and MMSE GIAB
with q = i < m, plotted with a log-scaled vertical axis. Float GIAB has a symmet-
ric, bimodal PDF. MAP GIAB has a symmetric PDF with a dominant, zero-mean
central mode and heavy tails due to incorrect fixes. MMSE GIAB has a lower
probability of large errors than does MAP GIAB at the expense of a slight increase
in the probability of moderately-sized errors. In the lightly-shaded region, MAP
GIAB has higher density than MAP GIAB, and vice versa in the darker region.

samples were then drawn from the float distribution described by (2.2) to generate

the float solution errors, including the float baseline and float ambiguities. Each

sample float ambiguity vector was then Z-transformed and fed through the GIAB

algorithm. All GIAB outputs were logged, including the number of correctly fixed

samples, the number of incorrectly fixed samples, and the partially-fixed baseline

error tabulated by q.

Appropriate histograms of the simulated outcomes were then compared
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Figure 3.4: A single component of fb̄|F c (b+ ξ) for float, MAP, and MMSE GIAB,
plotted with a log-scaled vertical axis. Float GIAB has strong but narrow tails. Its
central mode results from the probability of fixing all m ambiguities. MAP and
MMSE GIAB both have a strong central mode and tails that are wider but lower
than those of float GIAB. MMSE GIAB has smoother and narrower tails than MAP
GIAB.

with the analytical PDFs for fb̄|F c(ξ), fb̄|Zi(ξ), and fb̄|ε̌c(i+1),Zi
(ξ|ε) and for float,

MAP, and MMSE GIAB. Fig. 3.5 shows excellent agreement between the empiri-

cal (simulated) and analytical fb̄|F c(ξ) for MAP GIAB. Similarly good agreement

was found with the other two distributions and the other two GIAB variants. The

model underlying Fig. 3.5 is relatively strong: its integer bootstrapping probability

of correct fix is 1− 2× 10−5 for a specified failure probability P̄F = 10−8. Several

weak models and other strong models were also studied, all of varying geometry.

Each case showed excellent agreement with the derived PDFs.
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Figure 3.5: A single component of fb̄|F c (b+ ξ) for the theoretical PDF of MAP
GIAB (dashed line) and the empirical (simulated) histogram (solid line), plotted in
log scale for m = 7, P̄F = 10−8, and a Monte Carlo sample size of 4 × 108. The
underlying model has an IB probability of correct fix equal to 1− 2× 10−5. As the
PDFs are symmetric about zero, only the positive portion is shown. Clearly, there
is strong agreement between the analytical and simulated distributions. Note that
because the plot’s vertical axis is log scaled, small differences are exaggerated at
low probabilities.
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3.6 Data-Driven Position Domain Integrity

The defining characteristic of high-integrity CDGNSS techniques appropri-

ate for safety-of-life systems is their ability to strictly bound the probability of large

position domain errors (errors in the estimate of the baseline vector b) even in the

event of incorrect fixes. This is the essence of position domain integrity (PDI). For

each component of b, the risk R that the component’s error exceeds the AL must be

monitored. Let b represent a particular component of b and b̄ its estimate, whether

fully or partially fixed. Then R is defined as

R , P
(∣∣b̄− b∣∣ > AL

)
(3.34)

If R > ¯IR, where ¯IR is a specified integrity risk, an alert must be raised.

3.6.1 Position Domain Integrity in EPIC

The EPIC algorithm protects solution integrity by evaluating the a priori

conditional IR for the case that the ambiguities are fixed correctly and for s cases

of incorrect fix [17, 18]. EPIC produces tighter bounds on IR than GERAFS for

any error model, so EPIC is considered to the exclusion of GERAFS in this paper.

Define E0 as the event that the chosen ambiguity fix is correct, and Ek as the event

that the kth alternative fix is correct. Let Rk = P
(∣∣b̄− b∣∣ > AL

∣∣Ek) ≤ 1 be the

conditional risk of excess error given the event Ek. The total risk is then

R =
s∑

k=0

RkP (Ek) +
∞∑

k=s+1

RkP (Ek) (3.35)

Define E∞ as the event that the correct fix was neither the chosen fix nor
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among the s alternative fix candidates; i.e.,

E∞ ,
∞⋃

k=s+1

Ek =

(
s⋃

k=0

Ek

)c

(3.36)

where (·)c indicates the set complement.

A bound on the risk of excess error can be derived by conservatively assum-

ing that any incorrect fix not among the s considered will cause excess error, i.e.,

assuming Rk = 1,∀k > s. This leads to the bound used by EPIC to monitor risk of

excess error:

REPIC ≤ P (E∞) +
s∑

k=0

RkP (Ek)

≤ 1−
s∑

k=0

P (Ek) +
s∑

k=0

RkP (Ek)

≤ 1−
s∑

k=0

(1−Rk)P (Ek)

(3.37)

In the EPIC algorithm, the event probabilities are the a priori fixing proba-

bilities for IB:
P (Ek) =

m∏
j=1

(
Φ

(
1
2
− L−1

j ∆zk√
dj

)
− Φ

(
−1

2
− L−1

j ∆zk√
dj

))
(3.38)

where ∆zk is the kth candidate fix ambiguity error vector and L−1
j is the jth row of

the matrix L−1. Assuming zero-mean Gaussian measurements, the conditional PDI

risk for excess error in a particular direction is

Rk = Φ

(
AL− µk

σb̄

)
− Φ

(
−AL− µk

σb̄

)
(3.39)

where µk is the desired component of the bias in (2.16) for fix error vector ∆zk,

and σ2
b̄

is the variance of that component.
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3.6.2 Position Domain Integrity in GIAB

Position domain integrity in the GIAB framework enjoys a key advantage

over that for EPIC, namely, that GIAB’s event probabilities and baseline distribu-

tions are a posteriori rather than a priori. Conditioning on the observed measure-

ments allows GIAB to satisfy the same ¯IR as EPIC but with tighter margins. This

subsection develops a PDI strategy for GIAB based on the posterior baseline distri-

butions derived previously.

It is important to understand the subtle distinctions in the probabilities of

incorrect fix under various conditions. If GIAB’s results were only deemed critical

in an average sense, then protection based on the a priori probability of failure

would be sufficient. This is the probability PF = P (F ) = P (ž1:q 6= z1:q, q > 0) of

validating any incorrect ambiguity. GIAB manages PF by design, since its aperture

vector β is chosen to satisfy PF ≤ P̄F ,

But safety-of-life systems are concerned not only with average behavior but

also with each estimation epoch’s potential for dangerously large errors. Employ-

ing a measurement-conditioned distribution allows a clearer assessment of the risk

at each epoch. Thus, one might wish to make the posterior distribution in (3.33)

the basis for PDI monitoring. But this distribution is conditioned on the event Zi,

requiring P (Zi|q = i) = 1 − P (F |q = i) be known for operational use. Consider

P (F |q = i), which can be written

P (F |q = i) =
P (F, q = i)

P (F c, q = i) + P (F, q = i)
, i > 0 (3.40)

The first term in the denominator may be recognized as the probability of correctly
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validating the first i ambiguities, or PSi . The other term, P (F, q = i), is the prob-

ability that one or more of i validated ambiguities are incorrect. Since the event

(F, q = i) is a subset of the failure event F , it must have a lower probability; thus

P (F, q = i) = αPF , where 0 < α < 1 for i > 0. Then

P (F |q = i) =
αPF

PSi + αPF
≈ αPF

PSi
, i > 0 (3.41)

where the approximation follows from PSi � PF , which is typical for high-integrity

systems. For q = m and a strong model, PSm is very close to unity, so P (F |q = m)

remains close to PF . However, for q = i < m and a strong model, PSi might itself

be quite small, say, less than 10−3, making P (F |q = i) orders of magnitude larger

than PF . In other words, for a strong model, conditioning only on q < m makes

an incorrect fix in the q validated ambiguities appear too likely. This would almost

certainly cause IR > ¯IR, triggering an alert and rendering the solution useless.

A more precise assessment of position integrity in such a situation requires

a different approach, one based on examination of the full a posteriori probabilities

of both the correct fix and a large number of potential incorrect fixes. Denote the

posterior fixing probability as

P (Eζ |ε, i) , P (∆z = ζ|ε̌c = ε, q = i) (3.42)

Note that, unlike (3.26), this expression is not conditioned on Zi; i.e., it does not

assume that validated fixes are correct. As argued earlier, under Zi, only two alter-

native fixes need be considered to approximate the conditional baseline distribution

as (3.26). But in operation, one does not know whether Zi holds, and so must con-

sider two alternatives for each ambiguity, assuming at each stage that the preceding
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ambiguities were fixed correctly. Since GIAB’s output ž contains r ambiguities, at

least 2r − 1 alternatives must be evaluated, or their probabilities, as determined by

(3.42), bounded rigorously.

It is straightforward to derive an expression for P (Eζ |ε, i). Let {ζk} be an

ordered, indexed set of all members of Zr, with ζ0 , 0. Then by the definition of

conditional probability,

P (Eζk |ε, i) (3.43)

= lim
dε→0

P (ε− dε < ε̌c ≤ ε,∆z = ζk|q = i)∑
ζ∈Zr P (ε− dε < ε̌c ≤ ε,∆z = ζk|q = i)

Noting that the measured random variable ε̌c ∈ Rr and the fixing error ∆z ∈ Zr

are related to the zero-mean random variable εc(1:r) , L−1
1:r,1:rε1:r ∼ N(0, D1:r,1:r)

as

εc(1:r) , L−1
1:r,1:rε1:r = L−1

1:r,1:r(ẑ1:r − z1:r)

= L−1
1:r,1:r(ẑ1:r − (ž −∆z))

= L−1
1:r,1:r(ε̌+ ∆z)

= ε̌c + L−1
1:r,1:r∆z

(3.44)

and noting that the additional conditioning on the event q = i in (3.43) restricts the

support of ε̌c, but that this only affects the normalization of the PDF, not its form,

then by recognizing equivalent events, (3.43) can be rewritten as

P (Eζk |ε, i) =
N
(
ε+ L−1

1:r,1:rζk; 0, D1:r,1:r

)∑
ζ∈Zr N

(
ε+ L−1

1:r,1:rζ; 0, D1:r,1:r

) (3.45)

=
exp

(
−1

2

∥∥ε+ L−1
1:r,1:rζk

∥∥2

D1:r,1:r

)
∑
ζ∈Zr exp

(
−1

2

∥∥ε+ L−1
1:r,1:rζ

∥∥2

D1:r,1:r

)
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where ‖x‖2
Q , xTQ−1x. Note that (3.45) can be regarded as generalization of

(3.26) to include additional alternative fix candidates.

The final conditional PDF for b̄ under MAP GIAB, but without conditioning

on the correctness of the validated fixes, is a generalization of (3.33) that includes

alternative fixes for more than just the rejected ambiguity, and for each fix, its cor-

responding position domain bias:

fb̄|ε̌c,q (ξ|ε, i) =
∑
ζk∈Zr

P (Eζk |ε, i)N
(
ξ; b+ µk, Qb̌i+1

)
(3.46)

Each term in the summation corresponds to the event that one of the infinite possible

alternative fixes is correct, and accounts for the conditional PDI risk given that

event. Each event’s baseline remains normally distributed, but with additional mean

error caused by the integer offset, as in (2.16):

µk = Qb̂ ẑcD
−1
1:r,1:rL

−1
1:r,1:rζk (3.47)

A similar expression for fb̄|ε̌c,q (ξ|ε, i) can be obtained for float and MMSE GIAB.

See Appendix D of [9] for details on how to determine which incorrect fixes must be

accounted for in (3.46) and when to truncate the infinite summation in the denom-

inator of (3.45). The maximum required set of size 2r, including the IB solution,

is obtained by considering the nearest two integers for each ambiguity in a branch-

ing tree of alternative solutions. In practice, far fewer than 2r alternatives need be

considered. This represents a significant reduction in computational effort when

compared to EPIC.

