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Over the past decade, GPS and other Global Navigation Satellite Sys-

tem (GNSS) chipsets have become smaller, cheaper, and more energy efficient, so

much so that they now come standard in most smartphones and tablets. Under

good multipath conditions, one can expect 2-to-3-meter-accurate positioning with

these chipsets, under adverse multipath, accuracy degrades to 10 meters or worse.

Outside the mainstream of consumer GNSS receivers, however, centimeter—even

millimeter—accurate GNSS receivers are used routinely in geodesy, agriculture, and

surveying. The key to their accuracy is a radically different approach to posi-

tioning in which the standard code-phase (or pseudorange) positioning technique

is replaced by differential carrier-phase positioning. Adopting this high-precision

carrier-phase-based technique for consumer-grade mobile devices is possible, but

comes with significant challenges.

This dissertation identifies and addresses the challenges to performing cen-

timeter accurate carrier-phase differential GNSS (CDGNSS) positioning on low-cost

mobile devices. To this end, this dissertation makes three primary contributions.
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First, this dissertation develops a carrier phase reconstruction technique to

address the high power consumption of current CDGNSS algorithms. The recon-

struction technique enables a continuous and unambiguous phase time history to be

reconstructed from intermittent phase measurements, permitting aggressive duty

cycling of the mobile device’s internal GNSS chip, decreasing energy consumption.

Second, this dissertation demonstrates that a centimeter-accurate position-

ing solution is possible based on GNSS data collected using a smartphone, a first

in the open literature. It is identified that the primary impediment to performing

CDGNSS on smartphones lies not in the commodity GNSS chipset within the phone,

but instead in the antenna, whose chief failing is its poor multipath suppression, re-

sulting in long initialization times. It is demonstrated that wavelength-scale random

antenna motion can be used to decorrelate multipath errors and reduce the initial-

ization period—the so-called time-to-ambiguity-resolution (TAR)—of smartphones

employing CDGNSS to obtain centimeter-level positioning fix.

Finally, this dissertation develops a framework that tightly fuses smartphone

camera image measurements with GNSS carrier phase measurements to reduce

CDGNSS initialization times beyond what is achievable using antenna motion alone.

The framework augments the traditional bundle-adjustment- (BA-)-based structure

from motion (SFM) algorithm with the carrier phase differential GNSS (CDGNSS)

algorithm in a way that preserves the key features of both algorithms, namely the

sparseness of the matrices in BA and the integer structure of the ambiguities in

CDGNSS. The framework is shown to produce a faster, more robust, and more

accurate positioning solution than achievable with existing techniques.
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Chapter 1

Introduction

On May 2, 2000, the intentional degradation of the Global Positioning Sys-

tem (GPS) signals known as selective availability was turned off and the position

accuracy obtainable by civilian GPS receivers went from errors of 50 meters or more

to errors on the order of a few meters. Such a large and sudden increase in accuracy

opened up the floodgates for the consumer use of GPS. Since the turn of the century,

the use of GNSS by the civilian sector has risen at an exponential rate [5], leading

to an infiltration of GNSS receivers into the industrial and consumer markets. Re-

cently, GNSS receivers have made their way into smartphones and tablets and now

come standard in these devices [6, 7]. These embedded GNSS chipset receivers have

been used to provide mobile devices with on-demand position information, enabling

a host of applications such as turn-by-turn directions, location-focused web searches,

fitness tracking, and more.

Despite significant improvements to consumer-grade GNSS receivers, en-

abling them to meet size, energy, and cost constraints of the mobile devices into

which they have been embedded [8], their underlying position accuracy has stag-

nated at about 2-3 meters. Figure 1.1 shows the GPS user range error (URE) over a

12 year time span [9]. The URE represents the errors in a receiver’s code-phase-based

range calculation due to imperfect satellite clock and orbit models broadcast to re-

ceivers in the GPS navigation message stream [10]. Despite a trend of improvements
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Figure 1.1: Trends indicate that user range error has been declining, but at a slowing

rate, over the last 12 years. [1]

by the GPS space-segment [1], URE seems to have stagnated at around 0.8 meters.

Furthermore, URE is not the only source of positioning error in consumer-grade

GNSS receivers. Receiver-side errors, e.g. errors due to receiver clock-variations,

front-end noise, and multipath also contribute to the ultimate positioning precision

and are on the same order of magnitude as URE. Table 1.1 lists common receiver-

dependent error sources and their typical values for a typical consumer-grade re-

ceiver. These receiver-side errors lead to a total positioning error about 2 meters.

While such accuracy is impressive as compared to just 10 years ago, receiver accu-

racy using so-called “code-phase” positioning are reaching fundamental limitations.

Improvements beyond meter-level accuracy is difficult to achieve, except under ideal

circumstances.
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Table 1.1: Receiver-Side Range Errors

Error Source Standard Deviation (meters)

Ionospheric Modeling Errors [11] 0.5

Multipath Errors [12] 1

Front-end Noise (50 dB-Hz signal) [13] 0.5

Cumulative (0.52 + 12 + 0.52)
1
2 = 1.2

1.1 Carrier-Phase-Based Positioning

Fortunately, there exist advanced positioning techniques, which promise ac-

curacy better than the meter-level of standard code-phase techniques. Such tech-

niques take advantage of the GNSS signal’s underlying carrier-phase to provide

GNSS receivers with centimeter-level, and, in some cases, millimeter-level accuracy.

These techniques, while virtually absent in consumer devices, have for the past

decade been implemented in non-consumer industrial-grade receivers and used ex-

tensively in the fields of surveying and farming [14, 15]. A natural question is, “So

why not adopt these high-precision carrier-phase-based techniques for consumer-

grade mobile devices?”. This dissertation identifies the primary challenges currently

preventing such adoption and presents solutions to address these challenges.

1.1.1 Comparison to Traditional Code-Phase Positioning

GNSS signals consist of a carrier wave modulated by a pseudorandom code

sequence. As illustrated in Fig. 1.2, traditional positioning techniques work by

tracking each satellite signal’s code sequence and use it to estimate a range to

each satellite. These ranges are commonly called “pseudoranges” because they have

3



Standard Code-Phase (Pseudorange) Positioning

Figure 1.2: Code-phase-based positioning relies on a receiver tracking the code

sequence (square-wave) of each GNSS satellite’s transmitted signal and uses corre-

sponding code-phase measurements to compute a meter-level-accurate range to each

satellite.
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errors, e.g., clock-, atmosphere-, and multipath-induced errors, and are thus not

error-free “true” ranges. Pseudoranges computed to four or more satellites are sub-

sequently combined into a least-squares cost function, the minimum of which deter-

mines the three dimensional receiver position and clock offset of the receiver. This

pseudorange-based technique—because it uses a signal’s code sequence to compute

a position—is known as “code-phase”-based positioning.

In contrast to code-phase positioning, carrier-phase positioning, as illustrated

in Fig. 1.3, computes much more precise satellite-receiver ranges by tracking a

signal’s underlying carrier phase [16, 17]. Because carrier wavelengths are much

smaller than the length of each chip in the code sequence (19 centimeters vs 300

meters), or, equivalently because the frequency of the GNSS carrier phase is much

higher than the chipping rate of the chipping sequence modulated on top if it,

the phase tracking loops that produce carrier-phase measurements can much more

easily mitigate the effects receiver noise and multipath. As such, while a GPS

code sequence can be tracked with meter-level accuracy (under typical 50 dB-Hz

carrier-to-noise ratios), GPS carrier signals can be tracked 100 to 1000 times more

accurately, at the centimeter- and millimeter-levels [18].

1.1.2 Challenges

Despite its accuracy advantages, carrier-phase positioning comes with two

primary challenges relative to code-phase positioning: initialization time and energy

consumption. These challenges are especially apparent on mobile devices, where

impatient users and limited battery life strongly influence of this more-accurate

positioning technique.

The first challenge, the longer initialization time of carrier phase positioning

as compared to code phase positioning, is the result of the need to resolve of so-

5



Carrier Phase Differential GNSS (CDGNSS) Positioning

Figure 1.3: Carrier-phase-based positioning relies on a receiver tracking the under-

lying carrier (sine-wave) of each GNSS satellite’s transmitted signal, differencing

its carrier phase measurements with those taken from a second receiver tracking

the same set of signals, resolving a set of integer ambiguities, and then using these

now-unambiguous differenced measurements to compute a centimeter-level-accurate

range to each satellite.
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called carrier phase ambiguities. Unlike the with measurements of the code-phase of

a GNSS signal, measurements of the carrier-phase of a signal cannot be immediately

traced back to a known satellite transmission time, thereby preventing an immedi-

ate satellite range calculation. The carrier phase ambiguities must first be resolved

before a position can be computed. Fortunately, each signal’s phase ambiguity can

be assumed constant under continuous carrier phase tracking, and even still, can

be constrained as integer-valued when measurements are appropriately differenced

between two receivers tracking the same set of satellites (see Fig. 1.3). Such differ-

encing is key to a specific carrier-phase positioning technique known as carrier phase

differential GNSS (CDGNSS). (See Ch. 3 for further details on CDGNSS). Reliable

carrier ambiguity estimation has been the topic of much previous research [16, 19–

22]. While good progress has been made in developing optimal techniques to find

the true set of integers and also reducing the ambiguity resolution time, the time

to ambiguity resolution (TAR) is often dictated by the underlying measurements

quality and number of available signals. As such, the need for ambiguity resolution

is an added burden of carrier-phase-based positioning as compared to traditional

code-phase-based positioning, as it results in a longer time-to-first-fix (TTFF).

A second challenge of carrier-phase-based positioning over code-phase-based

positioning is its relatively high power consumption. This stems from its supposed

continuous tracking requirement. So long as a receiver is continuously tracking a

signal’s carrier phase, its carrier phase ambiguity can be assumed constant. The

constant nature of ambiguities is important because (1) it becomes easier to esti-

mate them over time as more measurements are captured, and (2) once they are

estimated, they can be locked in place and not need be re-estimated. The need for

continuous carrier phase tracking, however, prevents measurement duty-cycling, a

common energy-saving technique in many code-phase-based GNSS chipsets, espe-

7



cially those embedded in smartphones and tablets. This power-saving duty cycling

technique is often aggressive, receivers waking up once a second for only a few mil-

liseconds per second [23, 24]. Such a requirement makes it difficult to maintain lock

and the carrier phase of the GNSS signal, preventing CDGNSS.

