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ABSTRACT

A prototype precise augmented reality (PAR) system
that uses carrier phase differential GPS (CDGPS)
and an inertial measurement unit (IMU) to obtain
sub-centimeter level accurate positioning and degree
level accurate attitude is presented. Several current
augmented reality systems and applications are dis-
cussed and distinguished from a PAR system. The
distinction centers around the PAR system’s highly

accurate position estimate, which enables tight regis-
tration, or alignment of the virtual renderings and the
real world. Results from static and dynamic tests of
the PAR system are given. These tests demonstrate
the positioning and orientation accuracy obtained by
the system and how this accuracy translates to re-
markably low registration errors, even at short dis-
tances from the virtual objects. A list of areas for
improvement necessary to create a fully capable PAR
system is presented.

I. INTRODUCTION

The concept of virtual reality has been around since
shortly after the advent of the computer. People have
been fascinated with the idea of designing a world of
entirely their own creation that can be visualized, ex-
plored, and interacted with. Initially, attempts at cre-
ating such environments were greatly limited by the
technology of the time. Creating a realistic-looking,
real-time representation of a virtual environment that
a user can interact with requires fast processors, high
screen resolution, a significant amount of memory,
and large communication bandwidths. Technological
advances in the last couple of decades have enabled
many applications of virtual reality including immer-
sive training simulations and gaming.

In recent years, the concept of augmented reality has
garnered significant attention. While virtual reality
seeks to replace the real world with a simulated one,
augmented reality blends together real world and vir-
tual elements typically through context relevant visu-
als. One can image a continuum of perception, with
the real world on one end and virtual reality on the
other. Augmented reality seeks to place the user’s
perception somewhere in the middle of the contin-
uum with the goal of complementing the real world
with virtual elements.

Augmented reality applications often require knowl-
edge of the platform’s position and orientation dis-
play context sensitive information. When positioning
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in a global coordinate system is required, all current
consumer platforms running augmented reality appli-
cations are only capable of obtaining the user’s loca-
tion to within a few meters. This level of position-
ing uncertainty severely limits potential applications
because accurate alignment of the real and virtual
worlds cannot be obtained at close distances.

This paper presents a prototype augmented reality
system that is capable of obtaining sub-centimeter
level accurate positioning and degree level accurate
attitude. The paper starts with an overview of cur-
rent augmented reality applications and the tech-
niques used to blend the real and virtual worlds to-
gether. The concept for the prototype system is then
presented. Next, a description of the prototype sys-
tem and navigation filter are given. Finally, results
from tests of the prototype system are presented and
remaining technical challenges are discussed.

II. AUGMENTED REALITY OVERVIEW

Augmented reality has a presence in many fields in-
cluding medicine, sports, art, architecture, tourism,
entertainment, and marketing. In sports, the first
down line on a live TV broadcast of a football game
is an example of augmented reality. This technol-
ogy uses a combination of visual cues from the field
as well as the location of the cameras producing the
video feed [1]. In marketing, augmented reality is
used to help consumers make shopping decisions, such
as the augmented reality system employed in Lego
kiosks where the Lego product is displayed fully as-
sembled on top of the box when held up in front
of a smart-phone camera [2]. This application uses
visual tags on the box to orient the product cor-
rectly. Augmented reality can also be used in tourism,
where augmented reality applications, as an example,
can be used to translate signs from one language to
another. Fig. 1 shows the smart-phone application
“Word Lens” translating a sign from Spanish to En-
glish.

Augmented reality applications use techniques that
can be classified into two primary, yet overlapping,
categories: image processing and so-called pose or po-
sition and orientation. Image processing techniques
are those as described in the examples above, which
use information from the video stream to properly
orient and position computer-rendered virtual objects
into the video feed. In many cases, fiduciary mark-

Fig. 1. A smart-phone running the Word Lens application
that is translating a sign from Spanish to English [2].

ers, referred to as cues, are placed in the field of view
of the camera to allow for proper alignment of the
virtual and real objects. These markers are typi-
cally of known size and shape. By identifying the
observed marker of known size and shape, the AR
system can position and orient the camera relative to
the marker. In other cases, color palettes are used
to determine colors over which virtual objects can be
placed. The first-down line in football, which must be
placed on the field and avoid being overlayed on ref-
erees or players, is a good example of this technique.
Green screens are another.

Pose techniques are those that employ the use of po-
sition and orientation to properly register the virtual
information onto the real world. This technique uses
sensor information to obtain position and orientation
and properly align or “register” virtual objects with
the real world. In some setups, orientation and posi-
tion of the user is done using visual cues, as with fidu-
ciary markers. However, this method requires some
setup: the visual cues must be pre-placed and posi-
tioned in the real environment. Another technique
is to use the absolute user position and orientation
rather than the relative position and orientation pro-
vided by visual cues. Systems employing absolute
positioning techniques require the absolute position
and orientation of the user, the virtual objects, and
possibly the real objects to properly create the aug-
mented reality environment. The advantage of this
approach is that visual markers are no longer needed.