Let s ≤ 2r − 1 be the number of non-negligible alternative fixes considered

and the index 0 represent the chosen fix. The IR can be bounded by the following
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expression, with Rk defined by (3.39) and with means defined by (3.47) for MAP

GIAB:

RGIAB = 1−
s∑

k=0

(1−Rk)P (Eζk |ε, i) (3.48)

3.7 Performance Analysis
3.7.1 Protection Levels

Integrity requirements are specified in terms of an integrity risk, ¯IR, that

the baseline estimation error will exceed the AL threshold without warning. ¯IR

is derived from an overall risk requirement, such as probability of loss of aircraft,

and is typically a fixed value for a given system use case. The AL is related to

physical obstacle clearance requirements, which are constant for a particular land

based runway and a given aircraft. However, obstacle clearance margins are not

constant when landing on a moving platform, such as an aircraft carrier at sea.

Because the risk of excess error is frequently evaluated against a time-varying AL,

it is useful to determine a protection level PL that bounds the estimation error to

the required level of risk.

PL can be thought of as the minimum AL that could be met by a navigation

system or algorithm for a given value of ¯IR. In terms of statistical hypothesis test-

ing, ¯IR corresponds to the desired confidence level, AL corresponds to the decision

threshold, and PL to a prediction interval. If the risk of excess error is expressed as

a function of AL, then PL can be defined as

PL , min
AL

{
AL
∣∣R (AL) ≤ ¯IR

}
(3.49)
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PL for EPIC or for any version of GIAB can be computed by using a root

solving method to solve (3.49) with R(AL) defined by (3.37) or (3.48), as appro-

priate.

3.7.2 Comparison to EPIC

To demonstrate the performance of GIAB compared to the state-of-the-art

high-integrity algorithm, the performance of EPIC and MAP GIAB will be com-

pared for the measurement models previously examined. MAP GIAB is chosen

because it provides better accuracy than float GIAB and is simpler to analyze than

MMSE GIAB. If MMSE GIAB were used, it would compare even more favorably

with EPIC because MMSE GIAB always produces smaller PL values than MAP

GIAB.

Because it uses an a priori, model driven approach to validation, EPIC will

always produce the same PL for the same number of integers fixed with a given

measurement model and ¯IR. Conversely, GIAB is a data-driven algorithm for which

PL is a random variable. PL has a finite support because it is driven by |ε̌ci| ≤ 1
2
.

PL values produced by EPIC will be compared to the minimum, maximum,

and average PL produced by GIAB for each number of integers fixed, along with

the probability that GIAB will fix that number of integers for each model consid-

ered. As shown in Table 3.1, GIAB is able to provide smaller PL values than EPIC

most of the time. Note that PL computed for U by EPIC is simply the PL of the

float solution with no incorrect fixing bias. The event U for GIAB corresponds

to the case where the measurements are so poor that no integers can be fixed suc-

79



cessfully. The worst case PL computed for any q > 0 by MAP GIAB, which has

the largest PLs of any of the GIAB implementations, is better than the best PL

computed by EPIC.

GIAB provides lower PLs because it is able to reject and exclude most of

the incorrect fixes that EPIC must protect against. This implies that GIAB will also

provide superior availability of integrity for models similar to those examined in this

paper. It is expected that this will be the case in general because the a posteriori

alternate candidate fix used in GIAB will virtually always be among the candidates

considered a priori by EPIC. This implies that any decrease in PL computed by

EPIC as compared to GIAB will result only when the incorrect fixing bias of the

GIAB alternative fix is the same as the largest incorrect fixing bias considered by

EPIC, which will be a rare event.

Note that PL values computed by GIAB and EPIC do not increase or de-

crease uniformly with the number of validated fixes. For example, the maximum

PL increases from 1.37 m to 2.13 m when transitioning from the first successful fix

to the second successful fix. Recall that PL is driven primarily by the bias between

the most likely fix and the incorrect fixes of non-negligible probability. Because

these biases depend on the relationships among the various integers and the base-

line directions of interest (e.g. vertical error), the biases can change dramatically

from one integer fix to the next.

It is tempting to think that in the case of successfully fixing only two integers

in the example above would be better to only fix one integer because that would

yield a lower protection level. It may in fact be preferable to do so, but only if
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Table 3.1: Integrity performance comparison between EPIC and MAP GIAB. All
distance units are in meters. The left-most column indicates the result from GIAB.
The next column indicates it’s theoretical probability of occurrence [11]. The third
column is the standard deviation of the b̄ under the given GIAB event. For EPIC, the
standard deviations from the previous row applies. The next three columns indicate
the minimum, average and maximum PL produced by GIAB under each event. The
final column is the value of PL produced by EPIC when it fixes the same number
of integers as GIAB.

E PE σ (m) PLmin E [PL] PLmax PLEPIC

U 0.00072 0.310 2.79 2.92 3.35 1.77

S1 0.00043 0.221 1.31 1.32 1.37 2.62

S2 0.00051 0.196 1.63 1.74 2.13 2.61

S3 0.00119 0.138 1.75 1.83 2.09 2.49

S4 0.00090 0.115 1.09 1.16 1.38 3.03

S5 0.00189 0.084 0.99 1.04 1.20 2.91

S6 0.00039 0.081 0.48 0.53 0.69 2.99

S7 0.99393 0.081 0.46 0.46 0.46 2.95
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the bias induced in the solution by leaving the second integer floating produces

acceptable accuracy performance. That is, the reduction in PL is obtained only

at the expense of a biased solution that degrades average accuracy. The impact to

average accuracy can be seen in the difference between the strength of the central

modes of Float and MAP GIAB in Fig. 3.3.

3.8 Conclusions

A new data-driven CDGNSS PAR and validation algorithm has been devel-

oped analytically and validated with Monte Carlo simulation. The new algorithm

has advantages over the state-of-the-art in that (1) data-driven methods offer im-

proved availability of integrity over model-driven methods such as EPIC, (2) the in-

tegrity risk due to incorrect fixing is precisely controlled analytically as compared to

functional approximation methods used with the ratio test and similar integer aper-

ture methods, (3) it correctly accounts for the integrity risk of PAR in the position

domain that existing GIA methods neglect, and (4) it requires less computational

burden than EPIC because it eliminates the search for many alternate fix candidates.

The new algorithm has been shown to provide superior performance to the current

state-of-the-art method for a range of measurement models.
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Chapter 4

Correlation-Aware Integrity Protection for Fault-Free
Federated Triplex Carrier Differential GNSS

Solutions

4.1 Introduction

Hardware redundancy is one straight forward approach to satisfying the

strict requirements of safety-of-life applications: the CDGNSS solutions from mul-

tiple rover receivers with separate antennas and independent multipath can be com-

bined to improve availability for a given set of requirements. This chapter’s focus

is on the popular federated triplex architecture, where each of three rover receivers

computes its own solution using a common set of reference measurements. This

is in contrast to an integrated triplex architecture in which measurements from all

rover receivers are processed together to yield a single CDGNSS solution. The

resulting solutions may be combined by averaging or by mid-level voting (MLV),

which selects the median of the three values. MLV is often the preferred approach

since it is more robust than averaging to single solution faults.

MLV architectures are commonly used and well understood for components

that are corrupted by independent errors [20]. But when subsystem outputs have

correlated errors, the performance of MLV depends on the degree of correlation.

Because the three CDGNSS solutions use common reference receivers, they will be
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correlated due to common reference receiver noise and multipath. Additional cor-

relations arise from common atmospheric errors and common survey errors. If the

three solutions are treated as independent, then the IR will be computed optimisti-

cally, exposing the system to unacceptable risk. If the three solutions are assumed

to be perfectly correlated; i.e., no integrity credit is taken in the fault free case for

the fact that there are three solutions, then the potential integrity benefit of MLV

triplex solutions is squandered, reducing availability.

There is a large body of work on validation of CDGNSS solutions [4, 5,

27, 29, 32, 34, 37, 41, 43]. The theory of integer bootstrapping is used to predict

the probability that the correct integer ambiguity is found. The implications of

incorrect ambiguity resolution on IR are accounted for in the Geometry Extra Re-

dundant almost-fixed Solutions (GERAFS) [42] and the Enforced Position-domain

Integrity-risk of Cycle resolution (EPIC) [17, 18] algorithms. Moreover, previous

work has analyzed the risk posed by reference receiver faults [19]. But, to the best

of the authors’ knowledge, there exists no prior work on IR evaluation for federated

triplex CDGNSS with full treatment of correlation for multiple rover receivers.

This chapter makes three contributions to account for the integrity implica-

tions of MLV for CDGNSS solutions. First, expressions are obtained for MLV algo-

rithm IR for arbitrarily distributed and for Gaussian distributed solutions. Second,

this theory is applied to float solutions, fixed solutions, and almost-fixed solutions.

Third, the performance improvements provided by MLV for each type of solution

are described theoretically and demonstrated via a world-wide covariance simula-

tion. Results of the simulation indicate that MLV provides significant integrity and

84



accuracy improvements for triplex float solutions when compared to simplex float

solutions.

4.2 Fault-Free Integrity for Mid-Level Voting with Arbitrary
Distributions

4.2.1 Integrity Specification Parameters

A few preliminary definitions are needed before MLV can be evaluated.

First, IR is defined as the probability that the error in the relative navigation solution

exceeds a threshold, called an alert limit (AL), without a warning. The algorithms

considered in this chapter monitor IR for fault free performance a priori based on

models that have been validated to bound the errors in the actual system [7]. Since

these monitors operate a priori, they are deterministic values for a given satellite

geometry, hardware configuration, measurement set, and carrier phase track dura-

tion.

Stated symbolically, IR = P
(
(|ε| ≥ AL) ∧ W̄

)
, where ε is the solution er-

ror, and W̄ is the event that no warning is given. If there exists a function of the

measurement models Rmon such that Rmon ≥ P (|ε| ≥ AL), then a warning can be

given when Rmon ≥ IRspec, where IRspec is a specified tolerable level of IR. Given

such a monitor, IR ≤ IRspec.

4.2.2 Derivation of MLV Integrity Risk

Consider a random vector X = [X1, X2, X3]T of three distinct estimates

of a scalar parameter, x. Let X be corrupted by errors ε with any well defined
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joint probability density function, fε (ε). The notation X(i) indicates the ith order

statistic ofX , sorted from least to greatest.

The use of a MLV algorithm ensures that the final estimate of x is X(2) with

error ε(2) = X(2) − x. To protect the integrity of the navigation solution, a monitor

function is needed such that

Rmon ≥ RMLV = P
(∣∣ε(2)

∣∣ ≥ AL
)

(4.1)

The probability can be recast in terms of the original random variables by

recognizing that

RMLV = P
(
ε(2) ≥ AL

)
+ P

(
ε(2) ≤ −AL

)
(4.2)

and that ε(2) ≥ AL if any two or more of εi ≥ AL. Define Aj as the event that

the two estimates other than Xj have large positive errors, with no constraint on the

errors in Xj . Bj is the similar event, but with large negative errors.

Aj = {εi ≥ AL, εk ≥ AL} (4.3a)

Bj = {εi ≤ AL, εk ≤ AL} (4.3b)

with i, j, k distinct elements of {1, 2, 3}.

The event that the MLV estimate has a large positive error is the union of

the events Aj: {
ε(2) ≥ AL

}
= ∪3

j=1 {εi ≥ AL, εk ≥ AL}

= ∪3
j=1 (Aj)

(4.4)

86



Substituting (4.4) into (4.2) with similar logic for Bj , and recognizing that Aj ∩

Bj = ∅:

RMLV =P
(
∪3
j=1Aj

)
+ P

(
∪3
j=1Bj

)
=

3∑
j=1

[P (Aj)− P (Ai ∩ Ak)] + P
(
∩3
j=1Aj

)
+

3∑
j=1

[P (Bj)− P (Bi ∩Bk)] + P
(
∩3
j=1Bj

) (4.5)

For the events Aj , the intersections of any two or more such events are

equivalent, i.e.

∩3
j=1Aj = Ai ∩ Aj = Ai ∩ Ak = Ak ∩ Aj

= {εi ≥ AL, εj ≥ AL, εk ≥ AL}
(4.6)

Substituting (4.6) into (4.5), with similar logic for Bj , and collecting like terms

yields:

RMLV =
3∑
j=1

[P (Aj) + P (Bj)]

− 2P
(
∩3
j=1Aj

)
− 2P

(
∩3
j=1Bj

) (4.7)

If ε has probability density function fε (ε), RMLV is defined by integrals

over the appropriate volumes.