The ambiguity resolution and energy consumption challenges associated with

carrier-phase positioning have so far been a major impediment to the mainstreaming

of carrier-phase-based positioning techniques in smartphones and tablets. Nearly all

current uses of carrier-phase positioning techniques are by industrial-grade GNSS

receivers where these costs are far outweighed by the benefit that their increase in

accuracy brings to industrial users. This benefit is further supported by users’ will-

ingness to purchase them, despite the high multi-thousand-dollar cost of industrial

carrier-phase receivers [25].

1.1.3 Steady Improvements

Fortunately, the challenges to carrier-phase positioning are naturally becom-

ing less severe over time. Every year marks the launch of more GNSS satellites

and with these satellites come more signals [5]. As the number of signals in the

sky grows, consumer GNSS receivers are quickly augmented to track them. Modern

smartphone receivers currently track both American GPS and Russian GLONASS

signals [26]. Both carrier-phase- and code-phase-based positioning stand to ben-

efit from such advancements, as more signals create more geometrical constraints

and, consequently lead to a more-accurate positioning solution. However, one of

the largest benefits of these added signals is unique to carrier-phase positioning.

Additional signals significantly improve the probability of successful CDGNSS in-

teger ambiguity resolution, despite there being a larger number of ambiguities to

estimate [27]. The improvement comes in the added redundancy brought by extra
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signals, which significantly reduces the average precision of the pre-fixed float ambi-

guity estimates [28, 29]. Overall, more signals enable receivers to resolve ambiguities

faster in time.

Furthermore, the increasing availability and technological advancement of

non-GNSS sensors in smartphones are also soothing the challenges of carrier-phase

positioning. The camera and inertial sensors can be used to approximate the smart-

phone motion profile during ambiguity resolution [30–32], which can be used as a

constraint to speed successful ambiguity resolution.

1.1.4 Motivation

The uses of centimeter-accurate positioning in the mass market are becom-

ing increasingly numerous. It is anticipated that a device with low-cost centimeter-

accurate positioning and sub-degree accurate orientation capabilities will usher in

a host of new and useful applications to the commercial and consumer industries.

In the wireless communication industry, the ability to use GNSS measurements to

obtain precise antenna position and orientation information could benefit V2V and

millimeter wave communication where centimeter-accurate position information can

facilitate high gain, narrow beamwidth communication links that require minimal

feedback overhead. In another wireless application, two rigidly attached GNSS

antennas could be used to provide sub-degree heading determination of cellular

basestation antennas to perform precise antenna alignment and maximize coverage

efficiency. Furthermore, a mobile device with robust centimeter positioning capabil-

ity could be used in the entertainment industry for geo-referenced augmented and

virtual reality, in the construction industry for low-cost surveying and 3-D map mak-

ing, and in the automotive industry to provide guidance, navigation, and collision

avoidance of autonomous and semi-autonomous vehicles.
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1.2 Thesis Statement and Expected Contributions

This dissertation defends the following thesis statement:

Centimeter-accurate GNSS positioning on low-cost mobile platforms is

achievable, but hard. These platforms, however, have certain intrinsic features that

can be exploited to make the process easier.

The following is a summary of the contributions of this dissertation:

1. A Carrier Phase Reconstruction Technique: A carrier phase reconstruc-

tion technique to enable low-power centimeter-accurate positioning on mobile

devices is developed and analyzed. Carrier-phase positioning solutions cur-

rently require continuous, non-duty-cycled signal phase measurements. Accu-

rate carrier phase reconstruction permits the aggressive duty cycling of phase

measurements, significantly decreasing the overall energy consumption of ex-

isting solutions. This work has been published in [33, 34].

2. Carrier-Phase Differential GNSS Positioning using Low-Cost An-

tennas: It is demonstrated for the first time that a centimeter-accurate posi-

tioning solution is possible based on data collected from the internal antenna

of a smartphone. It is shown that the primary impediment to performing

CDGNSS positioning on low-cost mobile platforms lies not in the commod-

ity GNSS chipset within the phone, but instead in the antenna, whose chief

failing is its poor multipath suppression [2]. An empirical analysis of the aver-

age gain and carrier phase multipath error susceptibility of smartphone-grade

GNSS antennas is offered and it is shown that these properties are significantly

worse than what is seen when using even a low-quality external patch antenna.

It is demonstrated that wavelength-scale random antenna motion can be used
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to substantially improve the CDGNSS initialization time as compared to keep-

ing the antenna stationary. This work has been published in [2, 35, 36].

3. A Joint Structure-From-Motion and Carrier Phase Differential GNSS

Framework: A joint Vision and GNSS measurement estimation framework

that fuses smartphone camera measurements with differential GNSS carrier

phase measurements to reduce CDGNSS initialization times when using low-

cost antennas beyond what is achievable using antenna motion alone is devel-

oped and analyzed. In addition, it is demonstrated that such fusion facilitates

not only centimeter-accurate device position determination—as this is possi-

ble on the basis of carrier phase measurements alone—but also sub-degree-

accurate device orientation determination and centimeter-accurate, globally-

referenced, collaborative, three-dimensional mapping. This work has been

published in [31, 37].

1.3 Published Works

The publications to which the author contributed during the course of car-

rying out the contributions described in this dissertation are as follows.

Journal Publications

1. K. M. Pesyna, Jr., Z. M. Kassas, R. W. Heath, Jr., and T. E. Humphreys,

“A phase-reconstruction technique for low-power centimeter-accurate mobile

positioning,” IEEE Transactions on Signal Processing, vol. 62, pp. 2595–2610,

May 2014

2. K. M. Pesyna, Jr., T. Novlan, C. Zhang, R. W. Heath, Jr., and T. E. Humphreys,

“Exploiting antenna motion for faster initialization of centimeter-accurate
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GNSS positioning with low-cost antennas,” IEEE Transactions on Aerospace

and Electronic Systems, 2015. (Submitted for review.)

3. K. M. Pesyna, Jr., D. P. Shepard, R. W. Heath, Jr., and T. E. Humphreys,

“VISRTK: Fusion of camera and GNSS carrier phase measurements for fast,

robust, precise, and globally-referenced mobile device pose determination,”

IEEE Transactions on Signal Processing, 2015. (In preparation.)

Conference Publications

1. K. M. Pesyna, Jr., R. W. Heath, Jr., and T. E. Humphreys, “Centimeter

positioning with a smartphone-quality GNSS antenna,” in Proceedings of the

ION GNSS+ Meeting, 2014

2. K. M. Pesyna, Jr., R. W. Heath, Jr., and T. E. Humphreys, “Precision limits

of low-energy GNSS receivers,” in Proceedings of the ION GNSS+ Meeting,

(Nashville, Tennessee), Institute of Navigation, 2013

3. K. M. Pesyna, Jr., Z. M. Kassas, and T. E. Humphreys, “Constructing a con-

tinuous phase time history from TDMA signals for opportunistic navigation,”

in Proceedings of the IEEE/ION PLANS Meeting, pp. 1209–1220, April 2012

4. D. P. Shepard, K. M. Pesyna, Jr., and T. E. Humphreys, “Precise augmented

reality enabled by carrier-phase differential GPS,” in Proceedings of the ION

GNSS Meeting, (Nashville, Tennessee), Institute of Navigation, 2012

5. K. M. Pesyna, Jr., K. D. Wesson, R. W. Heath, Jr., and T. E. Humphreys,

“Extending the reach of GPS-assisted femtocell synchronization and localiza-

tion through tightly-coupled opportunistic navigation,” in IEEE GLOBECOM

Workshop, 2011
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6. K. M. Pesyna Jr., Z. M. Kassas, J. A. Bhatti, and T. E. Humphreys, “Tightly-

coupled opportunistic navigation for deep urban and indoor positioning,” in

Proceedings of the ION GNSS Meeting, (Portland, Oregon), Institute of Nav-

igation, 2011

7. K. D. Wesson, K. M. Pesyna, Jr., J. A. Bhatti, and T. E. Humphreys, “Op-

portunistic frequency stability transfer for extending the coherence time of

GNSS receiver clocks,” in Proceedings of the ION GNSS Meeting, (Portland,

Oregon), Institute of Navigation, 2010

Magazine Articles

1. K. M. Pesyna, Jr, R. W. Heath, Jr., and T. E. Humphreys, “Accuracy in the

palm of your hand: Centimeter positioning with a smartphone-quality GNSS

antenna,” GPS World, vol. 26, pp. 16–31, Feb. 2015

Patents

1. D. P. Shepard, T. E. Humphreys, K. M. Pesyna, Jr., and J. A. Bhatti, “A

system and method for using global navigation satellite system (GNSS) navi-

gation and visual navigation to recover absolute position and attitude without

any prior association of visual features with known coordinates,” Feb. 2014.

US Patent filed on Feb., 3, 2014

1.3.1 Dissertation Organization

Chapter 2 introduces the first challenge to CDGNSS on low power devices,

its high power consumption, resulting from a supposed continuous signal tracking

requirement. It is shown that continuous tracking can be forgone in favor of more-

13



power-efficient measurement duty-cycling so long as a continuous carrier phase time

history can be accurately reconstructed from the intermittent measurements. Ac-

curate reconstruction means that the ambiguity introduced into the initial phase of

each measurement burst as a result of the duty-cycling must be correctly resolved.

This is shown to be possible through the formulation of a reconstruction technique

which, at its core, solves a mixed real and integer estimation problem. The sensitiv-

ity of the technique to a set of system parameters which are set to model a typical

low-power mobile receiver setup is investigated.

Chapter 3 presents an empirical analysis of data collected from the GNSS

antenna of a smartphones. The chapter shows the antenna’s poor multipath rejec-

tion to be the primary hindrance to fast CDGNSS positioning fixes. A centimeter-

accurate positioning fix is shown to be possible, nonetheless, albeit with a significant,

e.g., hundreds of seconds, initialization time. Strategies to reduce this initialization

time, which involve both constrained and unconstrained antenna motion, are devel-

oped and then analyzed both in simulation and in practice.

Chapter 4 develops a joint estimation framework that combines monocu-

lar camera images with GNSS carrier phase measurements for fast, robust, precise,

and globally-referenced mobile device position and orientation (pose) determination.