Absolute positioning techniques require a shared co-
ordinate system between the user and the objects in
the environment. This shared coordinate system is
often the Earth-centered, Earth-fixed (ECEF) coor-
dinate system. Augmented reality applications em-
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Fig. 2. The Star Walk application is being used to high-
light constellations in the night sky [3].

ploying absolute positioning most often use GPS for
positioning and an inertial measurement unit (IMU)
for orientation. Astronomy is one application where
absolute-positioning-based augmented reality is used.
Applications like “Star Walk,” shown in Fig. 2, cre-
ated by Vito Technology allow users to point their
smart-phone or tablet at the sky and highlight con-
stellations. The application uses coarse position and
orientation information provided by the on-board sen-
sors to calculate the section of the sky at which the
device is pointed [3].

In the case of the “Star Walk” application, the real-
world objects, the stars, are far from the user. Con-
sequintly, the 3-to-10 meter positioning accuracy pro-
vided by pseudorange-based GPS is adaquite for this
application. However, there are many applications
where this positioning accuracy is far from adaquite.
In the construction industry, ground excavation is of-
ten performed when, for example, laying the founda-
tion for a new building or building a new road. Before
excavation begins, workers must determine the loca-
tions of pre-existing subsurface pipelines and power
cables. Field operatives must determine the location
of these underground utilities from maps of the under-
ground infrastructure and mark their location to en-
sure excavation does not damage any pipes or cables.
This process can be a cumbersome task. If an aug-
mented reality system capable of determining a user’s
location and attitude with a high degree of accuracy
is available, then this process can be simplified by vi-
sually overlaying the subsurface infrastructure maps
onto a live video feed for the field operative. Figure 3
demonstrates such a system developed by a group of

Fig. 3. An image produced by an augmented reality sys-
tem developed by researchers at the University of Notting-
ham. This image shows subsurface utilities visualized in
their correct location relative to the real world image in
the background [4].

researchers from the University of Nottingham [4].

In applications such as infrastructure overlay, meter-
level errors in user positioning are unacceptable be-
cause the user needs to determine the exact location
of the virtual objects by walking up to the objects.
There exists, in these situations, a need for so-called
“precise” augmented reality. In these systems, user
positioning and orientation is accurate at the sub-
centimeter and degree levels respectively. This posi-
tioning accuracy can be obtained by what is known
as carrier-phase differential GPS, and the orientation
accuracy can be obtained with a medium-grade IMU.

III. PRECISE AUGMENTED REALITY (PAR)

Precise augmented reality (PAR) can be defined as
an augmented reality system exploiting highly ac-
curate position and orientation information. This
paper presents a PAR system that makes use of
sub-centimeter level accurate positioning, enabled by
carrier-phase differential GPS (CDGPS), and degree
level orientation, provided by a medium-grade IMU.
As discussed briefly in Sec. II, existing work in this
area consists of a system built for subsurface data
visualization [4]. This system used a CDGPS re-
ceiver built by Leica Geosystems to provide the posi-
tion estimate. Additionally, a group from Columbia
University built a head-mounted augmented reality
system, shown in Fig. 4, for the general purpose of
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Fig. 4. An augmented reality system developed by re-
searchers at Columbia University for providing users with
information about their surroundings [5].

providing users information about their surround-
ings as they navigate an unfamiliar urban environ-
ment [5]. This system, however, used a weaker form
of correction-based precise positioning called differ-
ential GPS, which produced meter-level positioning
errors.

Neither of the previously mentioned systems take ad-
vantage of the gains that can be obtained by coupling
the IMU and the GPS measurements together. The
system presented in this paper goes beyond this prior
work by integrating the CDGPS and IMU measure-
ments within an extended Kalman filter. The result-
ing accurate pose estimated permits tight registration
of virtual objects.

IV. PROTOTYPE PAR SYSTEM

A prototype PAR system was designed and built to
demonstrate the potential of precise augmented re-
ality. A picture of the inside of the system with la-
bels for the various components is shown in Fig. 5.
The system is comprised of a GPS receiver, an IMU,
a webcam, a single-board computer (SBC), a GPS
antenna, and a lithium-ion battery. Detailed descrip-
tions of the GPS receiver, IMU, and webcam used are
given in Sec. IV-A, IV-B, and IV-C respectively. This
sensor package is strapped to the back of a tablet PC,
which collects the data from the GPS receiver and
IMU and the webcam footage for post-processing. In

Fig. 5. The inside of the prototype PAR system with
labeled components.

a real-time version of the system, the tablet PC would
take the form of a “window” into the AR environ-
ment; a user looking “through” the tablet would see
an augmented representation of the real world on the
other side of the tablet. A picture of the fully assem-
bled system is shown in Fig. 6.

A. GPS Receiver

The GPS receiver used for the prototype PAR system
was the FOTON software-defined GPS receiver. The
work-horse of the receiver is a digital signal processor
(DSP) running the GRID software receiver developed
by The University of Texas at Austin and Cornell
University. This software receiver was originally de-
veloped for Ionospheric monitoring. As such, it has a
scintillation robust PLL and databit prediction capa-
bility, which both help to prevent cycle slips [6]. The
receiver is also dual-frequency and currently capable
of tracking L1 C/A and L2C, but only the L1 C/A
signals were used in the prototype PAR system. Ob-
servables and navigation solutions can be output at a
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Fig. 6. The assembled prototype PAR system.

configurable rate which was set to 5 Hz. The receiver
communicates with the tablet over Ethernet via the
SBC.