RMLV =
3∑
j=1

[∫∫∫
Vj

fε (ε) dε

]
− 2

∫∫∫
Vint

fε (ε) dε (4.8)

with volumes defined as

Vj , Aj ∪Bj = {|εi| ≥ AL, |εk| ≥ AL}

Vint ,
(
∩3
j=1Aj

)
∪
(
∩3
j=1Bj

)
= {ε � AL · 1} ∪ {ε � −AL · 1}
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where � and � are vector inequalities and 1 is a vector of all ones.

Equation (4.3) shows that the individual events Aj and Bj do not depend

on the value of εj , so the MLV risk integrals can be carried out on the marginal

distributions for the Vj regions.

RMLV =
3∑
j=1

∫∫ ∞
AL

fεi,εk (εi, εk)dεidεk

+
3∑
j=1

∫∫ −AL

−∞
fεi,εk (εi, εk)dεidεk

− 2

∞∫∫∫
AL

fε (ε) dε− 2

−AL∫∫∫
−∞

fε (ε) dε

(4.9)

In the case that the underlying random variables are iid zero-mean Gaussian,

the above risk is greatly simplified by factoring the joint distributions into their

independent parts and expressing the result in terms of the PDF of the standard

normal distribution, φ (·). Let σ be the standard deviation of εj:

RMLV = 3


 −AL

σ∫
−∞

φ (ζ) dζ


2

+

 ∞∫
AL
σ

φ (ζ) dζ


2


− 2


 −AL

σ∫
−∞

φ (ζ) dζ


3

+

 ∞∫
AL
σ

φ (ζ) dζ


3


(4.10)

Define the simplex risk as

Rsimplex ,

−AL
σ∫

−∞

φ (ζ) dζ +

∞∫
AL
σ

φ (ζ) dζ = 2

∞∫
AL
σ

φ (ζ) dζ (4.11)
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Substituting (4.11) into (4.10) yields

RMLV =3

[(
Rsimplex

2

)2

+

(
Rsimplex

2

)2
]

− 2

[(
Rsimplex

2

)3

+

(
Rsimplex

2

)3
]

=
3

2
R2

simplex

(
1− Rsimplex

3

)
≈3

2
R2

simplex

(4.12)

Alternatively, if the solutions are completely correlated Gaussian random

variables with equal variance, then the conditional distributions are degenerate, and

the multiple integrals over the joint distributions reduce to single integrals over a

single variable:

RMLV = 3

 −AL
σ∫

−∞

φ (ζ) dζ +

∞∫
AL
σ

φ (ζ) dζ



− 2

 −AL
σ∫

−∞

φ (ζ) dζ +

∞∫
AL
σ

φ (ζ) dζ


= Rsimplex

(4.13)

This implies that perfectly correlated solutions yield the same IR as a simplex so-

lution of the same quality. It is important to note that the actual IR will vary as a

function of the degree of correlation among the three solutions. The actual risk is

bounded below by equation (4.12) and bounded above by equation (4.13). The im-

portance of accounting for the correlations among solutions when computing MLV

IR is illustrated in Fig. 4.1. The partially correlated result plotted has correlation
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Figure 4.1: The risk of excess error for a MLV solution is a function of the corre-
lations among the three solutions. When the solutions are fully correlated, the risk
is equivalent to that of a simplex solution. When the solutions are independent, the
risk is greatly reduced. The example of partially correlated errors shown is for a
correlation coefficient ρ = 0.5 between each pair among the three solutions.

coefficients of 0.5 among the three solutions, which have equal variance. If par-

tially correlated solutions are treated as fully correlated, then the result is overly

conservative, and availability will degrade. If the solutions are incorrectly assumed

to be independent, then IR is not being bounded correctly.

4.3 Correlation Agnostic Integrity Risk Bound

In the case that there is insufficient knowledge of the correlations to accu-

rately model the joint distribution of the three solutions, a simple a priori bound can

be computed for the selected solution based upon the MLV criteria and the simplex
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IRs of the individual solutions without regard for their correlations:

RMLV = P
(∣∣ε(2)

∣∣ > AL
)

RMLV ≤ 1− P
(∣∣ε(1)

∣∣ < AL,
∣∣ε(3)

∣∣ < AL
) (4.14)

Take Rj = P (|εj| > AL). Let i to be the MLV solution in use and j and k to

be the other two solutions. A bound on RMLV can be obtained independent of the

distribution of Xi:

RMLV ≤ 1−
∫ AL

−AL

∫ AL

−AL

fεj ,εk (ξ, ζ) dζdξ

≤ Rj +Rk

(4.15)

This upper bound for RMLV, which does not depend on the correlation among the

solutions, is derived by in Appendix E.

This demonstrates that even if a single one of the solutions has poor in-

tegrity, it can be assured that the IR from the selected MLV solution can be limited

to the sum of the IRs of the other two solutions. This is of no use when all three

solutions are of similar quality, so it provides little benefit under nominal circum-

stances for fault free integrity. The bound can, however, be used to protect the

integrity of the selected MLV solution in the presence of a single latent fault or a

single large IR.

4.4 Application of Mid-Level Voting to Carrier Phase Differen-
tial GNSS Solutions

To apply the analytical tools developed in Section 4.2 to triplex CDGNSS

solutions, the joint distributions of the three solutions must be derived for all so-

lutions of interest. This chapter will examine the float solution, the fixed solution,
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and the GERAFS algorithm [42]. The EPIC algorithm [18] is not evaluated. As

will be shown, it is not appropriate to consider the joint probabilities of ambiguity

resolution among the federated solutions.

4.4.1 Simplex Float Solution Joint Distribution

Each individual float solution is formed by solving the linearized, least

squares, double-difference relative baseline solution. The solution is formed by

linearizing the measurement model about an initial estimate of the baseline vector,

b̄. The measurements comprise a set of carrier phase observables and some prior

information, such as pseudoranges or geometry free estimates of the integer am-

biguities. To form a weighted least squares solution, the joint covariance of the

measurements and the prior information must be known. For the case that the prior

information is a set of smoothed pseudoranges, the linearized measurement model

for the ith federated solution is

yi =

 Gi Λi

Gi 0


︸ ︷︷ ︸

Hi

 δb

ai


︸ ︷︷ ︸

xi

+εi (4.16)

with

εi ∼ N (0,Σi)

Σi: Measurement covariance matrix

Gi =


(
u1
i − uli

)T
...(

umii − uli
)T


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uki : unit vector from space vehicle (SV) k to receiver i

l: key SV used in double differences

mi: number of double differences

Λ = Diag

(
λ1 · · · λmi

)
wavelength matrix

Each float solution is computed and the solution matrix, Si, is retained for

later use:

x̂i =

δb̂i
âi

 =
(
HT
i Σ−1

i Hi

)−1
Hi

TΣ−1
i yi = Siyi

b̂i = b̄+ δb̂i : Final baseline estimate

(4.17)

4.4.2 Triplex Float Solution Joint Distribution

Each of these float solution matrices is combined with the total system joint

measurement covariance to form the total solution covariance:

Σfloat,triplex = cov

([
b̂1 â1 b̂2 â2 b̂3 â3

]T)

=


S1 0 0

0 S2 0

0 0 S3




Σy,1 ΣT

y,2,1 ΣT
y,3,1

Σy,2,1 Σy,2 ΣT
y,3,2

Σy,3,1 Σy,3,2 Σy,3




S1 0 0

0 S2 0

0 0 S3



T

=


S1Σy,1S

T
1 S1ΣT

y,2,1S
T
2 S1ΣT

y,3,1S
T
3

S2Σy,2,1S
T
1 S2Σy,2S

T
2 S2ΣT

y,3,2S
T
3

S3Σy,3,1S
T
1 S3Σy,3,2S

T
2 S3Σy,3S

T
3



(4.18)
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The off-block-diagonal terms of the measurement covariance matrix are populated

by reference receiver errors, atmospheric errors, and lever arm errors used to trans-

lated the three solutions to a common reference point. The resulting triplex co-

variance can be broken down into several pieces: covariance among the various

baseline estimates
(
Σbibj

)
, among the various real-valued float integer estimates(

ΣNiNj

)
, and among the baseline estimates and the integer estimates (ΣbiNi). This

decomposition of the matrix is denoted as follows, with the elided upper triangular

portion being the transpose of the lower triangular portion shown:

Σb̂1

Σâ1b̂1
Σâ1

Σb̂2b̂1 Σb̂2â1
Σb̂2

Σâ2b̂1
Σâ2â1 Σâ2b̂2

Σâ2

Σb̂3b̂1 Σb̂3â1
Σb̂3b̂2 Σb̂3â2

Σb̂3

Σâ3b̂1
Σâ3â1 Σâ3b̂2

Σâ3â2 Σâ3b̂3
Σâ3



(4.19)

By extracting the desired components from this overall joint solution covariance

matrix, MLV can be performed on the vertical and lateral components of the relative

baseline solution.

4.4.3 Simplex Fixed Solution Integrity

Many methods exist to fix the integer ambiguities. Among these are integer

rounding [29], integer bootstrap [32], and integer least squares (ILS) [34]. Each al-

gorithm has its advantages and disadvantages. Integer rounding is the simplest, but
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it has the lowest probability of correctly fixing the integers. Bootstrap has improved

probability of success and has a convenient way to predict probability of correct fix,

PCF , P (ǎ = a), but this probability is suboptimal and is sensitive to the order

and combination in which ambiguities are resolved. ILS is an optimal method in

terms of PCF , but entails a grid search of the integer space and has no analytical

expression for PCF .

High integrity CDGNSS systems typically use the bootstrap method to-

gether with the ambiguity decorrelation adjustment of the LAMBDA method. By

using the decorrelated ambiguities, the bootstrap algorithm fixes successive inte-

ger ambiguities in the order of maximum conditional PCF . This set of algorithms

provides high integrity with predictable probability of correct integer fixing.

Due to the nonlinear rounding operation, the fixed baseline solution does

not havea Gaussian distribution. Rather, it is a mixture of multivariate Gaussian

distributions of equal covariance, but differing means [32]. This distribution is

illustrated in Fig. 4.2 and described mathematically in (4.20). Let the accent mark

(̌ ) denote a quantity conditioned on the fixed integer estimate ǎ.

b̌ = b̂− Σb̂âΣ−1
â (â− ǎ) (4.20a)

Σb̌ = Σb̂ − Σb̂âΣ−1
â Σâb̂ (4.20b)

b̌ ∼
∑
z∈Zm

P (ǎ = a+ z)N
(
b+ Σb̂âΣ−1

â z,Σb̌
)

(4.20c)

The probability P (ǎ = a+ z) is a deterministic function of Σâ and the

decorrelating transform used [32]. Conditioned on the event that ǎ = a, the base-

line estimate is once again a zero-mean multivariate Gaussian random vector. The
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Figure 4.2: The positive portion of the modeled PDFs of the fixed, GERAFS, and
EPIC baseline errors. The fixed baseline has a Gaussian mixture distribution with
biases and weights determined by the incorrect fixes. Whereas the EPIC baseline
follows the fixed baseline closely for incorrect fixes of non-negligible probability,
the GERAFS baseline assigns all of the non-negligible probability of incorrect fix
to the fix with the largest incorrect fixing bias.