The proposed framework augments the traditional bundle-adjustment- (BA-)-based

structure from motion (SFM) algorithm with the carrier phase differential GNSS

(CDGNSS) algorithm. Comparisons to existing approaches reveal that these do not

combine measurements as tightly nor optimally as the proposed approach, resulting

in the proposed approach having a faster, more robust, and more accurate solu-

tion. Empirical simulation results and results using real images and GNSS carrier

phase measurements captured from a low-cost GNSS receiver and smartphone plat-

form show that the proposed estimation framework (1) achieves centimeter- and
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sub-degree-accurate pose estimates, (2) leads to faster resolution of the CDGNSS

integer ambiguities as compared to standalone CDGNSS, and (3) is able to use prior

information from previously-localized point features, if available, for even faster (and

oftentimes instantaneous) CDGNSS integer-ambiguity resolution.

Chapter 5 concludes this dissertation with a summary of contributions and

suggestions for future research.

1.4 Nomenclature

ADOP Ambiguity Dilution of Precision

ASR Ambiguity Success Rate

BA Bundle Adjustment

CAA Correlation and Accumulation

CDGNSS Carrier-Phase Differential GNSS

CELD Coherent Early-Late Discriminator

CMVS Clustering Views for Multi-View Stereo

CRLB Cramer-Rao Lower Bound

ECEF Earth-Centered, Earth-Fixed

ENU East-North-Up

DD Double Differenced

DLL Delay-Locked Loop

GDOP Geometric Dilution of Precision

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRID Generalized Radionavigation Interfusion Device

ILS Integer Least Squares
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IMU Inertial Measurement Unit

INS Inertial Navigation System

LAMBDA Least-squares Ambiguity Decorrelation Adjustment

LLL Lenstra-Lenstra-Lovász

LMA Levenberg-Marquardt Algorithm

LOS Line of Sight

MEMS Microelectromechanical Systems

MVS Multi-View Stereo

NL Non-Linear

OU Ornstein Uhlenbeck

PLL Phase-Locked Loop

PPP Precise Point Positioning

PSD Power Spectral Density

REE Receiver Equipment Errors

RHCP Right-hand Circularly Polarized

RMS Root Mean Square

RTK Real Time Kinematic

RX Receiver

SAP Synthetic Aperture Processing

SIS Signal in Space

SFM Structure From Motion

SLAM Simultaneous Localization and Mapping

SPS Standard Positioning Service

SRIM Square-root Information Matrix

SV Satellite Vehicle



TDMA Time Division Multiple Access

TOF Time Of Flight

TAR Time to Ambiguity Resolution

TTFF Time to First Fix

TX Transmitter

URE User Range Error

VISRTK Visual Real Time Kinematic

WAAS Wide Area Augmentation System

17



Chapter 2

A Phase Reconstruction Technique For

Low-Power Centimeter Accurate Carrier-Phase

GNSS Positioning

2.1 Introduction

GNSS code-phase positioning accuracy is, under most practical conditions,

limited to meter-level positioning accuracy. The multipath-free GPS signal code-

phase ranging accuracy, for example, under a typical carrier-to-noise ratio of 50

dB-Hz and a typical signal integration time of 20 milliseconds is limited, as per

the Cramer Rao lower bound, to 1.1 meters [12]. With multipath included, this

accuracy degrades even further. To advance beyond this accuracy level, a receiver

can alternatively exploit a signal’s carrier-phase to compute a navigation solution.

One common technique, known as carrier-phase differential GNSS (CDGNSS), de-

veloped by the surveying and precision GNSS communities differences carrier-phase

measurements made between two receivers tracking the same set of satellites to

achieve exquisite (centimeter-level) positioning accuracy [16, 19, 20].

Unfortunately, carrier-phase positioning solutions have challenges that are

not experienced by their code-phase counterparts. For one, CDGNSS and other

carrier phase positioning techniques have inherent integer ambiguities that must be

resolved before a precise navigation solution can be computed. Fortunately, these
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CDGNSS ambiguities are constant and estimable so-long as a receiver maintains lock

on each signal’s carrier phase. However, any interruption in signal data collection

will introduce another set of integer ambiguities which do not remain static and are

much more difficult to estimate. To avoid these new ambiguities, manufacturers have

designed receivers that continuously track signals and consume power in excess of 100

mW [43]. These power consumption levels are in stark contrast to many code-phase

positioning receivers which aggressively duty-cycle their code-phase measurements,

such that they consume power at levels around 10 mW [23].

This chapter proposes a technique that relaxes the continuous tracking re-

quirement of carrier-phase positioning by reconstructing a continuous phase time

history from duty-cycled carrier-phase measurements. The technique estimates and

removes the second set of phase ambiguities which appear as a result of the duty-

cycled measurement structure. These phase ambiguities (different from the afore-

mentioned CDGNSS ambiguities) are unknown integer-cycle offsets from the true

phase that arise at the beginning of each duty-cycled measurement interval because

the receiver’s phase discriminator is not capable of measuring unmodeled full-cycle

changes in phase that may occur when the receiver is in between measurement

intervals.

There are two parts to the current chapter’s contribution. First, a technique

is proposed for continuous carrier phase reconstruction from duty-cycled phase mea-

surements. The technique builds on the Kalman-filter-and-smoother-based solution

to the mixed real and integer estimation problem introduced in [44], but modifies

this to incorporate measurement models characterizing carrier phase errors such

as the receiver front-end noise, propagation-induced phase errors, and line-of-sight

range-errors. The modified solution also incorporates carrier phase structure pa-

rameters such as the measurement burst length, the measurement burst period, and
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the unknown whole- or fractional-cycle phase ambiguities.

Second, a rigorous evaluation of the proposed reconstruction technique is

performed. This evaluation includes a Monte-Carlo-type simulation and test envi-

ronment for computing the probability of successful integer ambiguity resolution as

a function of common signal error and structure components. Additionally the eval-

uation compares the integer ambiguity resolution simulation results to previously-

derived analytical upper and lower bounds.

2.2 A Brief CDGNSS Background

CDGNSS positioning is one method of exploiting the carrier phase of a GNSS

signal to accurately determine a receiver’s position. The technique accurately com-

putes a three dimensional relative position between two GNSS receivers, one whose

position is typically stationary and known (the reference receiver) and one whose

position is to be determined (the mobile receiver) [45–47]. Fig. 2.1 shows a diagram

of the CDGNSS technique. CDGNSS requires that carrier phase measurements from

two receivers are collected, aligned, and twice differenced between and two receivers

and pairs of satellites [48] to form so-called double-differenced measurements. From

these measurements, the CDGNSS algorithm can compute a centimeter-accurate

three-dimensional relative position vector between the two receivers. If one of the

receivers is static and its position is precisely known, the second receiver’s position

can be accurately determined as well.

Double-differencing removes many of the common phase variations that would

otherwise be difficult to model, e.g., receiver and satellite clock errors, a majority of

the atmosphere-induced errors. As a result, the phase reconstruction technique pro-

posed here will be performed on the double-differenced measurements, rather than
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Figure 2.1: CDGNSS Framework

the undifferenced measurements. While reconstruction on double-differenced mea-

surements is not strictly required, it does make the problem easier. Furthermore,

the post-reconstructed phase time histories will be in the correct double-differenced

form to perform the subsequent CDGNSS positioning solution.

2.3 Prior Work

The problem of reconstructing a continuous phase time history from inter-

mittent, ambiguous phase measurements can be posed as a mixed real and integer

estimation problem where the real parameter is the time-varying continuous phase

and the integer parameters are the phase ambiguities. Prior work in mixed real and

integer estimation has led to the development of a general Kalman-filter- [49] and

smoother-based [44] framework which has been implemented, not for carrier-phase

reconstruction, but for CDGNSS ambiguity resolution [50]. In prior work by this

21



dissertation’s author, this framework was modified to construct a continuous carrier

phase from time division multiple access (TDMA) Iridium satellite communication

signals, enabling their use in navigation [34]. Other authors have constructed a sim-

ilar framework for fixed-baseline CDGNSS attitude determination [51]. The integer

ambiguities in these problems and in the current work bear a strong resemblance

to similar integer ambiguities in CDGNSS positioning and in sphere decoding, the

resolution of which has been the subject of much research in the GNSS commu-

nity [20, 52, 53] and in the communications community [54–56], respectively.

2.4 Carrier Phase Models

Three GNSS carrier phase models are introduced in this section; one applies

before, one during, and one after carrier phase reconstruction.

2.4.1 Before Reconstruction: Undifferenced Residual Carrier Phase Model

Let the undifferenced residual carrier phase φr(t) be defined as the measured

phase after duty-cycled downmixing and correlation with the local signal replica.

The term “residual” refers to this phase being the difference between the received

carrier phase and the receiver’s best prediction of the received carrier phase. The un-

differenced residual carrier phase for a GNSS signal can be modeled by the following
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adaptation of the GPS carrier phase measurement model given in [57]:

φr(t) , received carrier phase - predicted carrier phase

=


φ̃r(t) + 1

M
η(t) for tbi ≤ t < tbi + Tb,

i = 0, 1, ..., Nb − 1

undefined otherwise

(2.1)

φ̃r(t) =
1

λ
re(t) +

c

λ
[δtRX(t)− δtTX(t)] + γ0 − ψ0

+ εp(t) + vφ(t)

with the following definitions:

φ̃r(t) the continuous, ambiguity-free residual carrier phase, in cycles.

tbi the start time of the ith discrete phase measurement interval, or burst, in seconds.

Tb the burst duration, in seconds.

Nb the number of bursts.

M the ambiguity factor used to depict whole-cycle phase ambiguities (M=1) or

fractional-cycle phase ambiguities (M >1), whichever is appropriate for the

receiver setup. If the broadcast binary phase-shift keying (BPSK) GNSS nav-

igation data symbols are provided to the receiver and the receiver knows its

position and time to a fraction of a data symbol interval such that it can align

the data symbols to the incoming signal to perform data symbol wipeoff, or if

the receiver is tracking a data-symbol-free pilot signal, then M = 1; otherwise

M = 2 due to the necessary usage of a squaring-type phase detector [58], that

is, a detector which is insensitive to half-cycle phase changes induced by the

data symbols.
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η(t) an integer that remains constant during each discrete phase measurement in-

terval; i.e., η(t) = ni for tbi ≤ t < tbi + Tb. When scaled by 1
M

this represents

the offset of the signal’s measured phase from that of the unambiguous phase

at the beginning of each burst. In this chapter, ni will be referred to as the

integer ambiguity over the ith burst.

λ the carrier wavelength, in meters.

re(t) the error in the predicted range between the receiver and transmitter, in me-

ters. This term includes errors due to the receiver’s inertial measurement unit

noise, as discussed briefly in the next paragraph and in detail in section 2.7.2.1.

c the speed of light, in meters per second.

δtRX(t) the difference between the predicted and actual receiver clock offset from

true time, in seconds.