B. IMU

The IMU used for the prototype PAR system was the
MTi developed by Xsens. This IMU is a complete
gyro-enhanced attitude and heading reference system
(AHRS). It houses four sensors, (1) a 3D magnetome-
ter, (2) a 3D gyro, (3) a 3D accelerometer, and (4)
a thermometer. The MTi also has a DSP running a
Kalman filter (KF) that determines the attitude of
the MTi relative to the north-west-up (NWU) coor-
dinate system. This KF determines attitude by in-
gesting temperature-calibrated (via the thermometer
and high-fidelity temperature models) magnetometer,
gyro, and accelerometer measurements to determine
magnetic north and the gravity vector, which is suffi-
cient for full attitude determination. This estimate of
orientation is accurate to better than 2o RMS, during
dynamic operation.

In addition to providing orientation, the MTi also
provides access to the highly-stable, temperature-
calibrated measurements. The configurable output
rate of the MTi was set to 100 Hz. In order to obtain
a time stamp for the MTi data, the MTi measure-
ments were triggered by the FOTON receiver which
also reported the GPS time the triggering pulse was
sent.

C. Webcam

The webcam used for the prototype PAR system
was the FV Touchcam N1. The Touchcam N1 is an
HD webcam capable of outputting 720P at 22 fps or
WVGA at 30 fps. The Touchcam N1 also has a wide
angle lens with a 78.1o horizontal field of view.

V. PAR EKF

The goal of the navigation filter for this PAR sys-
tem was to obtain sub-centimeter level accurate posi-
tioning and degree level accurate attitude of the we-
bcam. The IMU chosen for the prototype PAR sys-
tem already provided attitude to the desired accuracy
through its own Kalman filter. Therefor, the filter
designed here only needed to satisfy the positioning
requirement. For a first prototype, it was assumed
that the attitude and angular velocity provided by
the IMU were perfect for purposes of designing the
filter. Although this assumption is inaccurate, the ef-
fect of errors in attitude and angular velocity on the
estimate of position is negligibly small for this system.

The navigation filter designed for this PAR system
was a tightly-coupled INS/GPS enhanced Kalman fil-
ter (EKF) implemented as a square-root information
filter. A block diagram of this filter is shown in Fig. 7.
The filter can be divided into three primary compo-
nents: (1) CDGPS measurement update, (2) iner-
tial navigation system (INS) propagation step, and
(3) augmented reality overlay. These primary com-
ponents are described in detail in the sections that
follow.

The state for the EKF is

~X =

[

~x
~N

]

=











~r

~̇r
~b
~N











(1)

where ~X is the state vector, ~x is the real-valued part
of the state vector, ~N is the carrier phase integer am-
biguity vector, ~r and ~̇r are the ECEF position and
velocity vectors of the IMU respectively, and ~b is the
accelerometer bias vector. This state differs from that
of the GPS antenna and the webcam lens in position
and velocity due to the distance between the system
components and the rigid-body rotation of the entire

5



Fig. 7. A block diagram of the PAR EKF. The blocks corresponding to the INS propagation step (red), CDGPS
measurement update (blue), and augmented reality overlay (green) are highlighted in the figure.

system. This is accounted for through the following
transformation for the GPS antenna state:

~rGPS = ~r +RIMU
ECEF~rGPS/IMU

~̇rGPS = ~̇r +RIMU
ECEF

(

~ω × ~rGPS/IMU

)
(2)

where ~rGPS and ~̇rGPS are the ECEF position and
velocity vectors of the GPS antenna respectively,
RIMU

ECEF is the rotation matrix from the IMU frame
to the ECEF frame that is derived from the quater-
nion output by the IMU and the current best position
estimate of the IMU, and ~rGPS/IMU is the position
vector of the GPS antenna relative to the IMU in the
IMU frame. To obtain the webcam lens position and
velocity, replace ~rGPS , ~̇rGPS, and ~rGPS/IMU in Eq. 2

with ~rCAM , ~̇rCAM , and ~rCAM/IMU . In order for the
EKF to be accurate to the sub-centimeter level, the
relative position vectors of the components must be
known to millimeter-level accuracy.

A. CDGPS Measurement Update

The CDGPS measurement update is responsible for
determining the accurate position of the system and
correcting for IMU drift. The CDGPS algorithm re-
quires observables measurements (carrier phase and
pseudorange) from two separate GPS receivers. The
first receiver is a reference or base-station receiver
that is located at a pre-surveyed position. The sec-
ond receiver is the mobile receiver, which is located on
the PAR system. The location of the base station re-
ceiver’s antenna must be known with high accuracy,
since the CDGPS algorithm only provides an accu-
rate position of the mobile receiver’s antenna relative
to the base station receiver’s antenna.