IR in making this assumption is PIF , 1 − PCF . The covariance of the fixed so-

lution is smaller than the float covariance since the errors are driven by the carrier

phase measurements rather than by the pseudoranges. The IR associated with the

vertical component of a fixed solution is bounded by the following:

Rfixed,V = P
(∣∣b̌V − bV

∣∣ > ALV

)
≤ PIF + PCFP

(∣∣b̌V − bV

∣∣ > ALV|ǎ = a
) (4.21)
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4.4.4 Triplex Fixed Solution Joint Distribution

The transition from simplex to triplex for the float solution is simply a matter

of extracting the appropriate portions of the system float covariance matrix to form

the baseline covariance, but the fixed triplex solution is more complicated. Consider

the triplex fixed baseline covariance:

ΣB̌,triplex =


Σb̂1|â1

Σb̂2|ǎ2,b̂1|ǎ1
Σb̂2|ǎ2

Σb̂3|ǎ3,b̂1|N1
Σb̂3|ǎ3,b̂2|N2

Σb̂3|ǎ3

 (4.22)

Where the off diagonal terms are computed from parts of the system float

covariance and the block diagonal terms are the results of the individual fixed so-

lutions. Take ε̌i = (âi − ǎi) and assume ǎi = ai. Defining δb̂ , b̂ − b, the off

diagonal blocks can be computed as

Σb̂i|ǎi,b̂j |ǎj = E
[(
b̌i − b

) (
b̌j − b

)T]
=E

[(
δb̂i − Σb̂iâiΣ

−1
âi
ε̌i

)(
δb̂j − Σb̂j âjΣ

−1
âj
ε̌j

)T]
=E

[
δb̂iδb̂

T
j

]
+ E

[
Σb̂iâiΣ

−1
âi
ε̌i

(
Σb̂j âjΣ

−1
âj
ε̌j

)T]
− E

[
δb̂i

(
Σb̂j âjΣ

−1
âj
ε̌j

)T]
− E

[
Σb̂iâiΣ

−1
âi
ε̌iδb̂

T
j

]
=Σb̂ib̂j + Σb̂iâiΣ

−1
âi

ΣâiâjΣ
−1
âj

ΣT
b̂j âj

− Σb̂iâjΣ
−1
âj

ΣT
b̂j âj
− Σb̂iâiΣ

−1
âi

Σâib̂j

(4.23)

The integrity of the MLV algorithm for the triplex fixed solutions depends

upon all three of the fixes being correct. Conditioned on this event, the three fixed
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baselines are distributed as a single, correlated, zero-mean multivariate Gaussian

random vector. Assuming that any incorrect fix will result in errors exceeding the

AL, the risk of excess error for a fixed triplex solution can be counded as

Rfixed,triplex ≤ 1− P (CF 1 ∩ CF 2 ∩ CF 3)

+ P (CF 1 ∩ CF 2 ∩ CF 3)

×RMLV

(
AL,0,ΣB̌,triplex

) (4.24)

To upper bound the IR, the probability of correctly fixing all three inte-

ger solutions must be upper bounded. This bound is obtained by assuming that

the events are perfectly correlated; i.e., one correct fix implies that all others are

correctly fixed, and one incorrect fix implies all others are incorrectly fixed. Ad-

ditionally, the risk that any of the fixes is incorrect must be bounded since 1 −

P (CF 1 ∩ CF 2 ∩ CF 3) = P (IF 1 ∪ IF 2 ∪ IF 3):

P

(⋂
i

CF i

)
= P (CF 1|CF 2,CF 3)P (CF 2|CF 3)P (CF 3)

Perfect correlation⇒ P (CF j|CF k) = 1,∀j, k

∴ P

(⋂
i

CF i

)
≤ min

i
(PCF i)

(4.25)

Also, the probability of a union of events must be less than or equal to the

sum of the probabilities of the events.

P (IF 1 ∪ IF 2 ∪ IF 3) ≤
∑
i

PIF i (4.26)

Substituting equations (4.25) and (4.26) into equation (4.24), the final bound
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is obtained.

Rfixed,MLV ≤
∑
i

PIF i

+ min
i

(PCF i)×RMLV

(
AL,0,ΣB̌,triplex

) (4.27)

It is evident from examining the above expression that this solution is only

available if
∑
i

PIF i < IRspec. This implies that the demands on the probability of

correct fix for triplex MLV are more stringent than for the simplex case. This may

cause the overall system availability to be even lower for a federated triplex fixed

solution than for the simplex solution if the PIF is near the required IR.

4.4.5 Simplex GERAFS Integrity Risk

If a fixed solution does not produce a sufficiently high probability of correct

fix, then an alternative is to use an “almost-fixing” solution. Almost-fixing solutions

control IR by assessing the risk induced by biases that result from incorrect fixes

near the fixed solution. Two such algorithms are GERAFS and EPIC.

In the almost-fixed case, the fixed baseline has the same underlying multi-

modal mixture distribution as the fixed solution, but the integrity impact of modes

other than the chosen fixed solution is accounted for in the position domain. Both

GERAFS and EPIC examine a set of candidate integer fixes that differ from ǎ by

an integer offset d ∈ ∆ ⊂ Zm \ {0}. The deterministic bias that would result if

ǎ = a + d is computed for all d ∈ ∆. The set of all float ambiguities mapped to

{a+ d|d ∈ ∆} is called the enlarged pull-in region (EPIR).

The GERAFS algorithm addresses the IR by assuming that the bias from

any incorrect fix is equal to the worst case bias induced by any candidate fix. The
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magnitude of the worst case bias is called the incorrect fixing bias, IFB . The EPIC

algorithm assesses the IR from each incorrect fix candidate separately, yielding

higher availability than GERAFS. See Fig. 4.2 for an example of the distribution

models used by EPIC and GERAFS compared with the associated fixed baseline

distribution. Given these definitions, and defining

PEPIR ,
∑
d∈∆

P (ǎ = a+ d) (4.28a)

PAF , PCF + PEPIR (4.28b)

PNAF , 1− PAF (4.28c)

the risk of excess error for a simplex GERAFS solution is bounded

RGERAFS,V = P (|bV − bV| > ALV)

≤ PNAF + PCFP (|bV − bV| > ALV|N = ǎ)

+ PEPIRP (|bV − bV| > ALV|N ∈ EPIR)

(4.29)

4.4.6 Triplex GERAFS Joint Distribution

When conditioned an a particular candidate ambiguity, the covariance of an

almost-fixed solution is the same as that of a fixed solution, so all that remains is

to assess the integrity ramifications of almost-fixing. The development is similar

to the fixed case with PAF often taking the role of PCF for the fixed case. The

MLV integrity monitor must also be modified to reflect the worst case biases in the

positive and negative directions. The modified risk monitoring function is denoted

as R̄MLV :
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R̄MLV =
∑
j

∞∫∫
AL−IFB

fεi1 ,εi2 (εi1 , εi2)dεi1dεi2

+
∑
j

IFB−AL∫∫
−∞

fεi1 ,εi2 (εi1 , εi2)dεi1dεi2

− 2

∞∫∫∫
AL−IFB

fε (ε) dε− 2

IFB−AL∫∫∫
−∞

fε (ε) dε

(4.30)

Where the IFB in the integral limits is the worst case incorrect fixing bias for the

variable of integration.

This is identical to the previous definition of MLV integrity except that the

magnitudes of the means are applied in the direction that maximizes risk. That is,

IFB is added when evaluated against positive errors and subtracted when evaluated

against negative errors. This ensures conservatism in the integrity bound:

RGERAFS,MLV,V ≤
∑
i

PNAF i

+ min
i

(PCF i)×RMLV

(
AL,ΣB̌V ,triplex

)
+

min
i

(PEPIRi)

× R̄MLV,GERAFS

(
AL, IFB ,ΣB̌V ,triplex

)


(4.31)

4.5 Analytical Comparison to Simplex Solutions

The important metrics to be considered when comparing the simplex and

triplex solutions are daily average accuracy and availability of integrity. Daily av-

erage accuracy is assessed for each location in a global grid and averaged over 24
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hours at 5 minute intervals. Availability of integrity is the percentage of time that a

particular system can meet the specified integrity requirements in operation. The IR

equations for each type of solution provide the basis for making these assessments.

For the float solution, the MLV risk is simply a set of integrals with no

risk due to integer fixing. Because of this there is no automatic integrity penalty for

assuming that the integer ambiguities have been correctly resolved. Equations (4.9),

(4.12), and (4.13) demonstrate that availability of integrity for triplex MLV float

solutions can only be better than that of the simplex solution, unless the solutions

are completely correlated.

The accuracy of the MLV float solution can be computed for the (1− α)

percentile by numerically solving:

εα = inf
{
ε|RMLV

(
ε,ΣB̌,triplex

)
≤ α

}
(4.32)

By the same logic applied to availability of integrity, the MLV equation demon-

strates that the accuracy of federated triplex float solutions will be better than the

accuracy of the simplex float solutions. Depending on the specified IR and ALs,

MLV may provide sufficient performance improvement so that a triplex float solu-

tion would satisfy the requirements when a simplex float solution would not.

For the federated triplex fixed solution, MLV is not usually advantageous.

Typically, the IR for a fixed solution is limited by PIF , not by the accuracy of the

fixed solution. Examination of equation (4.24) shows that all three solutions are

required to have simultaneously correct fixes. This divides the individual required

PIF requirement by three. If a fixed solution is unavailable, or marginally available
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for the simplex case, it is less available for virtually all conditions in the federated

triplex case.

For GERAFS solutions with the IR and AL requirements considered in this

chapter, MLV provides no integrity benefit. The reduced allocation of PNAF re-

quired for the MLV solution increases the IFB so that the MLV GERAFS solu-

tion is less available than the simplex GERAFS solution. To gain the most benefit

possible from the triplex architecture, each GERAFS solution will protect its own

integrity risk, and then MLV will be used to improve the accuracy performance of

the final result.

4.6 Simulation Methodology

A numerical covariance analysis tool was used to assess the performance

of the federated triplex GERAFS solutions as compared to the simplex GERAFS

solution. This tool is an updated version of the same availability model (AM) that

was originally used to assess the availability of the GERAFS algorithm [42]. The

model was updated to include the MLV solution and a more stringent integrity re-

quirement to reflect the needs of unmanned air vehicles. All solutions are computed

using the wide lane carrier phase and narrow lane code combination.

For each location, availability of accuracy is zero if the daily average ac-

curacy at that location is worse than the requirement. Availability of integrity is

assessed for each time step, at each location. The AM evaluates algorithm perfor-

mance on a worldwide grid of latitude and longitude and at 5 minute intervals over

a 24 hour period.
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Because integrity requirements must be satisfied at all times without the

benefit of averaging, there are 288 × NGridPoints assessments of availability of in-

tegrity. Alternatively, accuracy is a daily average for each location, so there are

only NGridPoints assessments of availability of accuracy. Let T be the set of times

considered by the simulation. Each worldwide grid point is given an availability

value defined as follows with world wide availability computed as the average over

all grid points:

AGP =



|{t∈T|IRGP(t)<IRspec}|
|T| εavg ≤ εspec

0 εavg > εspec

(4.33)

where |{·}| is the number of elements in the set.

The error models used for the simulation include thermal noise, multipath,

and antenna bias model for carrier phase and pseudorange, lever arm translation

errors, and propagation effects due to latency of reference receiver data. Both sim-

plex and triplex GERAFS implementations use a float solution as a backup when

the PCF and PAF requirements are not satisfied. This allows for graceful degra-

dation of system average accuracy as the GERAFS algorithm is unable to fix with

integrity.

4.7 Simulation Results

The results of the original simplex GERAFS algorithm in [42] have been

reproduced for an IR requirement reduced to reflect the needs of an unmanned
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landing. The results show the availability of the solutions as a function of the spec-

ified accuracy for varying ALs. There is a trend for all solutions that availability

decreases with the AL. The simplex GERAFS and triplex GERAFS solutions also

have decreasing accuracy as the AL decreases. This trend results from the less ac-

curate float solution being used when GERAFS is unable to satisfy the required IR

for the given AL.

For the least restrictive AL, the simplex GERAFS solution is almost always

able to operate in the almost-fixed mode. However, as the AL is reduced, the IFB

computed by GERAFS exceeds the AL more frequently, resulting in the use of the

backup float solution. The direct results of the reduced AL are degraded average

accuracy and reduced availability of integrity. For the specified IR used in these

simulations, GERAFS is usually unavailable for an AL of 1.5 m, and the backup

float solution is used. As a result, for this combination of requirements, simplex

GERAFS performance is roughly equivalent to simplex float performance.

Table 4.1: World-wide availability for varying ALs for each solution

Solution Type\AL 1.5 m 2.5 m 3.5 m 4.4 m

Float .8239 .9977 .9999 .9999

Simplex GERAFS .8117 .9929 .9984 .9990

Triplex .9629 .9995 .9999 .9999

For the triplex GERAFS solution, the probability of any of the three fixes

being incorrect is lower bounded by the sum of the probabilities that each is in-

correct. For the fixed solution to be used in these simulations, the PCF is required
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to be greater than .998. This implies that the 95% accuracy of the MLV GERAFS

solution will be as accurate as the simplex GERAFS solution or better.