δtTX(t) the difference between the predicted and actual transmitter clock offset

from true time, in seconds.

γ0 the initial replica carrier phase at receiver clock time 0, in cycles.

ψ0 the initial transmitted carrier phase at satellite clock time 0.

εp(t) the carrier phase deviation due to unmodeled propagation and multipath ef-

fects, in cycles.

vφ(t) the measurement noise introduced by the receiver front-end, in cycles.

This model captures all the significant effects that cause the received carrier phase

to be different from what the receiver would predict on the basis of its own clock,
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its assumed position, and its internal models for propagation and multipath effects,

satellite motion, and satellite clock offset.

It is important to point out that to facilitate reliable reconstruction, a dy-

namic receiver needs to have a rough estimate of its motion. Unmodeled or poorly

modeled receiver motion may result in large variations in the receiver-satellite range

error re(t), which, as will be seen later, decreases the probability of successful re-

construction. Fortunately, a simple 3-axis inertial measurement unit (IMU) can

be used to measure the receiver’s 3-dimensional acceleration and angular velocity.

These measurements, in conjunction with an initial position and orientation, can

be integrated to predict the receiver’s position changes and substantially eliminate

variations in re(t). Of course, inertially-aided motion prediction is imperfect: noise

in the IMU measurements will still produce residual variations in re(t), which must

be accurately characterized to enable optimal phase reconstruction. Further details

on IMU-aided phase reconstruction will be presented in Sections 2.7.2 and 2.9.

2.4.2 During Reconstruction: Double-Differenced Residual Carrier Phase

Model

It is possible to reconstruct a continuous time phase history from measure-

ments of the undifferenced residual carrier phase, as done in [34]. But some error

sources modeled in (2.1), such as errors in the predicted transmitter and receiver

clock offsets δtTX(t) and δtRX(t) and the propagation errors εp(t) can often be too

unstable to support reliable reconstruction. By implementing a technique known

as double-differencing, where measurements between two GNSS satellites and two

GNSS receivers (a rover and a reference) are differenced, many of these error sources

can be entirely or substantially canceled, increasing the probability of successful re-

construction. To enable this, carrier phase measurements made by the rover and
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reference receivers can be passed off to a cloud server using a cellular or other wire-

less connection, where double-differencing (and subsequent reconstruction) can be

performed. A secondary benefit of double-differencing is that the resulting recon-

structed carrier phase will be in the proper form for CDGNSS, which, as mentioned

earlier, is a commonly-used technique that achieves cm-accurate relative position-

ing by taking advantage of double differencing, not for phase reconstruction, as

suggested here, but for precise positioning [16, 19, 20]. The CDGNSS positioning

solution can similarly be performed in the cloud subsequent to reconstruction.

Let the double-differenced residual carrier phase ∇∆φij
rAB(t) be defined as

the difference of the undifferenced residual carrier phases made between satellites i

and j and receivers A and B:

∇∆φij
rAB(t) ,

[
φirA(t)− φjrA(t)

]
−
[
φirB(t)− φjrB(t)

]
. (2.2)

In this model, receiver B differences its undifferenced residual carrier phase mea-

surements made by tracking satellites i and j. This difference is then subtracted

from the difference made at receiver A between the same two satellites. Performing

the subtractions in (4.17) and dropping the sub- and superscripts for clarity yields

∇∆φr(t) =


∇∆φ̃r(t) + 1

M
∇∆η(t) for tbi ≤ t < tbi + Tb,

i = 0, 1, ..., Nb − 1

undefined otherwise

(2.3)

∇∆φ̃r(t) =
1

λ
∇∆re(t) +∇∆εp(t) +∇∆vφ(t)

with the following new definitions:

∇∆φ̃r(t) the continuous, ambiguity-free double-differenced residual carrier phase,

in cycles.
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∇∆η(t) an integer, constant over each measurement burst and measured in cy-

cles, that represents the double difference of the integer η(t) term from (2.1).

In addition, ∇∆η(t) incorporates the double-difference of the initial transmit-

ter and receiver replica carrier phases ψ0 and γ0 between the two satellites

and two receivers. For properly designed GNSS receivers this latter double

difference is an integer and remains constant during the entire dataset [57].

∇∆re(t) the error in the double-differenced predicted range between the two

receivers and two satellites, in meters. This term includes errors due to the

receiver’s inertial measurement unit noise, as discussed later on in Sec. 2.7.2.1.

∇∆εp(t) the double-differenced carrier phase deviation due to unmodeled prop-

agation and multipath effects, in cycles.

∇∆vφ(t) the double-differenced measurement noise induced by the receivers’

front-ends, in cycles.

Note that the double-differencing operation has canceled the error terms δtTX(t) and

δtRX(t) introduced in (2.1). Because of these cancellations and substantial reduc-

tions in the variations of other terms, it is more effective to apply phase reconstruc-

tion to the double-differenced residual carrier phase rather than to the undifferenced

residual carrier phase. Accordingly, (2.3) will be taken to model the received carrier

phase during reconstruction.

Fig. 2.2 illustrates the formation of the phase ambiguities 1
M
∇∆η(t) modeled

in (2.3). The upper gray trace represents the continuous and ambiguity-free double-

differenced residual carrier phase ∇∆φ̃r(t), which could be measured if both the

reference and rover receivers were continually tracking GNSS signals. Instead, due

to the measurement duty-cycling by one or both receivers, the measurable phase
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Figure 2.2: Illustration of the double differenced residual carrier phase measure-

ments formed during each burst. The solid gray trace represents ∇∆φ̃r(t), the

continuous but unmeasurable ambiguity-free phase. To represent the measurable

phase ∇∆φr(t), ∇∆φ̃r(t) is structured into periodic bursts and aliased between 0

and 1
M

cycles, forming the intermittent dark traces. The aliasing leads to a phase

ambiguity for each burst and occurs due to the insensitivity of the receiver’s phase

detector to 1
M

-cycle phase offsets. Tp represents the burst period and Tb represents

the burst duration.
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becomes periodic and phase-aliased as illustrated by the lower black trace. Aliasing

is caused by the insensitivity of the receiver’s phase discriminator to whole- or

fractional-cycle phase drifts between bursts and leads to the formation of the phase

ambiguities.

2.4.3 After Reconstruction: Reconstructed Double-Differenced Carrier

Phase Model

One final model is presented here to characterize the double-differenced car-

rier phase after reconstruction. Although this model is not used during reconstruc-

tion, it nicely illustrates the effects of reconstruction errors and relates them to

the so-called “ideal” or error-free reconstructed carrier phase. In this model, the

reconstructed double-differenced carrier phase ∇∆φR(t) is given by

∇∆φR(t) =∇∆φideal(t) + β(t) +
1

M
[∇∆η(t)−∇∆η̂(t)] . (2.4)

Here, the following new definitions apply:

∇∆φideal(t) the ideal double-differenced residual carrier phase. This term

represents the double-differenced carrier phase as it would appear if it were

perfectly reconstructed, i.e., if the receivers involved in the double-differencing

were continuously tracking the GNSS signals and there was no measurement

noise.

β(t) the non-ambiguity related reconstruction errors, measured in cycles. This term

encompasses all non-ambiguity-related deviations of∇∆φR(t) from∇∆φideal(t).

∇∆η̂(t) the reconstruction technique’s best estimate of the time-varying double-

differenced integer ambiguity term∇∆η(t), measured in cycles. The difference
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1
M

[∇∆η(t)−∇∆η̂(t)] is the time-varying reconstruction error that arises during

ambiguity resolution.

∇∆φR(t) is the reconstruction technique’s best estimate of ∇∆φideal(t), the continu-

ous, noise-free, and ambiguity-free double-differenced residual carrier phase. Errors

in phase reconstruction cause ∇∆φR(t) to deviate, sometimes significantly, from

∇∆φideal(t). This deviation is modeled by β(t) and 1
M

[∇∆η(t)−∇∆η̂(t)], the non-

ambiguity and ambiguity-related reconstructed errors, respectively. Typically, the

second term dominates, as errors in ambiguity resolution tend to be much larger

than non-ambiguity errors.

Because the receiver only has access to the intermittent ambiguous phase

∇∆φr(t), as represented by the lower dark trace in Fig. 2.2, the reconstruction

algorithm must determine in which whole-cycle vertical partition (or fractional-

cycle partition if M > 1) each solid black curve would reside if ∇∆φr(t) were

instead unambiguous. That is, it must determine the time-varying integer-valued

phase-ambiguity term ∇∆η(t). Fig. 2.3 helps to illustrate this challenge. The

horizontal dashed lines illustrate vertical partitions in which the reconstructed phase

∇∆φR(t) could lie. Here M = 1, so each partition is 1 cycle in height. These

partitions repeat infinitely in each direction along the vertical axis. This leads to

an infinite number of possible phase time histories, or trajectories, 16 of which are

depicted in the figure. However, just one of these trajectories accurately depicts

the continuous, ambiguity-free phase time history ∇∆φ̃r(t). It becomes the task

of the reconstruction algorithm to use past, present, and future measurements of

∇∆φr(t) to resolve the phase ambiguities and attempt to reconstruct ∇∆φ̃r(t). If

one or more ambiguities are resolved incorrectly, an incorrect reconstructed phase

trajectory would be chosen, leading ∇∆φR(t) to deviate significantly (≥ 1
M

cycles)

from ∇∆φ̃r(t). Such errors will degrade the utility of the reconstructed phase time
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Figure 2.3: Illustration of possible reconstructed phase trajectories, only 1 of which

corresponds to the true trajectory. It is the job of the reconstruction algorithm

to reconstruct the true trajectory using measurements of the periodic and aliased

double-differenced residual carrier phase ∇∆φr(t), which, in this particular illustra-

tion, has 1 cycle phase ambiguities, i.e., M = 1.

history in the context of a CDGNSS solution, as they will lead to a positioning

solution that is no longer cm-accurate (see Sec. 2.9). Accordingly, it becomes useful

to examine the probability of correctly resolving the phase ambiguities; this will be

done both theoretically and empirically in subsequent sections.

2.5 Reconstruction Technique

This section describes the proposed technique for reconstructing a continu-

ous carrier phase time history from intermittent phase measurements made by the

receiver. The technique takes the intermittent double-differenced residual carrier

phase measurements ∇∆φr(t) and forms a reconstructed double-differenced carrier

phase time history ∇∆φR(t). It resolves phase ambiguities with an integer least-

squares solver and optimally “stitches” discrete phase measurements together with

a Kalman filter and smoother. Square-root information implementations of the fil-

ter and smoother ensure that phase reconstruction is performed in an accurate and
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computationally-efficient manner [44, 59]. For a tutorial on square-root information

filtering and its relationship to traditional Kalman filtering, see [60].