A.1 Measurement Model

The CDGPS algorithm uses single frequency (L1
C/A) double-differenced measurements of carrier
phase and pseudorange to determine position to sub-
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centimeter level accuracy. These double-differenced
measurements are formed as follows:

single-differenced measurements: The pseudorange,
ρi(k), and carrier phase, φi(k), measurements from
each receiver taken at the same instant in time are
matched up by satellite and differenced between the
two receivers to obtained single-differenced pseudor-
ange and carrier phase measurements. These single-
differenced pseudorange and carrier phase measure-
ments are denoted as

∆ρiAB(k) = ρiA(k)− ρiB(k)

∆φi
AB(k) = φi

A(k)− φi
B(k)

(3)

The subscripts A and B represent the base station
and mobile receivers respectively. Assuming the base
station and mobile receivers are relatively close to one
another (within about 10 km) and the measurements
were taken at roughly the same time, these single-
differenced measurements have removed the errors in
the measurements that are common to the satellite.
These errors are: (1) Ionospheric and Tropospheric
delays, (2) satellite clock errors, and (3) the initial
broadcast carrier phase of the signal.

double-differenced measurements: Of the satellites
tracked by both receivers, one satellite is chosen as
the “reference” satellite (satellite 0). The single-
differenced pseudorange and carrier phase measure-
ments corresponding to the reference satellite are sub-
tracted from all the other single-differenced pseu-
dorange and carrier phase measurements to cre-
ate double-differenced pseudorange and carrier phase
measurements. These double-differenced pseudor-
ange and carrier phase measurements are denoted as

∇∆ρi0AB(k) = ∆ρiAB(k)−∆ρ0AB(k)

∇∆φi0
AB(k) = ∆φi

AB(k)−∆φ0

AB(k)
(4)

These double-differenced measurements have re-
moved the effect of receiver clock bias and, if the re-
ceiver is designed properly, the ambiguities on the car-
rier phase measurements have now become integers.
These integer ambiguities can be determined much
faster than their real-valued counterparts through the
use of the integer constraint.

A detailed derivation of the double-differenced mea-
surement model for the carrier-phase can be found in
Ref. [7]. The double-differenced pseudorange model is
derived in the same way with the ambiguity term re-
moved. The double-differenced measurement models
are given as

∇∆ρi0AB(k) = ∇∆ri0AB(k) +∇∆νρ

λL1∇∆φi0
AB(k) = λL1N

i0
AB +∇∆ri0AB(k) +∇∆νφ

(5)

where ∇∆νρ and ∇∆νφ are the white Gaussian mea-
surement noises, λL1 is the wavelength of the GPS L1
center frequency, N i0

AB is the integer ambiguity, and

∇∆ri0AB(k) =
(

‖~r i
SV (k)− ~rA‖ − ‖~r i

SV (k)− ~rB(k)‖
)

−
(

‖~r 0

SV (k)− ~rA‖ − ‖~r 0

SV (k)− ~rB(k)‖
)

(6)

where ~r i
SV (k) is the ECEF position of satellite i, ~rA is

the location of the base station receiver, and ~rB(k) =
~rGPS(k).

The measurement model in Eq. 5 is linearized about
the a priori state to form the linearized measurements

zi0ρ (k) = ∇∆ρi0AB(k)−∇∆r̄ i0
AB(k)

=
(

r̂0B(k)− r̂iB(k)
)T

δ~r(k) +∇∆νρ

zi0φ (k) = λL1∇∆φi0
AB(k)−∇∆r̄ i0

AB(k)

=
(

r̂0B(k)− r̂iB(k)
)T

δ~r(k) + λL1N
i0
AB

+∇∆νφ

(7)

where zi0ρ (k) and zi0φ (k) are the linearized double-
differenced pseudorange and carrier phase measure-
ments, ∇∆r̄ i0

AB(k) is the a priori expected double-
differenced range given by Eq. 6 using ~̄rB(k) in place
of ~rB(k), and r̂iB(k) is the unit vector pointing from
the mobile receiver to satellite i.

A.2 Matrix Equation Formation

If both receivers are simultaneously tracking the same
M+1 satellites, then M linearized double-differenced
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measurements are obtained at each time step of the
form given in Eq. 7. Gathering these M equations
into matrix form yields

[

~zρ(k)
~zφ(k)

]

=

[

Hρx(k) 0
Hφx(k) HφN

] [

δ~x(k)
~N

]

+

[

∇∆~νρ
∇∆~νφ

]
(8)

where δ~x(k) is the a posteriori correction to the real-
valued component of the state and

Hρx(k) = Hφx(k)

=







(

r̂0B(k)− r̂1B(k)
)T

0 0
...

...
...

(

r̂0B(k)− r̂MB (k)
)T

0 0







(9)

HφN = λL1











1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 1











(10)

Assuming that pseudorange and carrier phase mea-
surement noise for each satellite and receiver is inde-
pendent and identically distributed, the measurement
covariance matrices are easily derived as

Rρ = σ2

ρ











4 2 · · · 2
2 4 · · · 2
...

. . .
...

2 · · · 4











= R̃−T
ρ R̃−1

ρ

Rφ = σ2

φ











4 2 · · · 2
2 4 · · · 2
...

. . .
...

2 · · · 4











= R̃−T
φ R̃−1

φ

(11)

where σρ and σφ are the standard deviation of the
pseudorange and carrier phase measurements respec-
tively and R̃ρ and R̃φ are the cholesky factorizations
of the covariance matrices.