Table 4.2: Daily average 70% accuracy for each solution at 99.5% availability or
maximum obtained

Solution Type\AL 1.5 m 2.5 m 3.5 m 4.4 m

Float 32.7 cm 35.6 cm 36.0 cm 36.0 cm

Simplex GERAFS 32.7 cm 28.6 cm 21.9 cm 20.1 cm

Triplex 24.7 cm 20.6 cm 16.0 cm 14.6 cm

4.8 Conclusions

Federated triplex solutions offer significant benefits to improve accuracy

and integrity of float solutions, but for likely levels of IR and ALs the additional

burden of correctly fixing all three sets of integers prevents performance improve-

ment for fixed or almost-fixed solutions. The degree of improvement afforded by

federated triplex float solutions makes them competitive with simplex GERAFS so-

lutions. Unfortunately, this solution requires three active rover receivers at all times

which would require even more receivers to be used to ensure system continuity.

MLV for the GERAFS algorithm still provides improved accuracy even when no

additional integrity credit is claimed. To alleviate the continuity risk and enhance

integrity, future studies will examine integrated architecture alternatives which will

provide performance improvements with fewer rover receivers.
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Figure 4.3: Comparison of availability vs. accuracy for float, GERAFS, and MLV
triplex solutions for varying AL. As the AL is reduced, the GERAFS algorithm
is less frequently able to fix the integer ambiguities. When the fixed solution is
unavailable, both the GERAFS and MLV triplex solutions use a float solution as
a backup. The performance of the GERAFS solution degrades to that of the float
solution when AL = 1.5m since the fixed solution is completely unavailable. Even
when the MLV triplex solution uses the float solution, the integrity and accuracy
benefits of MLV enable a 15% increase in availability and an 8 cm improvement in
70% accuracy.
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Chapter 5

Conclusion

5.1 Summary

The ability to reliably us fixed-integer CDGNSS positioning in safety-of-

life applications will open up new horizons in autonomous vehicle navigation.

Centimeter-accurate position estimates with sub-meter error integrity assurance will

allow for unmanned air vehicles to land and refuel reliably during daily operation.

Autonomous cars and advanced driver assistance features will be able to track the

lane position of the vehicle with respect to curated maps which were themselves

created with integrity assurance. Such remarkable feats will only be possible if the

integer estimates can be trusted. This dissertation defends the following thesis:

Integer-fixed CDGNSS positioning for demanding safety-of-life applica-

tions requires a novel data-driven integer ambiguity validation method which ben-

efits further from mid-level voting triplex architectures.

The following section offers a summary of the contributions proving this

thesis statement.

• Chapter 2 presents the derivation and validation of the Generalized Integer

Aperture Bootstrapping (GIAB) algorithm that validates the correctness of
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the integer ambiguities with provable integrity, including for partial ambigu-

ity resolution. The performance of the algorithm was validated via Monte

Carlo simulation. GIAB was shown to be nearly as effective as the optimal

IA method, while providing integrity sufficient for safety-of-life applications.

• Chapter 3 further extends the GIAB algorithm to provide position-domain

integrity protection. This is particularly important for the case of partial am-

biguity resolution, because it was proven in chapter 3 that the posterior PDF

of a data-driven, partially-fixed baseline estimate is biased away from the true

baseline even when constrained only using correctly validated fixes. The de-

rived PDFs were validated with Monte Carlo simulations. The performance

of the algorithm was shown to exceed that of the EPIC algorithm.

• Chapter 4 describes how MLV-triplex CDGNSS architectures can be used

to improve the accuracy and integrity performance of positioning. Integrity

monitors for float, fixed, and GERAFS solutions are developed. MLV-triplex

float CDGNSS solutions benefit significantly both in terms of integrity and

accuracy performance for the fault-free case. Fixed and GERAFS solutions

benefit in fault-free accuracy performance, but receive no benefit in fault-free

integrity benefit from a MLV-triplex architecture.

5.2 Future Work

Future work will include analysis of real-world CDGNSS data using GIAB

and integration of GIAB into a complete safety-of-life navigation system.
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Appendix A

CDGNSS Measurement Model

A.1 GNSS Measurement Model

GNSS receivers provide two types of measurements for each signal that

they track. The first measurement is called a pseudorange. A pseudorange is a

noisy, biased estimate of the geometric range between the receiver antenna and

the satellite antenna. The measurement is corrupted by a number of error sources

including atmospheric delays, thermal noise, and multipath interference. The total

effect of these errors for a single pseudorange measurement is typically on the order

of 10s of meters.

The second type of GNSS measurement is called the carrier phase. The

carrier phase provides an estimate of the change in the distance between the re-

ceiver antenna and the satellite antenna. Because the carrier phase only estimates

the change in distance, it is ambiguous with respect to the full geometric range

between the satellite and receiver antennas. However, it is a much smoother mea-

surement than the pseudorange, with noise on the order of a few millimeters. It

is also corrupted by atmospheric delays, similar to those of the pseudorange. The

subsequent subsections will develop a model for these measurements as they are

used with CDGNSS systems over short baselines, of a few kilometers.
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A.1.1 Undifferenced Measurement Model
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Figure A.1: An illustration of the geometric relationships among two GNSS satel-
lites and two GNSS receivers. A CDGNSS system is interested in computing the
relative position vector, or baseline, between the two receivers. This baseline is de-
noted b. The vectors with subscripts, e.g. ri, indicate receiver positions, and those
vectors with superscripts, e.g. rk, indicate satellite positions. Vectors with both
super- and subscripts, e.g. rki , indicate relative position vectors from satellites to
receivers.

The pseudorange measurement can be modeled as the sum of the geometric

range between the satellite and receiver, (rki ), and several error terms. Refer to

figure A.1 for an illustration of the vectors used in this section. The error terms

include the effect of clock errors at the receiver cδtRi and at the satellite (cδtjS),

ionospheric group delay (Iki ), tropospheric delay (T ki ), and a lumped error term

that includes both white noise and time-correlated multipath errors (wkρi).

ρki = rki + c(δtRi − δtkS) + Ikρi + T ki + wkρi (A.1)

For a single pseudorange measurement, the total error from all of these
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sources is typically between 5 m and 50 m [23]. Most of the error comes from the

ionospheric and tropospheric delay. The receiver clock error is solved for directly

in the navigation solution since it is only a single unknown. The satellite clock error

is corrected using a broadcast model with residual errors of approximately 2 m.

As GNSS signals pass through the ionosphere, they are delayed by the

equivalent of between 2 m and 10 m for satellites at zenith. This delay is in-

creased as the satellite elevation decreases toward the horizon, i.e. as the signal

passes through more of the atmosphere. For very low elevation angles, the delay

inceases by a factor of 3. By using the broadcast ionospheric correction model,

approximately 60% of the ionospheric delay can be corrected [8]. Because the

ionosphere is a dispersive medium, i.e. it induces a frequency dependent group

delay, dual-frequency GNSS receivers can estimate the delay with uncertainty of

approximately 1 m.

The troposphere causes a similar delay of approximately 2.5 m at zenith

[21]. Because the troposphere is much thicker in extend than the ionosphere, low

elevation satellites suffer a delay increase of a factor of 10 over those at zenith.

By using models that reflect average meteorological conditions, these effects can

compensated to an uncertainty of 0.1 m to 1 m at zenith. The troposphere is a non-

dispersive medium, so dual-frequency measurements are not useful for estimating

the tropospheric delay.

The multipath error depends on the radio frequency (RF) environment near

the antennas. In “clean” multipath environments with few reflective surfaces, multi-

path errors on the pseudorange are about a meter in magnitude. In more challenging
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environments, mulipath errors can be as large as 30 m to 150 m, depending on re-

ceiver architecture. Thermal noise is a much smaller contributor than multipath,

typically less than half a meter.

There is a similar measurement model for the carrier phase:

λ · φki = rki + c(δtRi − δtkS) + λ(γk0i − ψ
k
0) + Ijφk + T ki + λ · wkφi (A.2)

In this equation, the carrier phase error is actually equal and opposite to the

pseudorange error. That is:

Iki = Ikρi = −Ikφi (A.3)

Also, the term λ(γk0i − ψ
k
0) models the initial carrier phase offset of the receiver as

it acquires the kth satellite signal
(
γk0i
)
, and the unknown initial phase of the trans-

mitted signal at the satellite
(
ψk0
)
. The carrier phase noise

(
wkφi
)

is typically a small

fraction of carrier phase cycle, which results in a range error of a few millimeters.

This error is much smaller than that of the pseudorange noise and mulitpath, but the

carrier phase is ambiguous since it only tracks the change in range from the time

that phase lock was established.

A.1.2 Short Baseline Single Differences Measurement Model

When a pair of receivers is being used, it is common to form an observable

by differencing the pseudoranges and carrier phases from the two receivers to each

satellite that is tracked by both receivers. This forms the so called between receiver

single difference (BRSD) observable. Since atmospheric errors are spatially corre-

lated, much of the ionospheric and tropospheric errors cancel out leaving a much
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smaller residual error. Also, the SV clock bias cancels out completely. The nota-

tion used to indicate a the difference between two measurement model terms for the

same satellite and different receivers is

(·)kij = (·)ki − (·)kj , i : Rover (Air) Receiver, j: Reference (Ship) Receiver (A.4)

Applying this notation to the pseudorange and carrier phase measurement

equations (A.1) and (A.2), the BRSD measurement model are

ρkij = rkij + Ikij + T kij + wkρij + bij (A.5a)

λφkij = rkij − Ikij + T kij + λγk0ij + wkφij + bij (A.5b)

The ionospheric and tropospheric delays for receivers that are a few kilo-

meters apart are highly correlated. This causes the residual atmospheric delay in

the BRSD measurement to be significantly reduced. For such short baselines, the

residual tropospheric delay drops from roughly 2.4 m to about 0.2 m. Similarly, the

ionospheric error can be reduced to 0.2 m for even longer baselines in the absence

of heightened solar activity. The remaining errors are not correlated between re-

ceivers, so receiver clock biases, multipath, and thermal noise errors are combined.

A.1.3 Double Difference Measurement Model

By differencing BRSDs from two satellites, a double difference measure-

ment is formed with several attractive properties. All clock biases are eliminated

and all atmospheric errors are reduced to residuals. The dominant error terms are

the code and carrier multipath. Furthermore, the remaining phase uncertainty is
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now integer valued, which will allow for the use of the integer ambiguity resolu-

tion techniques which enable precision relative GNSS solutions. The measurement

model is

ρklij = rklij + Iklij + T klij + wklρij (A.6a)

λφklij = rklij − Iklij + T klij + λγkl0ij
+ wklφij (A.6b)

γkl0ij
∈ Z (A.6c)

A.1.4 Carrier Phase Smoothed Pseudorange Measurements

Recall that the noise and multipath that corrupt the pseudorange measure-

ments can be several meters in magnitude, but the same type of errors in the carrier

phase measurements are on the order of a centimeter. Unfortunately, the carrier

phase is ambiguous, so it cannot simply be used in place of the pseudorange mea-

surement to directly solve for the position of a receiver without prior information.

To gain some benefit from the carrier phase measurements, the pseudorange ob-

servables can be smoothed using the carrier phase observables. The resultant value

is called the carrier smoothed code (CSC) measurement. The CSC has less noise

than the raw pseudorange, but the temporal correlation of the multipath reduces

the effectiveness of the smoothing. Further, since the ionospheric effect delays the

pseudorange and advances the carrier phase measurement, over time, the code and

carrier measurements diverge from each other. This effect is called code carrier di-

vergence (CCD). Because the ionosphere is a dispersive medium, the delay/advance

is related to the frequency of the carrier signal. When L1 and L2 measurements

are available, the CCD effect can be mitigated by dual-frequency divergence free
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smoothing (DFS) [22].
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Figure A.2: A block diagram of the low pass filter form of the carrier smoothed
code observable. In this approach, the difference between the carrier phase and
the pseudorange is smoothed with a low pass filter with a time-varying gain. This
difference is then added back to the carrier phase to form a smoothed estimate of
the pseudorange.