2.5.1 Estimation State and Dynamics and Measurement Model

This section describes the reconstruction filter and smoother’s state as well

as its dynamics and measurement models.

2.5.1.1 State

The state has a real-valued component that models the noise- and ambiguity-

free double-differenced residual carrier phase, and an integer-valued component that

models the phase ambiguities. The real-valued state component at time tk is denoted

xk, where tk = kT and T ≤ Tb is the time between consecutive filter and smoother

updates. This component can be expressed as

xk = [∇∆φideal,k, ωk]
T (2.5)

with the following definitions:

∇∆φideal,k the discrete-time noise- and ambiguity-free ideal double-differenced

residual carrier phase at time tk, in cycles, i.e., ∇∆φideal,k = ∇∆φideal(tk),

where ∇∆φideal(t) was defined in (2.4).

ωk the rate of change of ∇∆φideal(t) at time tk, in Hz.

The integer-valued state component nk at time tk can be expressed as

nk = [n1, n2, . . . , nik ]
T (2.6)

with the following definitions:
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nk an ik× 1 vector of integers, one for each measurement burst that began between

time 0 and tk.

nik the integer corresponding to the ithk measurement burst.

ik a counter representing the number of measurement bursts that begin at or before

time tk.

2.5.1.2 Dynamics Model

The real and integer components of the state evolve separately; thus their dy-

namics will be modeled separately. The real-valued state component xk is assumed

to evolve as a first-order Gauss-Markov process with process noise representing the

variations due to ∇∆re(t) and ∇∆εp(t) from (2.3). The integer-valued state com-

ponent nk evolves under the assumption that a new ambiguity is introduced with

each measurement burst.

The following models describe the time evolution of the real- and integer-

valued state components:

xk+1 = Φxk + Γwk (2.7)

nk+1 =



 nk

nik+1

 if a new burst began within the

interval (tk, tk+1]

[
nk

]
otherwise

(2.8)

with the following definitions:

Φ the state transition matrix.

Γ the process noise influence matrix.
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wk the process noise at time tk, modeled as a discrete-time zero-mean Q covariance

Gaussian random vector, i.e., wk ∼ N (0,Q).

Q the process noise covariance matrix.

The state transition matrix for the real-valued state models standard Euler integra-

tion from tk to tk+1:

Φ =

1 T

0 1

 . (2.9)

The process noise influence is defined as

Γ =

1 0 0

0 1 0

 (2.10)

and the process noise covariance matrix is defined as

Q =Sgf
2
0


T 3

3
T 2

2
T 3

8

T 2

2
T T 2

6

T 3

8
T 2

6
T 3

20

+ Sff
2
0


T 0 T

2

0 0 0

T
2

0 T
3

 , (2.11)

where f0 is the GNSS signal’s nominal carrier frequency, in Hz. The quantities Sg

and Sf parameterize the combined phase instability caused by the process noise error

components in (2.3), namely ∇∆re(t) and ∇∆εp(t). The model for the evolution of

the real-valued state elements in (2.7) with the process-noise covariance defined by

(3.17) follows a two-state Gauss-Markov model commonly used to describe clock-

error-induced phase variations (see [61], Ch. 11). This model will be discussed

further in Sec. 2.7.1. Note that wk is of dimension 3-by-1 while xk is of dimension

2-by-1. The third element in wk and, correspondingly, the third row and column

in Q is a standard way to model the average of the phase process noise over the

interval tk−1 < t ≤ tk [62] and will be needed in the measurement model discussed

next.
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2.5.1.3 Measurement Model

The filter ingests measurements yk of the double-differenced residual carrier

phase and relates these measurements to its state. Each measurement yk represents

the average of ∇∆φr(t) over the interval tk−1 < t ≤ tk, i.e., yk = 1
T

∫ tk
tk−1
∇∆φr(t).

It should be noted that filter measurement updates occur only within measurement

bursts when measurements are available. The filter’s measurement model relates yk

to the real- and integer-valued state components xk and nk and to the process-noise

wk−1:

yk =


H̃xxk + H̃nknk + H̃wwk−1 + vk for tbi ≤ tk < tbi + Tb,

i = 0, 1, ..., Nb − 1

undefined otherwise

(2.12)

with the following new definitions:

H̃x the measurement sensitivity matrix for the real-valued state components.

H̃nk the measurement sensitivity matrix for the integer-valued state components at

time tk.

H̃w the measurement sensitivity matrix for the process noise.

vk the average of the continuous-time double-differenced measurement noise over

the interval tk−1 < t ≤ tk, i.e., vk = 1
T

∫ tk
tk−1
∇∆vφ(t). vk is modeled as a

zero-mean discrete-time Gaussian white noise process, vk ∼ N (0, σ2
φk), where

σ2
φk has a nonlinear relationship with the mean carrier-to-noise ratio over the

interval (C/N0)k, but for high (C/N0)k converges to σ2
φk = 1

2T (C/N0)k
[63].
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The measurement sensitivity matrices can be expanded as

H̃x =

[
1 − T

2

]
(2.13)

H̃nk =

[
0 0 . . . 0

1

M

]
(2.14)

H̃w =

[
−1

T

2
1

]
(2.15)

where T is the time between consecutive filter updates, as defined previously, and

M is the ambiguity factor defined in (2.1). Two features of the 1×ik matrix H̃nk are

noteworthy. First, the 1
M

factor in its last element allows the integer-valued state nk

to relate to a whole-cycle (M = 1) or a fractional-cycle (M > 1) phase ambiguity.

Second, H̃nk has 0s in all but its last element to ensure that the measurements

made during burst ik are only affected by the most recent integer ambiguity nik of

nk. Because yk is an average, H̃w is needed to model the accumulation of process

noise into the measurement [62].

2.5.2 Cost Function

Optimal channel-by-channel estimates of the state components xk and nk for

1 ≤ k ≤ K can be obtained according to the maximum a posteriori criterion based

on all measurements yk from k = 1 to K by determining the state and process noise

time histories that minimize a certain cost function subject to the dynamics models

in (2.7) and (2.8). For numerical robustness, a square-root-information approach is

adopted [44, 59]. Let the square-root information equation for the a priori estimate

of the real-valued state component x0 at k = 0 be given by

zx0 = Rxx0x0 + vx0 (2.16)

with the following definitions:
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zx0 the a priori nonhomogeneous term that stores information about x0.

Rx0k the a priori square-root information matrix for x0.

vx0 the error corresponding to x0, a sample from a discrete-time zero-mean, unity

covariance Gaussian white noise process, i.e., vx0 ∼ N (0, I).

No a priori information is assumed to be available for the integer-valued state

component n. Let the square-root information equation for the a priori estimate of

the process noise wk at each time index k be given by

zwk = 0 = Rwwwk + vwk (2.17)

with the following definitions:

zwk the a priori nonhomogeneous term that stores information about wk.

Rww the a priori square-root information matrix for wk, defined as Rww = Q−
1
2 ,

where Q is defined in (3.17).

vwk the error corresponding to wk, a sample from a discrete-time zero-mean, unity

covariance Gaussian white noise process, i.e., vwk ∼ N (0, I).

The equation in (2.17) is set equal to zero because the process noise is assumed

to be zero-mean and thus solving (2.17) for the a priori process noise estimate ŵk

should yield ŵk = 0. Now, let the measurement model in (3.12) be normalized

by multiplying both sides by σ−1
φk . This normalized measurement model, now in

standard square-root equation form, is written

zk = Hxkxk + Hnknk + Hwkwk−1 + vzk (2.18)

with the following definitions:
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zk the normalized nonhomogeneous term defined as zk = σ−1
φk yk.

Hxk the normalized measurement sensitivity matrix for the real-valued state com-

ponents at time tk, defined as Hxk = σ−1
φk H̃x

Hnk the normalized measurement sensitivity matrix for the integer-valued state

components at time tk, defined as Hnk = σ−1
φk H̃nk.

Hwk the normalized measurement sensitivity matrix for the process-noise at time

tk, defined as Hwk = σ−1
φk H̃w.

vzk the normalized measurement noise at time tk, modeled as a zero-mean, unit

variance, discrete-time, Gaussian white noise process, vzk ∼ N (0, 1).

Like yk in (3.12), zk is undefined between bursts.

Given (2.16), (2.17), and (2.18), the phase reconstruction problem can be

posed as follows:

minimize
xi,ni {i: 0<i≤K}
wi {i: 0≤i<K}

J = ||Rxx0x0 − zx0||2︸ ︷︷ ︸
A priori information

+
K−1∑
k=0

||Rwwwk||2︸ ︷︷ ︸
Process noise

+
K∑
k=1

||Hxkxk + Hnknk + Hwkwk−1 − zk||2︸ ︷︷ ︸
Measurements

(2.19)

subject to the state dynamics models in (2.7) and (2.8).

A solution to (2.19) can be found by breaking the reconstruction process into three

stages: filtering, ambiguity resolution, and smoothing.

2.5.3 Filtering

Filtering is the first stage in the reconstruction process. Filter estimates

of the state at each time index k will be produced by making optimal use of the
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measurement at time tk (if within a measurement burst) and all measurements prior

to tk. It can be shown through a series of orthogonal transformations on (2.19)

that at each time index k, the filter’s best estimate of the real- and integer-valued

state elements can be found by choosing xk and nk to minimize the partial cost

functional [64]

Jk (xk,nk) = ‖Rxxkxk + Rxnknk − zxk‖2︸ ︷︷ ︸
Term involving the integer- and real-valued states

+ ‖Rnnknk − znk‖2︸ ︷︷ ︸
Term involving only the integer-valued state

+
k∑
i=1

‖zri‖2

︸ ︷︷ ︸
Residual term

(2.20)

with the following definitions:

zxk the nonhomogeneous term corresponding to the real-valued state component at

time tk.

znk the nonhomogeneous term corresponding to the integer-valued state component

at time tk.

zri the residual nonhomogeneous term at time tbi, 1 ≤ i ≤ k.

Rxxk the square-root information matrix corresponding to xk and zxk at time tk.

Rxnk the square-root information matrix corresponding to nk and zxk at time tk.

Rnnk the square-root information matrix corresponding to nk and znk at time tk.