The state and state covariance are encoded as a set of
equations in a square-root information filter. These
equations are given as

[

~̄zx(k)

~̂zN (k − 1)

]

=

[

R̄xx(k) R̄xN (k)

0 R̂NN (k − 1)

]

×

[

~̄x(k)
~N

]

+ ~̄wX

(12)

where ~̄wX is distributed as a multi-dimensional stan-
dard normal distribution, the state is determined
from these equations through the solution process
described in Sec. V-A.3, and the state covariance is
given by

P̄ (k) =

[

R̄xx(k) R̄xN (k)

0 R̂NN (k − 1)

]−T

×

[

R̄xx(k) R̄xN (k)

0 R̂NN (k − 1)

]−1
(13)

The square-root information equations from Eq. 12
are appended to the measurement equations from
Eq. 8 to incorporate the a priori information about
the state into the solution process. The augmented
update equations are normalized by the noise covari-
ance matrix and given as









~̃zρ(k)

~̃zφ(k)
δ~̄zx(k)
~̄zN (k)









=









R̃ρ~zρ(k)

R̃φ~zφ(k)
~̄zx(k)− R̄xx(k)~̄x(k)

~̂zN (k − 1)









=









H̃ρx(k) 0

H̃φx(k) H̃φN

R̄xx(k) R̄xN (k)
0 R̄NN (k)









[

δ~x
~N

]

+ ~w

=









R̃ρHρx(k) 0

R̃φHφx(k) R̃φHφN

R̄xx(k) R̄xN (k)

0 R̂NN (k − 1)









×

[

δ~x
~N

]

+ ~w

(14)

where ~w is distributed as a multi-dimensional stan-
dard normal distribution. The matrix coefficient of
the state vector is then factorized into an orthonor-
mal matrix and an upper-right triangular matrix via
QR factorization. This results in
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H̃ρx(k) 0

H̃φx(k) H̃φN

R̄xx(k) R̄xN (k)
0 R̄NN (k)









= Q̂(k)





R̂xx(k) R̂xN (k)

0 R̂NN (k)
0 0





(15)

The measurement equations are transformed using
the orthonormal matrix from the factorization such
that the measurement equations become





δ~̂zx(k)

~̂zN (k)
~zr(k)



 = Q̂T (k)









~̃zρ(k)

~̃zφ(k)
δ~̄zx(k)
~̄zN (k)









=





R̂xx(k) R̂xN (k)

0 R̂NN (k)
0 0





[

δ~x
~N

]

+ ~̂w

(16)

A.3 Solution Procedure

To determine the optimal set of integer ambiguities,
an integer least-squares algorithm is applied. Integer
least-squares algorithms solve the problem of mini-
mizing ‖~̂zN (k)−R̂NN (k) ~N‖ under the constraint that
the solution, ~Nopt, be a set of integers. Two popu-
lar algorithms for solving integer least-squares prob-
lems are the LLL algorithm, described in Ref. [8], and
the LAMBDA method, described in Ref. [9]. The
LLL algorithm was chosen for two reasons. First, a
tight, easy-to-implement lower bound on the proba-
bility that the integers were fixed correctly was read-
ily available, as presented in Ref. [8]. Second, a soft-
ware package to perform the LLL algorithm, called
MILES [10], was readily available.

Once the optimal integer ambiguity set has been de-
termined using MILES, the a posteriori correction to
the real-valued component of the state is determined
as

δ~x(k) = R̂−1

xx (k)
(

δ~̂zx(k)− R̂xN (k) ~Nopt

)

(17)

The a posteriori state covariance matrix can also be
computed as

P (k) =

[

R̂xx(k) R̂xN (k)

0 R̂NN (k)

]−T

×

[

R̂xx(k) R̂xN (k)

0 R̂NN (k)

]−1
(18)

B. INS Propagation Step

The INS propagation step is responsible for propa-
gating the state forward in time using the IMU’s ac-
celerometer measurements and attitude estimate. As
mentioned previously, the attitude estimate provided
by the IMU is assumed to be perfect for the purposes
of this prototype system. This assumption was made
to simplify development of the EKF and does not sig-
nificantly effect the performance of the system due to
the high accuracy of the IMU’s attitude estimate.

Since the IMU relies on a magnetometer to determine
heading, the IMU must be given the magnetic decli-
nation. This is accomplished by initializing the IMU
with a rough estimate of position, which it uses in a
magnetic field model to determine declination. If the
system stays within a few kilometers of the initial-
ization point, then this value will remain reasonably
accurate due to the slow spacial variation of the mag-
netic field.

B.1 Dynamics and Measurement Models

The propagation step is essentially a double integra-
tor of the accelerometer measurements after removing
specific forces or accelerations the IMU senses other
than motion in the ECEF frame. These other sensed
components of the accelerometer measurements are
the specific normal force and the Coriolis accelera-
tion due to rotation of the Earth. The accelerometer
may also have small biases in its measurements due
to electrical biases in the circuitry. These biases will
be modeled as a random walk process. This model for
the accelerometer errors is similar to that presented
in Ref. [11]. This yields the following continuous-time
dynamics and measurement model
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d

dt
~r = ~̇r

d

dt
~̇r = RIMU

ECEF

(

~f −~b
)

+RENU
ECEF





0
0
−g





− 2~ωE × ~̇r + ~va

d

dt
~b = ~vb

d

dt
~N = 0

(19)

where ~f is the measured specific force vector (i.e.
accelerometer measurement), RENU

ECEF is the rotation
matrix from the east-north-up (ENU) frame to the
ECEF frame that is derived from the a priori position
estimate of the IMU, g is the gravitational accelera-
tion of Earth at the location of the IMU, ~ωE is the
angular velocity vector of the Earth, and ~va and ~vb
are zero-mean, white noise processes with standard
deviations of σa and σb respectively.