One popular form of CSC smoothing is to use a low pass filter (LPF) with a

time varying gain to smooth the difference between the pseudorange and the carrier

phase measurements. This smoothed difference is then added back to the already

low noise carrier phase to yield a smoothed pseudorange estimate. Denoting the

CSC after k uninterrupted measurements as ρ̄ [k], this can be expressed as

ρ̄ [k] = (1−G [k]) (ρ̄ [k − 1]− λφ [k − 1])+G [k] (ρ [k]− λφ [k])+λφ [k] (A.7)

With the gain is defined as

G [k] =

{
1
k

k ≤ kmax
1

kmax
k > kmax

, (A.8)

This is how the smoother is computed practically, but to analyze the performance

of the filter, it is useful to develop a closed form, non-iterative expression for ρ̄ [k].
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For k < kmax, the CSC expression simplifies to the sum of the current phase

and the time average of the code-minus-carrier:

ρ̄ [k] = λφ [k] +
1

k

k∑
j=1

(ρ [k]− λφ [k]) , ∀1 ≤ k ≤ kmax (A.9)

For k > kmax, the time average is replaced by a constant gain LPF, and the resulting

equation is a bit more complex.

ρ̄ [k] =λφ [k] +Kk−kmax (ρ̄ [kmax]− λφ [kmax])

+
1

kmax

k∑
j=kmax+1

Kk−j (ρ [k]− λφ [k]) ,∀k > kmax
(A.10)

with K = 1 − 1
kmax

. In either case, the CSC is equal to the current carrier phase

plus a weighted average of all previous carrier-minus-code observables. When this

smoothing is applied to the measurement models in equations A.1 and A.2, a model

for the CSC is obtained. The time index will be changed to n below to avoid con-

fusion with the satellite index.

λφki [n]− ρ̄ki [n] = λ
(
γk0i + ψk0

)
−
(
2Īki + w̄kρ,i − λw̄kφ,i

)
(A.11a)

ρ̄ki [n] = rki + c(δtRi − δtkS) +
(
Īki + w̄kρ,i − λw̄kφ,i

)
+ T ki + λ · wkφi (A.11b)

This expression implies that the difference between the carrier phase and the

CSC comprises the carrier phase ambiguity, double the time averaged ionospheric

delay, the time averaged pseudorange noise and multipath, and the time averaged

carrier phase noise and multipath. If these observables are being used in a double

difference in which the smoothing filters in the two receivers use different values

of kmax or have smoothed different numbers of measurements, the time averaging
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of the ionospheric delay causes the BRSD ionospheric residuals to be significantly

larger than otherwise expected. This effect can be mitigated by dual-frequency

divergence-free smoothing.

A.1.5 Divergence-Free Smoothing

Because the ionosphere is a dispersive medium for GNSS frequencies, the

ionospheric delay is well approximated by an inverse-square law [23].

I ≈ 40.3TEC

f 2
(A.12)

By carefully combining measurements from both L1 and L2 pseudoranges and car-

rier phases, the ionospheric contribution of the code-minus-carrier observable can

be removed prior to smoothing. This preserves the correlation between the iono-

spheric delay experienced by a rover and a reference receiver when using double

difference or BRSD measurements.

For full details of the derivation of the constants used in divergence-free

smoothing, the reader is referred to [22]. The key results are presented here. The

four parameters, α1, α2, β1, and β2, are determined from the inverse square law and

the constraints that α1 +α2 = 1 and β1 +β2 = 1 so that the geometric range compo-

nent is preserved. Also, the ionospheric error component from the combination of

carrier phase must cancel out the ionospheric error in the pseudorange combination.

This ensures that no contribution from the ionospheric error is provided as input to
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+
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Figure A.3: Divergence-free smoothing is accomplished by weighting the input
pseudoranges and carrier phases such that the ionospheric delay in the pseudor-
ange is canceled by the carrier phase used in the smoother. In this way, reference
and rover receivers are able to independently smooth their pseudoranges without
decorrelating the ionospheric delay.

the LPF. For an arbitrary choice of α1, the parameters are

α2 = 1− α1 (A.13a)

β1 =
2f 2

1

f 2
1 − f 2

2

− α1 (A.13b)

β2 = α1 −
f 2

1 + f 2
2

f 2
1 − f 2

2

(A.13c)

For legacy civil GPS signals where L2 does not have a pseudorange mea-

surement, divergence-free smoothing can still be applied to the L1 measurement by

setting α1 = 1 and α2 = 0. This leads to the combination

ΦρL1,DF
= λ1

f 2
1 + f 2

2

f 2
1 − f 2

2

φL1 − λ2
2f 2

2

f 2
1 − f 2

2

φL1 (A.14a)

ρ̄L1,DF = ΦρL1,DF
+ LPF

(
ρL1 − ΦρL1,DF

)
(A.14b)

The notation LPF (·) indicates that the time series of measurements is low
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pass filtered according to equation A.7. When full dual frequency measurements

are available, L2 divergence-free smoothed pseudorange can be computed as

ΦρL2,DF
= λ1

2f 2
1

f 2
1 − f 2

2

φL1 − λ2
f 2

1 + f 2
2

f 2
1 − f 2

2

φL1 (A.15a)

ρ̄L2,DF = ΦρL1,DF
+ LPF

(
ρL1 − ΦρL1,DF

)
(A.15b)

A common measurement pairing is the so called narrow-lane code – wide-

lane carrier combination. This pair also happens to be a divergence-free combina-

tion:

ρNL =
f1

f1 + f2

ρL1 +
f2

f1 + f2

ρL2 (A.16a)

ΦWL = λ1
f1

f1 − f2

φL1 − λ2
f2

f1 − f2

φL1 (A.16b)

ρ̄NL = ΦWL + LPF (ρNL − ΦWL) (A.16c)

A.1.6 Double Difference Error Model

Combining the double difference measurement model in equation (A.6b) on

page 116 with the smoothed pseudorange measurement model (A.11b), the model

for a pair of smoothed pseudorange and carrier phase measurements is:

ρ̄klij = rklij + Iklij + T klij + w̄klρij + λ
(
wklφ,ij − w̄klφ,ij

)
(A.17a)

λφklij = rklij − Iklij + T klij + λγkl0ij
+ wklφij (A.17b)

γkl0ij
∈ Z (A.17c)

Using Q(·) to indicate the covariance of the error sources, treating BRSD

atmospheric residuals as bounded by a zero-mean Gaussian error for short baselines
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which are independent between satellites, and assuming noise and multipath are

independent among receivers and satellites, the covariances of double difference

pseudoranges and carrier phases can be constructed as

Qρ̄klij
=
QIkij

+QIlij
+QTkij

+QT lij
+Qw̄klρij

+λ2
(
Qwklφ,ij

+Qw̄klφ,ij
− 2cov

(
wklφ,ij, w̄

kl
φ,ij

)) (A.18a)

λ2Qφklij
= QIkij

+QIlij
+QTkij

+QT lij
+Qwklφij

(A.18b)

The variance of residual atmospheric errors can be modeled as a linear function

of between receiver separation. The variance of the smoothed multipath and noise

parameters is a function of the smoothing duration and the autocorrelation function

of the underlying multipath processes. The covariance between the current carrier

phase noise and multipath and the smoothed version of the same is

cov
(
wklφ,ij, w̄

kl
φ,ij

)
=

1

nmax
Qwklφ,ij

+ ετ (A.19)

where nmax is the number of samples smoothed and ετ is the effect of time correla-

tion in the carrier phase multipath, which is neglected.
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The covariance between two pseudorange double differences is

cov
(
ρ̄k1l1i1j1

, ρ̄k2l2i2j2

)
=

(
Q
I
k1
i1j1

+Q
T
k1
i1j1

)
(δk1k2 − δk1l2)

+

(
Q
I
l1
i1j1

+Q
T
l1
i1j1

)
(δl1l2 − δl1k2)

+

(
Q
w̄
k1
ρi1

+ λ2

(
nmax − 2

nmax
Q
w
k1
φ,i1

+Q
w̄
k1
φ,i1

))
(δk1k2 − δk1l2) δi1i2

+

(
Q
w̄
l1
ρi1

+ λ2

(
nmax − 2

nmax
Q
w
l1
φ,i1

+Q
w̄
l1
φ,i1

))
(δl1l2 − δl1k2) δi1i2

−
(
Q
w̄
k1
ρj1

+ λ2

(
nmax − 2

nmax
Q
w
k1
φ,j1

+Q
w̄
k1
φ,j1

))
(δk1k2 − δk1l2) δj1j2

−
(
Q
w̄
l1
ρj1

+ λ2

(
nmax − 2

nmax
Q
w
l1
φ,j1

+Q
w̄
l1
φ,ji1

))
(δl1l2 − δl1k2) δj1j2

(A.20)

Similarly, the covariance between two carrier phase double differences is

λ2cov
(
φk1l1i1j1

, φk2l2i2j2

)
=

(
Q
I
k1
i1j1

+Q
T
k1
i1j1

)
(δk1k2 − δk1l2)

+

(
Q
I
l1
i1j1

+Q
T
l1
i1j1

)
(δl1l2 − δl1k2)

+ λ2

(
Q
w
k1
φ,i1

(δk1k2 − δk1l2) +Q
w
l1
φ,i1

(δl1l2 − δl1k2)
)
δi1i2

− λ2

(
Q
w
k1
φ,j1

(δk1k2 − δk1l2) +Q
w
l1
φ,j1

(δl1l2 − δl1k2)
)
δj1j2

(A.21)

Finally, the covariance between a carrier phase double differences and a

pseudorange double difference is

cov
(
λφk1l1i1j1

, ρ̄k2l2i2j2

)
=

(
Q
I
k1
i1j1

+Q
T
k1
i1j1

)
(δk1k2 − δk1l2)

+

(
Q
I
l1
i1j1

+Q
T
l1
i1j1

)
(δl1l2 − δl1k2)

+ λ2nmax − 2

nmax

(
Q
w
k1
φ,i1

(δk1k2 − δk1l2) +Q
w
l1
φ,i1

(δl1l2 − δl1k2)
)
δi1i2

− λ2nmax − 2

nmax

(
Q
w
k1
φ,j1

(δk1k2 − δk1l2) +Q
w
l1
φ,j1

(δl1l2 − δl1k2)
)
δj1j2

(A.22)
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Appendix B

Linearized Least Squares Relative Position Solution

The purpose of a CDGNSS solution is to determine the position of a rover

receiver relative to a reference receiver. In the event that the reference receiver is at

a static, well-known position, the absolute position of the rover receiver can also be

determined with commensurate accuracy and precision. However, even in the case

that the absolute position of the reference receiver is only known to several tens of

meters, the relative position can still be extremely useful. This section develops the

linearized least-squares estimate of the relative position, or baseline, between the

receivers that neglects the integer nature of the double difference ambiguity.

B.1 Float Solution

Given the non-linear measurement and error models defined in Appendix

A, a linearized, weighted least-squares estimate of the relative position between

the two antennas. Given initial estimates of the two antenna positions, r̄i and r̄j ,

and initial estimate of their relative position, or baseline, is given as b̄ = r̄i − r̄j .

The initial position estimates may come from a survey of the reference station or

the absolute position estimate from each set of measurements. From these initial

estimates, an linearization point for the double differenced geometric range can be
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obtained. The true baseline is b = b̄+ δb.

rklij =
∥∥rk − ri∥∥− ∥∥rk − rj∥∥− ∥∥rl − ri∥∥+

∥∥rl − rj∥∥
=
∥∥rk − (rj + b)

∥∥− ∥∥rl − (rj + b)
∥∥+

∥∥rl − rj∥∥− ∥∥rk − rj∥∥
≈ rklij

∣∣
b=b̂

+
∂

∂b
rklij · δb

(B.1)

The partial derivative of a vector norm is the unit vector in that direction, so

∂

∂b
rklij =

∂

∂b

∥∥rk − (rj + b)
∥∥− ∂

∂b

∥∥rl − (rj + b)
∥∥

= − rk − ri
‖rk − ri‖

+
rl − ri
‖rl − ri‖

(B.2)

Defining the unit vector from satellite k to antenna i as

uki = − rk − ri
‖rk − ri‖

(B.3)

The geometric range can then be linearized as

rklij ≈ rklij
∣∣
b=b̂

+
(
uki − uli

)T · δb (B.4)

Using (B.4) in the double difference measurement equation (A.17), lumping

the error terms into a single error term for compactness, and representing the carrier

phase ambiguity as a ∈ Z:

ρ̄klij − rklij
∣∣
b=b̂

=
(
uki − uli

)T · δb+ ερklij (B.5a)

λφklij − rklij
∣∣
b=b̂

=
(
uki − uli

)T · δb+ λaklij + εφklij (B.5b)

For m double differences all using a common reference satellite (i.e. li =

l ∀i), the linearized measurements can be stacked in vectors. Define

yρ ,


ρ̄1l
ij − r1l

ij

∣∣
b=b̂

...