Jk (xk,nk) is the contribution to the overall cost that is obtained after filtering

measurements z1 to zk. Each term on the right-hand side of (3.26) is produced

during the filter’s measurement updates during which a priori state estimates are

combined with measurements. Minimization of (3.26) proceeds as follows: First, one

determines the integer-valued vector state estimate n̂k that minimizes the second
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term of (3.26), the term involving only the integer-valued state. This estimate can

be determined efficiently using the integer least-squares techniques discussed in the

next section. Once determined, n̂k is inserted into the first term, the term involving

both the integer- and real-valued states. At this point, it is possible to determine

the real-valued state estimate x̂k that reduces the first term to zero, minimizing

(3.26).

2.5.4 Integer Ambiguity Resolution

Integer ambiguity resolution is the second stage in the reconstruction process

and must be performed before the real-valued state component can be determined.

At any time index k during filtering, the cost functional of the form in (3.26) can

be minimized to provide real-time (causal) estimates of the real- and integer-valued

state components. This entails first minimizing the following cost function involving

the integer-valued state

Jn (nk) = ‖Rnnknk − znk‖2 . (2.21)

This minimization can be posed as an integer least-squares (ILS) problem whose

solution has been shown to be NP-hard and has been studied extensively [20, 53,

54, 65]. ILS solution algorithms are optimal in the sense that out of the set of all

admissible estimators, they have the largest possible probability of successful integer

ambiguity resolution [66]. For the definition of an admissible estimator, see [66].

Solution algorithms accept the matrix Rnnk and the vector znk from the filter and

solve for the vector nk that minimizes (2.21); calling this minimizing vector n̂k.

If desired, to save computational resources, the minimizing procedure to

estimate nk only need be performed once, at the end of the dataset at time index K.

This is because n̂k is a vector that contains integer estimates for all ambiguities up to
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through time k. Real-time requirements, however, may require n̂k to be determined

more often, e.g., after each filter update, as the real-valued state components xk may

be needed in real-time and these cannot be determined without first determining

n̂k.

The ILS solution algorithm can be interpreted geometrically as a closest point

lattice search [53], where the lattice is defined by the n×n dimensional square-root

information matrix Rnnk and the n-dimensional vector of integers nk. The product

Rnnknk forms an n-dimensional vector which spans the lattice. Given Rnnk and znk,

the ILS solution amounts to finding the closest lattice point Rnnknk to znk [54]:

n̂k = argmin
nk∈Zik

‖Rnnknk − znk‖2 . (2.22)

The solution procedure can be broken into a reduction step and a search step. The

reduction step attempts to reduce the search space; the search step searches for the

lowest-cost solution. For the reduction step, the least-squares ambiguity decorre-

lation adjustment method (LAMBDA) [20] and the Lenstra-Lenstra-Lovász (LLL)

reduction [67] are widely used in practice [52, 53]. Implementations of both the

LAMBDA method [68] and the LLL method [69] were compared by this disserta-

tion’s author. They were found to offer comparable computational performance.

For the search step, the solution algorithm introduced in [68] has been used for the

results presented in this chapter.

2.5.5 Smoothing

Smoothing is the third stage in the phase reconstruction process. Although a

reconstructed carrier phase time history can be determined by solving for the time-

varying real-valued state component xk after only the first two stages, smoothing

is acausal and thus enables past, present, and future phase measurements to be
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incorporated into the estimates of xk at each time instant. To initialize the smoother,

the integer ambiguity vector estimate n̂K after the final measurement update is

determined as described previously and then incorporated, together with RxnK ,

to form the smoother’s initial nonhomogeneous term z?xK and initial square-root

information matrix R?
xnK as follows:

z?xK = zxK −RxnKn̂K (2.23)

R?
xxK = RxxK . (2.24)

It should be noted that because the smoother is initialized with the already-resolved

integer ambiguity vector n̂K , a quantity determined solely from filter outputs as

described in Sec. 2.5.4, smoothing has no effect on integer ambiguity resolution.

Consequently, the smoother’s contribution to phase reconstruction is a minor one;

smoothing acts only to remove abrupt innovation-induced dynamics from xk that

do not conform to the filter’s state dynamics model (see [34], Fig. 5). Further-

more, because smoothing is performed over a batch of measurements, a natural lag

is introduced between when the measurements are taken and when the smoothed

reconstructed double-differenced carrier phase estimates are formed. As a result,

for real-time systems, smoothing may be forgone in favor of removing this lag.

Computational lag due to filtering, ambiguity resolution, and subsequent CDGNSS

processing, however, will still persist.

After this initialization, the smoother begins its processing. At each time

index k, 0 ≤ k ≤ K, the smoother ingests z?xk and R?
xxk from the previous smoother

update as well the process noise terms zw,k−1, Rww, Rwx,k−1, and Rwn,k−1 from the

filtering stage and outputs R?
xx,k−1 and z?x,k−1. It then decrements k by 1 and repeats,

working backward from index K until it reaches k = 0. Smoothed state estimates

x?k for k = 0, 1, . . . , K can then be computed from the smoother output terms as
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follows:

x?k = (R?
xxk)

−1z?xk. (2.25)

The minimum cost after smoothing can be shown to be [64]

J
(
{x?i }Ki=1, n̂K , {w?

i }K−1
i=0

)
= ‖RnnKn̂K − znK‖2︸ ︷︷ ︸

Integer-fit error

+
K∑
i=1

‖zri‖2

︸ ︷︷ ︸
Residual error

. (2.26)

2.6 Bounds on the Probability of Successful Ambiguity Res-

olution

In Section 2.5.4, it was shown that the reconstruction algorithm uses an inte-

ger least-squares solver to determine the vector of integer ambiguities nk which min-

imizes (2.21). However, because of noise, there is no guarantee that the minimizing

nk, denoted n̂k, equals the true integer phase ambiguities of the double-differenced

residual carrier phase trajectory. This section discusses the probability of successful

ambiguity resolution Pc, or the probability that n̂k equals nk. Only bounds on Pc

are presented, as determination of the exact probability is NP-hard.

As discussed previously, minimizing (2.21) is equivalent to finding the closest

lattice point Rnnknk to znk, which, in turn, is equivalent to minimizing the ambiguity

measurement noise vector vnk in the following ambiguity square-root information

equation:

znk = Rnnknk + vnk, vnk ∼ N (0, I). (2.27)

The vector of integers n̂k that corresponds to the closest lattice point will be equal

to the true vector of integer ambiguities nk if and only if the ambiguity measurement
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noise vnk is such that znk remains closer to the lattice point Rnnknk than any other

point in the lattice. This is equivalent to Rnnknk + vnk falling within the Voronoi

cell VRnnk of Rnnknk. VRnnk is formally defined as the collection of real-valued `-

dimensional points (where ` = ik) closer to Rnnknk than any other lattice point.

Under this framework, the probability of correct integer ambiguity resolution Pc

can be defined as [53]:

Pc =Pr {Rnnknk + vnk ∈ VRnnk} vnk ∼ N (0, I). (2.28)

Because the lattice has a periodic structure, VRnnk is merely a translation of the

origin’s Voronoi cell V0k by Rnnknk. Thus Pc can be written equivalently as

Pc =Pr {vnk ∈ V0k} vnk ∼ N (0, I). (2.29)

Pc is now a function of solely the Gaussian random ambiguity noise vector vnk and

can be precisely determined by integrating the probability distribution function of

vnk over V0k [70]:

Pc =

∫
V0k
N (vnk; 0, I)dvnk

=

∫
V0k

1

(2π)
n
2

exp

(
−1

2
‖vnk‖2

)
dvnk. (2.30)

In (2.30), N (vnk; 0, I) is the multivariate normal distribution and ‖ · ‖ is the L2-

norm. Unfortunately, determining V0k and integrating over it is a computationally

intensive problem [53]. Nonetheless, it is possible to relax the structure of V0k and

solve instead for bounds on Pc [53, 70, 71].

2.6.1 Upper Bound on Pc

The volume of a Voronoi cell is equal to the absolute value of the determinant

of its lattice generating matrix [53]. Thus, the volume of V0k is |det Rnnk|. By
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making a simplifying assumption that V0k is an `-dimensional hypersphere with the

same volume, an upper bound on the probability of successful integer ambiguity

resolution can be written as [53]

Pc,ub = Pr {‖vnk‖ < ρ} (2.31)

where ρ is the radius of the hypersphere defined as

ρ =
√̀
|det Rnnk|/α` (2.32)

where ` is the dimension of vector vnk and

α` = π
`
2/Γ(`/2 + 1) and

Γ(`) = (`− 1)!.

Since vnk is an `-dimensional normal random vector, ‖vnk‖2 is equal to the sum of

squares of ` independent normally distributed random variables [53], which has a

chi-squared distribution with `-degrees of freedom. As a result,

Pc,ub = Fχ2(ρ2; `). (2.33)

where Fχ2(·;n) is the cumulative distribution function of a n-degree chi-squared

random variable.

2.6.2 Lower Bound on Pc

The probability of correctly resolving integer ambiguities using so-called in-

teger bootstrapping [72] offers the sharpest known lower bound on Pc [73]. Unlike

the case with ILS solvers, it is possible to compute this bootstrapping probability

exactly. The bootstrapping estimator takes an approach where it rounds the float
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least-squares solution while taking advantage of correlation between the ambigui-

ties into account. The bootstrapping estimator’s probability of successful ambiguity

resolution, which offers a lower bound on Pc, can be written as [72]

Pc,lb =
n∏
i=1

(
2Ψ

(
1

2σn̂|I

)
− 1

)
(2.34)

where σn̂|I are conditional variances derived from Rnnk [72], and

Ψ(x) =

∫ x

−∞

1

2π
exp

(
−1

2
y2

)
dy. (2.35)

For the sensitivity results presented later in Sec. 2.8, the code provided by the

Ps-LAMBDA software package [74] was used to compute this lower bound.

2.7 Simulation and Test Environment

To evaluate the performance of the reconstruction technique outlined in Sec.

2.5, a Monte-Carlo-type simulation and test environment has been designed in MAT-

LAB. The environment performs three tasks.

First, it simulates double-differenced GNSS residual carrier phase time histo-

ries∇∆φr(t). Noise parameters modeling the double-differenced range error∇∆re(t),

the double-differenced propagation- and multipath-induced effects ∇∆εp(t), and the

double-differenced measurement noise ∇∆vφ(t) are inputs to the simulator. Struc-

tural parameters such as the measurement burst duration Tb, the time between con-

secutive bursts Tp, and the ambiguity factor M are also inputs. Note that although

the reconstruction technique can handle variations in Tb and Tp, i.e., a non-fixed

burst duration and aperiodic bursts, for the analysis performed in this section, these

quantities will be assumed fixed. From these parameters, independent time histories

of∇∆φr(t) are generated. Note that phase-locked loop (PLL) pull-in transients need
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not be simulated in ∇∆φr(t) so long as a batch estimation technique is assumed to

be used by the receiver as opposed to a PLL as will be discussed in Sec. 2.10.4.