Equation 19 is discretized using an Euler integration
approximation to determine the state transition ma-
trix, which assumes a small time step between up-
dates. Since the IMU reports measurements every
0.01 s, this approximation is reasonable. The inte-
ger ambiguity vector does not change with time (i.e.
~N(k+1) = ~N(k)), so its propagation equation is triv-
ial and thus eliminated from the propagation step.
The discrete-time propagation model is given in ma-
trix form as

~x(k + 1) =





~r(k + 1)

~̇r(k + 1)
~b(k + 1)





=





I I∆t 0
0 I − 2 [~ωE×]∆t −RIMU

ECEF∆t

0 0 I





×





~r(k)

~̇r(k)
~b(k)



+





0

RIMU
ECEF

~f + ~gECEF

0



∆t+ ~v′

= F (k)~x(k) + ~u(k) + ~v ′

(20)

where [~ωE×] is the cross-product-equivalent matrix
for the angular velocity of the Earth, ~gECEF =
(

[

0 0 −g
] (

RENU
ECEF

)T
)T

, and ~v ′ is the process

noise vector. It can be shown that the process noise
covariance matrix is

Q =




1

3
σ2
a∆t3I 1

2
σ2
a∆t2I 0

1

2
σ2
a∆t2I I

(

σ2
a∆t+ 1

2
σ2

b∆t2
)

−1

2
RIMU

ECEFσ
2

b∆t2

0 −1

2
RIMU

ECEFσ
2

b∆t2 σ2

b∆tI





(21)

B.2 Square-Root Information Propagation

For use in the EKF, the discrete-time propagation
model in Eq. 20 is converted into square-root informa-
tion form. Performing the propagation in this form
aids in preserving the information relating the real
and integer portions of the state through the square-
root information equations given in Eq. 12. Start-
ing with the square-root information equations, the
discrete-time propagation model is used to substitute
the state at time k+1 for the state at time k. The re-
sulting equations, after augmenting with the square-
root equation for the process noise, are





0
~zx(k) +Rxx(k)F

−1(k)~u(k)
~zN (k)



 =





Rvv 0 0
−Rxx(k)F

−1(k) Rxx(k)F
−1(k) RxN (k)

0 0 RNN (k)





×





~v ′

~x(k + 1)
~N



+ ~wv,X

(22)

where RT
vv is the Cholesky factorization of the process

noise covariance matrix and ~wv,X is distributed as a
multi-dimensional standard normal distribution. As
with the CDGPS measurement update, the matrix
coefficient of the state vector is then factorized into
an orthonormal matrix and an upper-right triangular
matrix via QR factorization. This results in

10







Rvv 0 0
−Rxx(k)F

−1(k) Rxx(k)F
−1(k) RxN (k)

0 0 RNN (k)





= Q̄(k)





R̄vv(k + 1) R̄vx(k + 1) R̄vN (k + 1)
0 R̄xx(k + 1) R̄xN (k + 1)
0 0 R̄NN (k + 1)





(23)

The propagation equations are transformed using the
orthonormal matrix from the factorization such that
they become





~̄zv(k + 1)
~̄zx(k + 1)
~̄zN (k + 1)



 =

Q̄T (k)





0
~zx(k) +Rxx(k)F

−1(k)~u(k)
~zN (k)





=





R̄vv(k + 1) R̄vx(k + 1) R̄vN (k + 1)
0 R̄xx(k + 1) R̄xN (k + 1)
0 0 R̄NN (k + 1)





×





~v ′

~x(k + 1)
~N



+ ~̄wv,X

(24)

The a priori state and state covariance can be de-
termined in the same way as described in Sec. V-
A.3. The propagated square-root information equa-
tions are passed on to the next operation, which could
be a CDGPS measurement update or another IMU
propagation step depending on what measurements
are next. Under the current configuration of the PAR
system, GPS observables are reported every 0.2 s and
IMU measurements and attitude are reported every
0.01 s. This leads to 20 sequential propagation steps
being performed between every measurement update.

C. Augmented Reality Overlay

The augmented reality overlay is responsible for tak-
ing the precise position and attitude of the webcam
provided by the EKF, capturing the webcam’s view in
a virtual world referenced to real world coordinates,
and overlaying the view of the virtual world on top
of the webcam footage, which constitutes the user’s

view of the real world. This combination of real world
video footage and virtual images represented in their
assigned real-world location and attitude comprises
the augmented reality experience. The virtual world
could contain any objects or text for any purpose,
which makes the PAR system application ambivilous.