ρ̄mlij − rmlij
∣∣
b=b̂

 (B.6)
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yφ ,


λφ1l

ij − r1l
ij

∣∣
b=b̂

...

λφmlij − rmlij
∣∣
b=b̂

 (B.7)

G ,


(
u1
i − uli

)T
...(

uni − uli
)T
 (B.8)

Λ ,


λ1 0

. . .

0 λm

 (B.9)

y =

[
yρ

yφ

]
=

[
G 0m×m

G Λ

][
δb

a

]
+

[
ερ

εφ

]

y = H

[
δb

a

]
+

[
ερ

εφ

] (B.10)

The float solution can be obtained by carefully constructing the double difference

measurement covariance matrix, Qy according to equations (A.20), (A.21), and

(A.22), and computing a weighted least squares solution to the preceding linearized

equations.

x̂ =

[
δb̂

â

]
=
(
HTQ−1

y H
)−1

HTQ−1
y y (B.11)

The errors in this correction to the initial baseline estimate and carrier phase

ambiguity vector are dominated by the smoothed pseudorange multipath in most

applications. Also, the vector â is real-valued, or floating point. If the integer values

of a can be determined from the floating point values of â, then the correction to

the initial baseline estimate can be further refined. This is called the fixed solution.

It will be described further in the next section.
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Appendix C

Interpretation and Properties of the Float Ambiguity

C.1 Interpretation of L and D

It will be convenient to decompose the covariance of the float ambiguity as

Qẑ = LDLT , where L is a unit lower triangular matrix and D is a diagonal matrix,

and to model the float ambiguity as the true ambiguity plus zero-mean Gaussian

noise, ẑ = z + ε, ε ∼ N(0, Qẑ). Multiplication by L−1 transforms ε into a vector

whose elements are mutually uncorrelated: εc , L−1ε, εc ∼ N(0, D). Letting lij

denote the ijth element of L, di the ith element of the diagonal of D, and εi and εci

the ith elements of ε and εc, respectively, εi and its variance can be computed from

the first i components of εc as

εi =
i∑

k=1

likεck, var (εi) =
i∑

k=1

l2ikdk (C.1)

Note that, because L and L−1 are upper triangular, vectors of the first i− 1

elements of εc, εcI , [εc1, . . . , εci−1]T can be constructed from εI with the elements

of L−1 denoted as `jk.

εcj =

j∑
k=1

`jkεk (C.2)

127



This fact allows us to give the equivalence

E [εj |εI ] = E [εj |εcI ]

= E

[
j∑

k=1

ljkεck |εcI

]
(C.3)

Since subsequent values of εck are independent of the preceding values, the condi-

tioning can be removed for k ≥ i. Also, the expectation of the given value is simply

the given value.

E [εj |εc1, . . . , εci−1 ] =

j∑
k=i

ljk���
�:0

E [εck] +
i−1∑
k=1

ljkεck

=
i−1∑
k=1

ljkεck

(C.4)

The conditional variance is then derived by the following steps:

var (εj |εI ) = E
[
(εj − E [εj |εI ])2 |εI

]
(C.5a)

= E

( j∑
k=1

ljkεck −
i−1∑
k=1

ljkεck

)2

|εI

 (C.5b)

= E

( j∑
k=i

ljkεck

)2
 (C.5c)

= E

[
j∑
k=i

j∑
h=i

ljkljhεckεch

]
(C.5d)

=

j∑
k=i

j∑
h=i

ljkljhE [εckεch] (C.5e)

=

j∑
k=i

j∑
h=i

ljkljhdkδhk (C.5f)

=

j∑
k=i

l2jkdk (C.5g)
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(C.5a) by the definition of conditional variance; (C.5b) by substituting the condi-

tional mean (C.4); (C.5c) by canceling the first i − 1 terms; (C.5d) by expanding

the square into a summation; (C.5e) by the linearity of expectation; (C.5f) by the

variance of εck; (C.5g) by canceling the Kronecker delta in the summation.

As a step toward interpreting lij , define the conditional variances and co-

variances as

σ2
ji|I , cov

(
εj|I , εi|I

)
, for j > i (C.6a)

By definition, the conditional covariance is

σ2
ji|I = E [ (εj − E [εj |I ]) (εi − E [εi |I ])| I] (C.7)

Substitution of (C.1) and the means of (C.4) into (C.7) and simplification yields

σ2
ji|I = E

[(
j∑
k=i

ljkεck

)
(εci)

∣∣∣∣∣ I
]

=

j∑
k=i

ljkE [εckεci| I]

(C.8)

Since εck and εci are independent zero-mean variables:

σ2
ji|I =

j∑
k=i

ljkdiδik

= ljidi

(C.9)

The value di has already been identified as the variance of εi|εI , σ2
i|I . Thus, lji can

be interpreted as

lji =


σ2
ji|Iσ

−2
i|I j > i

1 j = i

0 j < i

(C.10)

which comports with the fact that L is a unit lower triangular matrix.
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C.2 Relationships among ẑ, ẑc, ž, ε̌ and ε̌c

Adopting the notation from Section 2.2.1, the sequentially-constrained float

ambiguity vector, ẑc, is defined such that its ith element is žci = ži|I . Each žci is

computed as

ẑci =

{
ẑi i = 1

ẑi −
∑i−1

k=1 lik(ẑck − žk) i ∈ {2, . . . ,m}
(C.11)

where lik is the i, k entry in the matrix L. Because L is unit lower triangular, (C.11)

can be expressed in vector form as

ẑc = ẑ − (L− I) (ẑc − ž) (C.12)

Rearranging and collecting terms in L yields

ẑ − ž = L (ẑc − ž) (C.13)

By definition, ε̌ = ẑ − ž, so

ε̌ = L (ẑc − ž) (C.14)

Multiplication by L−1 produces

L−1ε̌ = ẑc − ž (C.15)

Also by definition, ε̌c = L−1ε̌, which produces the result:

ε̌c = ẑc − ž (C.16)
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Appendix D

Derivations for Data-Driven PDI

D.1 Truncation of Posterior Risk Probabilities
D.1.1 Posterior PDI and Fixing Probabilities

Consider a set of alternative fix candidates that includes the IB ambiguity

estimate Z = {ž −∆z |∆z ∈ {0, ζ1, . . . , ζν}}. Denote the IB solution in this set

as ž0 , ž. Denote any other element of this set as žk , ž0 − ζk, with k ∈

{1, . . . , ν}. The sequentially-constrained ambiguity residual under the hypothesis

that žk = z is defined, in agreement with (3.44), as

ε̌kc = ε̌c + L−1
1:r,1:rζk

= ε̌c + L−1
1:r,1:r

(
ž0 − žk

) (D.1)

The final expression of (D.1) can be recognized as the argument of the

norms in (3.45). Define the likelihood functions

λk , exp(−1

2

∥∥ε̌kc∥∥2

D1:r,1:r
) =

r∏
j=1

exp

(
−

(ε̌kcj)
2

2dj

)
(D.2)

Using the λk notation, the posterior fixing probabilities are

P (Eζk |ε, i) =
λk∑∞
j=0 λj

(D.3)

and the posterior PDI risk is bounded by

R = 1−
s∑

k=0

(1−Rk)
λk∑∞
j=0 λj

(D.4)
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To obtain an upper bound on the risk, a lower bound is needed on (D.3).

Break the set of all alternative fixes into sets Z and Zc, indexed by j ∈ {0, . . . , ν}

and j ∈ {ν + 1, . . . ,∞}, respectively.

P (Eζk |ε, i) =
λk∑ν

j=0 λj +
∑∞

j=ν+1 λj
(D.5)

Define λ∞ ,
∑∞

j=ν+1 λj . For any λ∗ ∈ {λ|λ∞ ≤ λ}, an upper bound on the

neglected fixes not considered, a lower bound on (D.3) is

λk∑ν
j=0 λj + λ∗

≤ P (Eζk |ε, i) (D.6)

To ensure integrity for safety-of-life applications, a value of λ∗ must be

found that provably bounds λ∞. To reduce computational complexity, it is desirable

to reduce the size of the set of alternatives considered by minimizing ν.

D.1.2 Bounding Posterior Fixing Probabilities for GIAB

When the GIAB aperture is set appropriately as in [11] with sufficiently

high probability of success, and when the preceding ambiguity fixes are correct, the

probability that next fix has error ∆z /∈ {0,−sgn(ε)} is less than PEi . This implies

that for the first ambiguity, ž1, there are two alternative fixes to consider. For each

of these alternatives, there are two alternatives for ž2, and so forth, yielding a total

of ν = 2r − 1 non-negligible alternatives to the IB solution.

The probability associated with the neglected alternative fixes can be given

an additional allocation, pneg, from an overall integrity risk budget. The neglected

fixes have posterior probability that must be bounded above by the allocation to
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assure safety

p∞ =
λ∞∑2r−1

j=0 λj + λ∞
≤ PF (D.7)

Isolating λ∞ yields the bound:

λ∞ ≤
PF

1− PF

2r−1∑
j=0

λj (D.8)

Though this bound is rigorous, its best-case computational complexity is

exponential in m, so it is desirable to further reduce the number of alternative fixes

that must be considered. If an additional allocation from the overall integrity risk

budget is set aside to account for further neglected alternative fixes, ν can be re-

duced.

Separate the summation in the numerator of (D.5) now into three parts:

λZ ,
∑ν

j=0 λj , λneg ,
∑2r−1

j=ν+1 λj , and λ∞ ,
∑∞

j=2r λj . If an allocation of Pneg

is made for the additionally neglected fixes, then λneg must satisfy

λneg

λZ + λneg + λ∞
≤ Pneg (D.9)

Isolating λneg as in (D.8) yields

λneg ≤
Pneg

1− Pneg

(λZ + λ∞) (D.10)

Substituting (D.8) with
∑2r−1

j=0 λj = λZ + λneg and further isolating λneg

yields

λneg ≤
Pneg

1− Pneg

(
λZ +

PF
1− PF

(λZ + λneg)

)
≤ Pneg

(1− Pneg)(1− PF )
(λZ + PFλneg)

≤ Pneg

1− Pneg − PF
λZ

(D.11)
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which establishes the required bound on the total likelihood of the finite set of

neglected alternative fixes not inherently precluded by the GIAB aperture. The

final bound on P (Eζk |ε, i) can be obtained after some tedious algebra, assuming

(D.8) and (D.11) hold

(1− Pneg − PF )λk
λZ

≤ P (Eζk |ε, i) (D.12)

D.1.3 Binary-Tree-Based Alternative Fix Pruning

The set of all 2r fixes not excluded by the GIAB aperture can be represented

by the leaves of a binary tree of depth r. Each node represents a decision point

in the IB process. The left-child of a node at depth i corresponds to the nearest

integer to ẑc(i+1) when conditioned on the previous assumed fixes. The right-child

corresponds to the next-nearest integer.

For example, in Fig. D.1, node 4 corresponds to the IB solution žleft
1 = bẑ1e

and ε̌left
c1 = ẑ1 − žleft

1 , while node 12 corresponds to žright
1 = žleft

1 + sgn
(
ε̌left

c1

)
and

ε̌right
c1 = ε̌left

c1 − sgn(ε̌left
c1 ). Each descendant of node 12 constrains the subsequent

ambiguities assuming z1 = žright
1 . Similarly, node 1 corresponds to the GIAB solu-

tion, ž0 = ž, and node 3 corresponds to ž1 = ž + [0, . . . , 0, sgn(ε̌cr)]
T.