Second, the reconstruction technique is applied to each generated ∇∆φr(t)

to produce smoothed reconstructed double-differenced carrier phase time histories

∇∆φR(t).

Third, the environment evaluates the performance of the reconstruction tech-

nique by computing the empirical probability of correct integer ambiguity resolution

Pc,emp as well as the analytical upper and lower bounds Pc,lb and Pc,ub discussed in

Sec. 2.6. Pc,emp is computed as the ratio of the number of successful reconstruc-

tion attempts to the total number of attempts. A successful attempt occurs when

all ambiguities are resolved successfully. In the limit, as the number of attempts

approaches infinity, Pc,emp → Pc.

2.7.1 Error Component Modeling

To create a high-fidelity simulator and to ensure near-optimal reconstruction

of the simulated phase time histories, it is important to provide both the simulator

and the reconstruction algorithm with accurate models for the phase variations

caused by each error component of ∇∆φr(t) detailed in (2.3). Some of the error

components can be realistically modeled by the following flexible model:

Let Sφ(f) be the single-sided power spectral density (PSD) of some stationary

phase error process φ(t). Sφ(f) can be expressed as

Sφ(f ) = 4

∫ ∞
0

Rφ(τ) cos(2πf τ)dτ (2.36)

where Rφ(τ) = E[φ(t)φ(t+ τ)] is the autocorrelation function of φ(t). Let Sφ(f) be

approximated by a frequency-weighted summation of five power-law parameters hα,
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called h-parameters [75]:

Sφ(f ) =
ν2

0

f 2

2∑
α=−2

hαf α 0 < f < fh (2.37)

where ν0 is the nominal center frequency of the phase data (e.g., the GPS L1 center

frequency), in Hz, and fh is the maximum frequency at which Sφ(f) is evaluated,

typically corresponding to the Nyquist frequency of the sampled phase error process

φ(t). Often only the h−2 component (corresponding to frequency random walk) and

the h0 component (corresponding to phase random walk) of the model are assumed

to be nonzero. In this case, the five-parameter model in (2.37) reduces to the two-

parameter (second-order Gauss-Markov) clock error model commonly invoked in

Kalman filtering [61].

Two out of the four error components of ∇∆φr(t) can be accurately charac-

terized by a PSD model of the form in (2.37): (1) double-differenced range error term

∇∆re(t) whose variations are largely induced by IMU errors, and (2) the double-

differenced propagation- and multipath-induced error term ∇∆εp(t). As discussed

in Sec. 2.5.1.2, both of these error components are process noise and are character-

ized by the Sf and Sg parameters in the process noise covariance matrix Q defined

in (3.17). The relationship between Sf and Sg and the two-parameter h−2 and h0

model is as follows [61]:

Sg = 2π2h−2 (2.38)

Sf =
h0

2
. (2.39)

A third error component, the double-differenced measurement noise∇∆vφ(t),

could also be characterized by a PSD model, in particular by the h2 parameter cor-

responding to white phase noise, but ∇∆vφ(t) will instead be characterized by the
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more-familiar carrier-to-noise ratio C/N0. Under this characterization, the measure-

ment noise variance σ2
φk (defined after (3.12)) is computed from its full nonlinear

relationship to (C/N0)k, assuming a standard arctangent-type phase detector, and

used to simulate the discrete-time measurement noise vk of (3.12). The final term,

the phase ambiguity term ∇∆η(t), need not be modeled, as ambiguities are intro-

duced deterministically via an “ambiguity-free” simulation of ∇∆φr(t) which is then

aliased to between 0 and 1
M

cycles.

2.7.2 Inertial Aiding

As discussed in Sec. 2.4, an inertial measurement unit (IMU) can model

the rover receiver’s changing position, enabling it to more-accurately predict its

line-of-sight range to each satellite. This modeling substantially eliminates receiver-

motion-induced variations from re(t), and, consequently, from ∇∆φr(t). It is for this

reason that while the reconstruction technique can work without inertial aiding, it

works much better when inertial measurements are available.

2.7.2.1 Characterization of Inertial Errors

Despite its advantages, inertially-aided motion prediction is imperfect. Noise

in the IMU measurements will leave residual variations in re(t) which enter into

∇∆φr(t). These variations must be accurately characterized to enable optimal re-

construction. The two-parameter PSD model, discussed previously, can be used to

characterize these variations. Table 2.1 lists h-parameter values that characterize

the undifferenced range-error variations resulting from use of three different-quality

IMUs to predict the receiver’s motion: (1) a low-end “consumer-grade” IMU found in

consumer-electronic devices, (2) a high-end “consumer-grade” IMU found in com-

mercial equipment, and (3) a “tactical-grade” IMU found in military equipment.
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Table 2.1: h-parameter values characterizing the noise statistics of three inertial

measurement units

Device

h−2

(cycles2-

Hz)

h0

(cycles2/Hz)
Grade

Analog Dev. ADIS16360 5× 10−24 3× 10−27 Consumer

XSENS MTi 5× 10−25 3× 10−28 Consumer

Honeywell HG1900 5× 10−26 3× 10−29 Tactical

These h-parameter values were determined as follows: First, white noise and bias

instability values commonly used to characterize acceleration and angular velocity

measurement noise were taken from the datasheet of each IMU. Second, these val-

ues were used to simulate IMU measurement errors and, from these, IMU-specific

3-dimensional position error trajectories were generated [76]. Third, the PSD of

the variations along a randomly chosen dimension was computed and a weighted

least-squares solution was used to determine h-parameter-values best characteriz-

ing each PSD, as per (2.37). The final values listed in Table 2.1 represent average

values from 20 Monte-Carlo-type simulations. While it is possible to compute the

h-parameter equivalents of the white noise and bias instability parameters in isola-

tion, it becomes much more difficult to accurately compute these parameters when

the noise sources are coupled together, such as is the case in an inertial navigation

system as described here.
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2.7.2.2 Estimation of Inertial Biases

The foregoing two-parameter model for errors in ∇∆φr(t) due to imperfect

inertial aiding does not account for biases in the IMU’s accelerometer and rate sensor

measurements. Such biases could be accommodated by augmenting the real-valued

state with a phase-acceleration component and, consequently, the two-parameter er-

ror model with an h−4 parameter. However, this turns out to be unnecessary so long

as these inertial biases and the receiver orientation are periodically estimated and

compensated for. Assuming that a receiver starts with a pseudorange-based initial

position and an accelerometer-and-magnetometer-provided orientation, then accel-

eration, angular velocity, and magnetometer measurements can be integrated in an

inertial navigation system (INS) [76] that approximates the receiver’s change in po-

sition and orientation over an extended period of many bursts. After each extended

period, e.g., roughly 20 seconds for a consumer-grade IMU, the INS-derived position

must be augmented with GNSS code-phase and recently-reconstructed ambiguity-

free GNSS carrier-phase measurements in a tightly-coupled INS/GNSS filter that

estimates the inertial biases and receiver orientation as part of its state [32, 77].

These recent bias and orientation estimates will enable the INS to more-accurately

approximate the receiver’s change in position and orientation over the next extended

period, allowing the reconstruction technique to accurately predict the receiver-

motion-induced phase variations. This technique works so long as the inertial biases

remain approximately constant over the duration of each extended period. Section

2.9 provides a demonstration of the reconstruction technique on real data where

inertial biases and receiver orientation were periodically estimated in this way.
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2.8 Sensitivity Analysis

This section discusses the sensitivity of the reconstruction technique to signal

structure parameters such as the burst period Tp and the 1
M

ambiguity factor and

to signal error parameters such as the carrier-to-noise ratio and the underlying IMU

quality. Sensitivity is measured by computing empirical estimates and analytical

bounds on the probability of correct integer ambiguity resolution Pc as a function of

these parameters. The purpose of the sensitivity analysis is to discover parameter

bounds beyond which the reconstruction technique will perform poorly. As it is

unwieldy to test all possible combinations of parameters, testing is performed around

a set of nominal parameters that model a typical low-power mobile receiver setup.

In particular, during each test, sensitivity is analyzed as a function of the burst

period Tp and one other parameter, namely IMU quality, the ambiguity factor 1
M

,

or the carrier-to-noise ratio C/N0. During each test, the strategy will be to:

1. Fix the burst duration Tb to 0.05 seconds and the time duration over which

reconstruction will be performed to 250 seconds.

2. Vary the time between bursts Tp for each test, along with one of either IMU

quality, M , and C/N0.

3. Fix M = 1, C/N0 = 50 dB-Hz, and the IMU quality to that of a low-quality

consumer-grade IMU when not being varied.

This will result in three sensitivity scenarios, each of which is explored in the next

three subsections.
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Figure 2.4: Probability of successful ambiguity resolution Pc as a function of the

burst period Tp and of IMU quality. The dashed traces denote the empirical estimate

of Pc, Pc,emp, obtained via Monte-Carlo simulation. The solid traces denote the

analytically computed upper and lower bounds Pc,lb and Pc,ub.

2.8.1 Sensitivity to IMU Quality

This section illustrates the sensitivity of the reconstruction technique to the

underlying IMU quality, modeled by the h0 and h−2 power-law parameter values

listed in Table 2.1, and to the burst period Tp. During sensitivity testing, the IMU

quality and the burst period were varied while the other important parameters were

held constant at the values discussed earlier.

Fig. 2.4 illustrates the sensitivity results. The empirical probability of suc-

cessful ambiguity resolution Pc,emp was computed via Monte-Carlo simulation and

is represented by the dashed trace. The lower and upper bounds Pc,lb and Pc,ub

were computed analytically (see section 2.6) and are represented by the solid traces.

The waterfall structure of each trace indicates a breakdown point in successful am-

biguity resolution. Each subplot represents a different underlying IMU quality. It

is evident that the higher the IMU quality, the larger the burst period Tp that the
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Figure 2.5: Probability of successful ambiguity resolution Pc as a function of the

burst period Tp and the ambiguity factor M . The dashed traces denote an upper

bound on Pc, Pc,ub, while the solid traces denote a lower bound, Pc,lb.

reconstruction technique can sustain before a breakdown occurs. A higher quality

IMU allows the reconstruction technique to more accurately predict the underlying

phase trajectory between bursts, making it easier to resolve the phase ambiguity at

the beginning of each burst.