For the prototype PAR system, MATLAB’s SIMULINK
3D Animation Toolbox was employed to create and
visualize the virtual world and perform the overlay of
the view of the virtual world on top of the real world
footage. The overlay was performed by adding an
appropriately sized, positioned, and oriented box in
the virtual world that acted as a “projection screen”
for the webcam footage, which was applied to the
box as a texture. While this method for performing
the image overlay has its drawbacks when it comes
to adding lighting and shadowing effects to the vir-
tual world, the method worked well for the prototype
PAR system, which did not incorporate these effects.
An example of this overlay is shown in Fig. 8. The
image on the left side of the figure shows the view of
a virtual piston before the overlay, and the image on
the right side shows the result of the overlay.

VI. TEST RESULTS

The prototype augmented reality system was tested
under two different scenarios. The first test was a
static test that was meant to verify that the CDGPS
algorithm was performing as expected. The second
test was a dynamic test that was meant to test the
full functionality of the system. For ease of testing,
all processing was done after-the-fact by operating
on recordings of the IMU data, GPS observables, and
webcam video.

A. Static Test

Before the start of the static test, the baseline dis-
tance between the base station antenna and the sec-
ondary antenna used for the static test was measured
using a tape measure, as seen in Fig. 9. This mea-
surement provided the truth data for the static test
to verify that the CDGPS algorithm was converging
correctly. The baseline distance measured was 21.155
m.

30 minutes of data was collected and processed for the
static test. The base station and secondary receiver
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Fig. 8. An example of the overlay of the virtual world and real world footage. The image on the left side shows the view
of a virtual piston before the overlay. The image on the right side shows the result of the overlay.

tracked between 8 and 10 common satellites at vari-
ous points during the 30 minute interval, as shown
in Fig. 10. The dropping and adding of satellites
throughout the dataset demonstrates the CDGPS al-
gorithm’s capability to operate through changes in
the satellites tracked without any issues. This was
enabled by special modifications that the CDGPS al-
gorithm makes to the square-root information equa-
tions whenever a satellite is lost or acquired.

Figure 11 shows a plot of the lower bound on the prob-
ability that the integer ambiguities have been fixed
correctly during the first portion of the static test. It
can be assumed with high certainty that the integers
have converged correctly once this probability has ex-
ceeded 0.999, which corresponds to less than a 0.1%
probability of error. Using this metric, the correct
integer ambiguities were determined within the first
11.2 s of the dataset.

Figure 12 shows the position estimate of the sec-
ondary antenna in the ENU coordinate system cen-
tered on the base station antenna from the time that
the probability metric was exceeded to the end of
the test. Almost all of the points in the plot fit
within a centimeter range in both East and North di-
rections. The baseline distance was calculated from
these points and is shown in Fig. 13. The mean base-
line distance was 21.1587 m, which is within a few
millimeters of the value measured with a tape mea-
sure. This demonstrates that the CDGPS algorithm
is performing as expected.

B. Dynamic Test

The data for the dynamic test was collected over a
few minutes. For the first 2–3 minutes, the prototype
system was stationary on a ledge to allow the integer
ambiguities to converge. Then, the prototype system
was walked toward and around a virtual object, which
would later be visualized in post-processing. Finally,
the system was returned to its starting position on
the ledge.

Figure 14 shows the satellites tracked by both the
base station and mobile receivers during the entire
dataset. In this case, the same 7 satellites were
tracked throughout the dataset due to the short du-
ration of the test. Figure 15 shows the lower bound
probability on correct convergence of the integer am-
biguities. In this case, the probability of correct res-
olution exceeded the 0.999 metric after 31.8 s.

Figure 16 shows the position estimate of the mobile
antenna in the ENU coordinate system centered on
the base station antenna from the time that the prob-
ability metric was exceeded to the end of the test.
The position estimates are good enough that the wob-
bles in the trajectory as each step was taken can be
clearly seen in the plot. It can also be seen that the
position estimate did not drift during the test, since
the position estimate at the start and end of the test
are nearly identical. The IMU’s orientation estimate
throughout the test is shown in Fig. 17 as a roll-pitch-
yaw Euler angle sequence. Due to the orientation of
the IMU in the prototype system, the roll-pitch-yaw
sequence if one were to hold the system level to the
ground and point the camera to the North would be
a 90o roll, 0o pitch, and -90o yaw.
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Fig. 9. Picture of measuring the baseline distance for the
static test using a tape measure.

Fig. 10. The SVIDs of the GPS satellites tracked during
the static test as a function of time.

Fig. 11. The lower bound on the probability that the
integer ambiguities have been fixed correctly as a function
of time for the static test.

Fig. 12. A plot of the East and North position relative to
the base station during the static test.

A virtual world was designed to demonstrate the aug-
mented reality overlay portion of the system. This
virtual world contained a set of blue marble columns
that the user passed through twice during the test
and a model of a piston that the user walks up to,
around, and then backs away from. Figure 18 shows a
sequence of frames taken from the augmented reality
video that was produced using the described virtual
world, the webcam video, and the output position and
attitude of the webcam from the EKF. The rendering
of the virtual world was incredibly stable relative to
the real world and contained little so-called registra-
tion error.
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Fig. 18. A sequence of frames taken from the augmented reality video produced using the results from the dynamic test.
The first frame (upper left) was taken from shortly after the system first started moving. The second frame (upper right)
was taken from the moment the system reaches the southern-most point of its walk around the piston. The third frame
(lower left) was taken from the moment the system reaches the northern-most point of its walk around the piston. The
fourth frame (lower right) was taken from near the end of the dataset.