To save computational effort, the binary tree can be constructed recursively

while keeping a running total of the considered and neglected likelihoods. Define

the partial likelihood function by truncating the products in (D.2)

λkh ,
h∏
j=1

exp

(
−

(ε̌kcj)
2

2dj

)
(D.13)
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Figure D.1: The set of non-negligible fix candidates can be represented as a binary
tree of depth r, shown for r = 3. See the body text for a full interpretation of
the tree. The nodes are numbered according to the order visited by an in-order
traversal. Unshaded leaf-nodes correspond to alternative IB solutions. Non-leaf
nodes, which are all shaded, partial IB solutions leading to the different alternatives.
The shade of lines matches the shade of the nearest ancestor node that generated the
corresponding IB solution leaf, e.g. node 4 and leaf-node 5. Dashed lines indicate
neglected branches of the tree.
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Note that for h > 1,

λkh = exp

(
−

(ε̌kcj)
2

2dh

)
λkh−1 ≤ λkh−1 (D.14)

Also, the likelihood of an alternative fix is λkr = λk as defined in (D.2). The λkh are

stored in a vector λk.

Nodes in the binary tree at depth i store a 4-tuple,
(
i, žki , ε̌

k
ci, λ

k
i

)
. Note that

any descendants of a node at depth i have the first i elements of their candidate

fixes in common, i.e. žk(1:i) = žj(1:i) when both žk and žj correspond to leaves of a

common ancestor node at depth i.

The root of the tree is indicated by its value (0, ∅, ∅, 1), where ∅ indicates

a null value. The tree is initialized from the IB solution by setting each left-child

from the root at depth i to (i, ž0
i , ε̌

0
ci, λ

0
i ). This is the left-most branch of the trees in

Fig. D.2. Initialization is captured in Algorithm D.2.

Algorithm D.1: buildBranch(&parent, žk, ε̌kc ,λ
k, i)

Input : parent ∈ BinaryTree〈(Z,Z,R,R)〉, žk ∈ Zr, ε̌kc ∈ Rr,
λk ∈ Rr, i ∈ {1, . . . , r}

1 node = BinaryTree
(
(i, žki , ε̌

k
ci, λ

k
i )
)

2 node.parent = parent
3 if (i 6= length(žk) then
4 buildBranch(node, žk, ε̌kc ,λ

k, i+ 1)
5 end
6 if parent 6= NULL then
7 parent.left = node
8 end

The tree is constructed via an in-order tree traversal, illustrated in Fig. D.2,

during which every node is visited after its left-children but before its right-children.
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Figure D.2: Illustration of part of the process of building the binary tree of alternate
fixes via an in-order tree traversal. The tree is initialized with the IB solution as
the left-children of the root-node. The first node visited is the leaf corresponding
to the IB solution. The second node visited, labeled 2, produces the first alternative
solution, with offset ζ1, which is stored as the right-child of node 2, and visited next.
Node 4 is visited next, which leads to the second alternative solution, with offset
ζ2. This alternative fix is stored in the branch with nodes labeled 6 and 5. Node 5 is
visited next and added to Z and λZ. The alternative branches at nodes 6 and 7 are
then found to be negligible, completing the tree traversal and construction.

Algorithm D.2: initIBTree(ž, ε̌c,λ)

Input : ž ∈ Zr, ε̌c ∈ Rr, λ ∈ Rr
Output: root ∈ BinaryTree〈(Z,Z,R,R)〉

1 root = BinaryTree((0, ∅, ∅, 1))
2 buildBranch(root, ž, ε̌c,λ, 1)
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Algorithm D.3: altIB(ž, ε̌c,λ, L
−1,d, i)

Input : ž ∈ Zr, ε̌c ∈ Rr, λ ∈ Rr, L−1 ∈ Rm×m, d ∈ Rm,
i ∈ {1, . . . , r}

Output: žalt ∈ Zr, ε̌alt
c ∈ Rr, λalt ∈ Rr

1 r = length(ε̌c)
2 žalt = ž
3 žalt

i += sgn (ε̌ci)

4 ε̌alt
c = ε̌c + L−1

1:r,i

(
ži − žalt

i

)
5 λalt = λ
6 if i == 1 then
7 λalt

i = exp(− ε̌2ci
2di

)

8 else
9 λalt

i = λalt
i−1 exp(− ε̌2ci

2di
)

10 end
11 for j = i+ 1:r do
12 žalt

j += bε̌alt
cj e

13 ε̌alt
c = ε̌alt

c + L−1
1:r,j

(
žj − žalt

j

)
14 λalt

j = λalt
j−1 exp(− ε̌2cj

2dj
)

15 end
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Algorithm D.4: getSolution(&node)

Input : node ∈ BinaryTree〈(Z,Z,R,R)〉
Output: ž ∈ Zr, ε̌c ∈ Rr, λ ∈ Rr

1 temp = node
2 while temp.left 6= NULL do
3 temp = temp.left
4 end
5 ž = zeros(temp.data(1),1)
6 ε̌c = zeros(temp.data(1),1)
7 λ = zeros(temp.data(1),1)
8 while temp.parent 6= NULL do
9 i = temp.data(1)

10 ži = temp.data(2)
11 ε̌ci = temp.data(3)
12 λi = temp.data(4)
13 temp = temp.parent
14 end

Each node is processed according to Algorithm D.5 when visited. When a node is

visited, its corresponding solution is obtained via Algorithm D.4. If the node is a

leaf (i.e. its left-child is NULL), then its likelihood is included in the running total

of λZ. The fix and its likelihood are stored in a list of considered fixes, sorted by λj .

If the node is not a leaf, then an alternative solution must be considered.

The partial likelihood of the right-child node, λright
i+1 , is computed assuming that

žright
i+1 = žleft

i+1 + sgn(ε̌left
ci ) and that ε̌right

c(i+1) = ε̌left
c(i+1) − sgn(ε̌left

c(i+1)) according to (D.1).

The right-child node at depth i+1 will have at most 2r−(i+1) descendant leaves, each

with a likelihood less than or equal to λright
i+1 ; e.g. in Fig. D.1, node 12 at depth 1

has 23−1 = 4 leaves in its branch. Thus the total likelihood of the right-branch is

bounded above as λbranch ≤ 2r−(i+1)λright
i+1 . Given a running total the considered and
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Algorithm D.5: visitNode(&node, &λZ, &λneg, &fixes, Pneg, L
−1,d)

Input : node ∈ BinaryTree〈(Z,Z,R,R)〉, λZ ∈ R, λneg ∈ R, fixes ∈
SortedList, Pneg ∈ R, L−1 ∈ Rm×m, d ∈ Rm

1
[
žleft, ε̌left

c ,λleft
]

= getSolution(node)
2 i = node.data(1)
3 r = length(žleft)
4 if node.left == NULL then
5 λZ += λleft

i

6 fixes.insert
({
λleft
i , žleft

})
7 else

8 λtemp = λleft
i exp(−(1−|ε̌leftc(i+1)|)

2

2di+1
)

9 if 2r−(i+1)λtemp ≤ PnegλZ − λneg then
10 [žright, ε̌right

c ,λright] = altIB(žleft, ε̌left
c ,λleft, L−1,d, i+ 1)

11 buildBranch(node, žright, ε̌right
c ,λright, i+ 1)

12 else
13 λneg += 2r−(i+1)λtemp

14 end
15 end
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neglected likelihoods, λZ and λneg respectively, a branch can be neglected if

λneg + 2r−(i+1)λright
i+1 <

pneg

1− pneg

λZ (D.15)

λneg is then updated as λneg = λneg + 2r−(i+1)λright
i+1 .

If (D.15) does not hold, then the branch cannot be assumed negligible,

so an alternative IB solution is computed with Algorithm D.3 by assuming that

zi+1 = žleft
i+1 + sgn(ε̌left

c(i+1)). Given this assumption, the subsequent ambiguities are

constrained and IB is performed on them. This alternative solution is then stored

as the right-child by Algorithm D.1. E.g. when node 4 is visited, the likelihood of

node 6 is non-negligible, so the IB solution terminating at node 5 is computed and

added to the tree. The tree traversal then continues around the modified tree.

Using this traversal-construction method, a list of all non-negligible alterna-

tive fix candidates can be constructed without evaluating any of the neglected alter-

natives explicitly. The list is then used to compute the probabilities (D.12), which

are in turn needed to compute (3.48). The summation in (3.48) can be truncated

as soon as RGIAB is less than a specified bound, reducing the number of required

computations of Rk, which requires the computationally expensive Gaussian CDF.

D.2 Distribution of Truncated Gaussian

Consider a known conditional distribution fX|A (x) of a random vectorX ∈

Rn given some event A. Also consider event B : {X ∈ B ⊂ Rn}. Define the
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indicator function for the region B as

1B(x) ,

{
1 x ∈ B

0 otherwise
(D.16)

The distribution of X when further conditioned on event B can be expressed via

the definition of a multivariate PDF.

fX|A,B (x) =
∂n

∂x1 . . . ∂xn
FX|A,B (x) (D.17)

The conditional cumulative density function (CDF) can be determined by condi-

tional probability as

FX|A,B (x) =
P (X ≤ x, B|A)

P (B|A)
(D.18)

Multiplication of fX|A (ξ) by the indicator function produces the joint PDF which

must be integrated to compute the numerator and denominator above:

P (X = ξ, B|A) = fX|A (ξ) 1B(ξ) (D.19)

The numerator is computed as the integral over the regionX ≤ xwhile the denom-

inator is the integral over the region B. In B, the in indicator function is identically

equal to 1, and so is elided.

FX|A,B (x) =

∫ x
−∞ fX|A (ξ) 1B(ξ)dξ∫

B
fX|A (ζ) dζ

(D.20)

Substituting (D.20) into (D.17) and application of the second fundamental theorem

of calculus yields:

fX|A,B (x) =
∂n

∂x1 . . . ∂xn

∫ x
−∞ fX|A (ξ) 1B(ξ)dξ∫

B
fX|A (ζ) dζ

=
fX|A (x) 1B(x)∫
B
fX|A (ζ) dζ

(D.21)
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Appendix E

Proof of Correlation Agnostic Bound

To prove the result in (4.15), begin with the expression

RMLV ≤ 1−
∫ AL

−AL

∫ AL

−AL

fεj ,εk (ξ, ζ) dζdξ (E.1)

Next, use conditional probability to separate the joint distribution into the product

of a marginal and a conditional distribution. Bring the marginal distribution out of

the inner integral.

RMLV ≤ 1−
∫ AL

−AL

fεj (ξ)

∫ AL

−AL

fεk|εj (ζ|εj = ξ) dζdξ (E.2)

The law of total probability shows that∫ AL

−AL

fεk|εj (ζ|εj = ξ) dζ = 1− P (|εk| > AL|εj = ξ) (E.3)

Substituting (E.3) into (E.2), distributing fεj (ξ), and separating the two parts of the

integral yields

RMLV ≤1−
∫ AL

−AL

fεj (ξ) dξ +

∫ AL

−AL

fεj (ξ) · P (|εk|| > AL|εj = ξ) dξ (E.4)

Defining Rj , P (|εj| ≥ AL) = 1−
∫ AL

−AL
fεj (ξ) dξ, simplify

RMLV ≤ Rj +

∫ AL

−AL

fεj (ξ)P (|εk|| > AL|εj = ξ) dξ (E.5)
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Expand P (|εk|| > AL|εj = ξ) into integrals over (−∞,−AL] and [AL,∞):

RMLV ≤ Rj +

∫ AL

−AL

fεj (ξ) ·


∫ −AL

−∞
fεk|εj (ζ|εj = ξ)dζ

+

∫ ∞
AL

fεk|εj (ζ|εj = ξ) dζ


 dξ (E.6)

Multiply the conditional and marginal PDFs to form the joint PDF and reverse the

order of integration.

RMLV ≤ Rj +

∫ −AL

−∞

∫ AL

−AL

fεj ,εk (ξ, ζ) dξdζ +

∫ ∞
AL

∫ AL

−AL

fεj ,εk (ξ, ζ) dξdζ (E.7)

Because PDFs are non-negative, expanding the limits of the inner integral yields

another upper bound.

RMLV ≤ Rj +

∫ −AL

−∞

∫ ∞
−∞

fεj ,εk (ξ, ζ) dξdζ +

∫ ∞
AL

∫ ∞
−∞

fεj ,εk (ξ, ζ) dξdζ (E.8)

The inner integrals marginalize out εj .

RMLV ≤ Rj +

∫ −AL

−∞
fεk (ζ)dζ +

∫ ∞
AL

fεk (ζ)dζ (E.9)

The sum of the integrals may be recognized as the probability that the kth solution

error exceeds the AL.

RMLV ≤ Rj +Rk (E.10)
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