Fig. 13. A plot of the measured baseline distance over the
30 minute static test. The red line is the mean distance
and the green lines mark the ±1σ bounds.

Fig. 14. The SVIDs of the GPS satellites tracked during
the dynamic test as a function of time.
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Fig. 15. The lower bound on the probability that the
integer ambiguities have been fixed correctly as a function
of time for the dynamic test.

Fig. 16. A plot of the East and North position relative to
the base station during the dynamic test.

VII. CHALLENGES / FUTURE WORK

This section provides a brief description of some of
the technical difficulties associated with translating
this demonstration and prototype PAR system into a
viable commercial product.

A. Carrier Phase Cycle Slips

The integer ambiguities solved for by the CDGPS al-
gorithm are only good so long as the GPS receiver’s
PLL is able to track the signal without slipping any
cycles in the carrier phase. These cycle slips can occur
due to receiver dynamics, low carrier-to-noise ratio,

Fig. 17. A plot of the Euler angles reported by the IMU
during the dynamic test. The IMU coordinate system is
aligned such that the x-axis points to the right and the
y-axis points up as seen by a user holding the system.

Ionospheric changes, and multipath. If the receiver
slips a cycle, then the CDGPS algorithm would no
longer report the correct position unless this cycle
slip is detected and mitigated. Properly designed re-
ceivers will experience few cycle slips, but cycle slips
cannot be completely eliminated. Research has been
done on this topic in Ref. [7], but further research is
warranted for this particular application of cycle slip
detection and mitigation.

B. Carrier Phase Wind-up

Carrier phase wind-up is a phenomenon caused by
the circular polarization of the signal. If the GPS
antenna is rotated, then the received carrier phase of
each signal will increase or decrease, depending on
the direction of rotation and polarization of the sig-
nal, by an amount proportional to the angle rotated.
This will lead to errors in the carrier phase measure-
ments that will drift in time in the case of human
motion. However, the IMU keeps track of the ori-
entation of the PAR system, so, given a model for
carrier phase wind-up based on antenna orientation,
the PAR system should be able to eliminate the ef-
fects of carrier phase wind-up. One such model for
carrier phase wind-up is presented in Ref. [12].
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C. GPS Reception

The problem of GPS signal reception encom-
passes three different problems, antenna design, self-
interference, and indoor and deep-urban navigation.
Incorporating a GPS antenna into a small device with
good phase properties and reception gain pattern is a
difficult challenge that poses a major obstacle to inte-
grating CDGPS capability into a device like a smart-
phone. One possible solution to this problem is to ac-
cept that the system would have to be either a stand-
alone device or a slightly larger attachable accessory.
Self-interference refers to the problem of isolating the
GPS antenna from any potential interference sources
within the PAR system itself. Oftentimes clocks, pro-
cessors, and displays transmit noise in the GPS band
that, in close proximity, can cause issues with GPS
reception.

Indoor and deep-urban navigation also pose signifi-
cant challenges to satellite positioning due to the nec-
essarily weak signals [13]. The surveying community
deals with deep-urban environments by using mul-
tiple satellite constellations and frequencies, but this
functionality comes with a significantly elevated price
tag. Due to this problem, any PAR system would
likely only be able to function in areas with a clear
view of the sky. This constraint, however, does not
prevent use of a PAR system in many potential ap-
plications.

VIII. CONCLUSIONS

Precise augmented reality (PAR) will open the door
for a whole host of augmented reality applications
by enabling alignment of the virtual and real worlds
at short distances (< 100 m) without requiring vi-
sual cues. Most current augmented reality systems
are only capable of positioning accuracies in the 3-
to-10 meter range, while a PAR system is capable of
centimeter and even sub-centimeter level accuracies.
Only the absolute positioning accuracy of a PAR sys-
tem is capable of reducing the alignment or “regis-
tration” errors to the level required for small relative
distances between the user and virtual objects with-
out visual cues.

A prototype PAR system was designed, built, and
tested in both static and dynamic scenarios. The
static test demonstrated that the CDGPS algorithm
was providing sub-centimeter level accurate position-

ing, as expected. The dynamic test demonstrated the
accuracy of the system in both position and orienta-
tion as it was walked around a virtual object. The
rendering of the virtual object was remarkably stable
in position and orientation relative to the real world
camera feed.

While the results of these tests are promising, there
are still several issues that need to be resolved to make
the algorithm’s performance robust. These issues in-
clude cycle slip detection and mitigation and carrier
phase wind-up. GPS reception is also an obstacle
which inhibits performance of the system. This issue
manifests itself in several ways including antenna de-
sign, self-interference, and the difficulty of indoor and
deep-urban navigation. These issues are not likely to
be insurmountable, with the possible exception of in-
door and deep-urban navigation. However, there are
still many potential applications where sky visibility
is not an issue that would benefit from a PAR system.
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