2.8.2 Sensitivity to the Ambiguity Factor

Fig. 2.5 plots Pc,lb and Pc,ub as a function of Tp for two different values of the

ambiguity factor M . (For visual clarity, empirical results, which always lie close to

Pc,ub, were not plotted.) As shown, a lower M value allows for a larger burst period

Tp before a breakdown in Pc occurs. This is as might be expected: all else equal,

integer-cycle ambiguities are easier to resolve than fractional-cycle ambiguities. This

implies that a GNSS receiver with a priori knowledge of the binary navigation data

symbols and an approximation of its position and time (to within a fraction of a data

symbol interval) (in which case M = 1) has the ability to be more power efficient

than a receiver with no such knowledge (M = 2) by extending its burst period while

maintaining the same probability of successful ambiguity resolution.
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Figure 2.6: Lower bounds on the probability of successful channel reconstruction as

a function of the burst period Tp and the carrier-to-noise ratio C/N0 (in dB-Hz).

2.8.3 Sensitivity to the Carrier-to-noise Ratio

Fig. 2.6 plots lower bounds on Pc as a function of the burst period for five

different carrier-to-noise ratios. Note that for visual clarity only the lower bounds

were plotted. As illustrated, a higher C/N0 tolerates a longer burst period before

a breakdown in Pc occurs. This is because for lower C/N0 values the measurement

noise variations vk imparted by the receiver’s front end become a larger share of the

overall variations within yk [see (3.12)]. This makes it difficult for the reconstruc-

tion technique to separate these variations from the variations due to the real- and

integer-valued state components xk and nk, leading to a decrease in the probability

of correct ambiguity resolution.

2.9 Demonstration of a CDGNSS Solution on Reconstructed

Data

This section provides a demonstration of the reconstruction technique applied

to real data collected by a reference and rover GNSS receiver. Each receiver was

running a version of the GRID software [78–80] and is capable of capturing GNSS

signal code- and carrier-phase data. Additionally, the rover contained an Xsens MTi

IMU capable of providing linear acceleration measurements and attitude estimates
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derived from an internal filter.

2.9.1 Data Collection, Modification, and Processing

The demonstration was carried out as follows. First, GNSS signal code- and

carrier-phase data were collected simultaneously and continuously by both receivers

while IMU-provided acceleration measurements and attitude estimates were addi-

tionally collected by the rover. Two minutes of data were collected. During this

time the rover receiver was moved about while the reference receiver remained sta-

tionary. The rover’s trajectory was that of a pedestrian moving at a walking-pace

holding the receiver at an approximately fixed pitch and roll angle, but allowing

changes in yaw. Second, the data collected by the rover receiver were digitally

modified in two ways to simulate collection by a power-constrained receiver: (1)

discrete measurement intervals were selected from the continuously-recorded GNSS

code- and carrier-phase data and (2) the carrier-phase data were aliased to be-

tween 0 and 1 cycle. Third, the intermittent carrier-phase time histories from the

two receivers were differenced to form 7 double-differenced carrier-phase time his-

tories from 8 GNSS satellite signals present in the recorded data. Fourth, biases

in the IMU acceleration measurements were estimated once every 60 seconds via

an INS/GNSS filtering technique similar to that described in Sec. 2.7.2.2. Fifth,

the bias estimates, acceleration measurements, and IMU-derived attitude estimates

were incorporated into an INS to approximate the receiver trajectory and remove the

motion-induced variations from each double-differenced carrier-phase time history,

forming double-differenced residual carrier-phase time histories. Sixth, the recon-

struction technique was applied to each double-differenced residual carrier-phase

time history. Finally, the reconstructed time histories (along with the intermittent

code-phase measurements) were passed off to a standard CDGNSS positioning al-
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Figure 2.7: Error in the positioning solution provided by the CDGNSS algorithm

whose inputs are phase trajectories from two different reconstruction outcomes: (1)

a successful attempt (lower blue trace) defined when all phase ambiguities were

resolved correctly for all 7 of the reconstructed phase time histories involved in the

positioning solution and (2) a failed attempt (upper red trace) defined when one or

more phase ambiguities were resolved incorrectly for one or more of the reconstructed

phase time histories.

gorithm which computed a centimeter-accurate positioning solution for the rover

receiver.

2.9.2 Results

Fig. 2.7 illustrates the accuracy of the CDGNSS-based positioning solution

under two circumstances: (1) a scenario in which all phase ambiguities from the 7 re-

constructed time histories were resolved correctly, and (2) a scenario in which one or

more phase ambiguities were resolved incorrectly. In the first scenario, carrier-phase

measurements were provided to the reconstruction algorithm with a burst length

of Tb = 0.05 seconds and a burst period of Tp = 1 seconds, which corresponds to

a 5% duty cycle. For the second scenario, Tb = 0.05 seconds and Tp = 2 seconds,

corresponding to a 2.5% duty cycle. The time duration of the dataset for each sce-

nario was approximately 120 seconds. In both scenarios, the error, in meters, from
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the true position is computed and plotted as a function of time. The ground truth

trajectory is obtained by separately computing a CDGNSS solution using the un-

modified, ambiguity-free, continuous phase time histories originally captured by the

receivers. As the lower trace illustrates, when the reconstruction algorithm resolves

the phase ambiguities correctly, the positioning error is very small (less than 1.5

cm). The small error is primarily due to the inability of the reconstruction algo-

rithm to perfectly reconstruct the variations in the residual carrier phase between

measurement bursts. In contrast, as the upper trace illustrates, incorrectly resolved

ambiguities lead to significant positioning errors well in excess of the accuracy po-

tential of the CDGNSS algorithm. Large jumps in the positioning error denote an

incorrectly resolved phase ambiguity at that time index.

In this demonstration, the availability of the ground truth trajectory enables

the generation of a simple metric, i.e., baseline error, to indicate when reconstruction

has failed. However, a system in the field will not have a ground truth trajectory

with which the baseline error can be generated. In these cases, the system can

compute the upper and lower bounds on the probability of successful reconstruc-

tion, as introduced in Sec. 2.6, and use one or both of these as an indicator as to

when reconstruction may have failed, e.g., when Pc,lb is not above a predetermined

threshold for each double-differenced reconstructed phase time history, the resulting

CDGNSS solution can be presumed inaccurate.

It should be noted that while the results shown here are promising, these

results reveal the performance of the reconstruction technique on only one set of

collected data. For a more in-depth and direct analysis of the technique’s perfor-

mance, see Sec. 2.8, where reconstruction was performed on hundreds of sets of

simulated data and compared against analytical performance bounds.
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Table 2.2: GNSS Chip Power Consumption

Mfr. Chip Measurements Provided Power (mW)

Broadcom BCM4751 duty-cycled code phase 13

u-blox NEO-6P cont. code & carrier phase 117

2.10 Power Consumption Analysis

This section provides an analysis of the power consumption of the duty-cycled

measurement framework enabled by the carrier-phase reconstruction technique as

compared to a framework requiring the continuous tracking of GNSS signal carrier

phase.

2.10.1 Low-Power GNSS Chips

Table 2.2 lists two GNSS chips and their average power consumption. The

Broadcom chip, used in many mobile devices, computes a receiver’s position using

only the tracked code-phase of each GNSS signal. It achieves an impressively low

power draw of 13 mW by aggressively duty cycling its code-phase measurements [23].

Unlike carrier-phase measurements, code-phase measurements do not suffer from

ambiguity problems when duty-cycled. Code-phase measurements, however, can

only be used to compute a pseudorange-based position solution, which is much less

accurate than a carrier-phase-based CDGNSS solution. The other two chips pro-

vide both code- and carrier-phase measurement outputs. To provide ambiguity-free

carrier-phase measurements, these chips continuously track each GNSS signal, dras-

tically increasing their power consumption compared to the duty-cycling Broadcom

chip. The NEO-7M, a variant of the NEO-6P, has a low-power duty-cycled mode

with a power draw of 14 mW [43], similar to that of the Broadcom chip. The
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NEO-7M, however, does not provide access its carrier-phase measurements. This

dissertation’s author conjectures that both u-blox and Broadcom believe it is fruit-

less to provide carrier-phase data fraught with ambiguities and so do not provide

access to these measurements in chips with duty-cycled tracking modes.

It is important to note that unlike code and carrier phase, whose measure-

ments are duty-cycled in this low-power framework, acceleration and angular ve-

locity must be continuously measured by an IMU such that they can be used in

predicting receiver motion between phase measurement bursts (see Sec. 2.7.2). For-

tunately, there exist low-power chip-scale IMUs which consume power on the order

of 10-20 mW [81], much less than the state-of-the-art u-blox chips that output con-

tinuous code and carrier phase measurements.

2.10.2 Power Consumption of the Reconstruction Algorithm

The reconstruction technique outlined in this chapter relaxes the continu-

ous tracking requirement for GNSS chips that provide carrier-phase measurements.

Although duty-cycled measurements will contain phase ambiguities, the reconstruc-

tion technique can be applied to these measurements, enabling, under favorable

circumstances, an ambiguity-free continuous time phase history to be accurately

reconstructed.

The minimum power consumed by a receiver duty cycling its carrier-phase

measurements can be described as a percentage of the power consumed by a receiver

continuously tracking the carrier phase:

Power Consumption (%) =
Tb

Tp

× 100. (2.40)

This power consumption metric is a minimum as it considers only the power that

will be saved by measurement duty-cycling. It ignores the overhead imposed by
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Figure 2.8: Minimum achievable relative power consumption of a duty-cycled mea-

surement and phase reconstruction framework as compared to a continuous mea-

surement framework as function of the burst length Tb.

the reconstruction algorithm and the overhead involved in turning on and off the

receiver components associated with sampling and digitizing the signal. This will

be discussed later.

When evaluating the power consumption using (2.40), it is logical to check

that the chosen combination of Tb and Tp will result in a successful reconstruction.

One way to do this is to look at the lower bound of the probability of successful

ambiguity resolution Pc,lb and determine if it is above a certain threshold, e.g.,

99.99%. Obviously, as Tb
Tp
→ 1, Pc,lb → 1, but the power consumption as denoted

by (2.40) will also approach 100%, saving little power. Accordingly, there exists a

tradeoff between keeping Pc,lb close to 1 and minimizing the power consumption.

Fig. 2.8 provides an empirical analysis of the minimum achievable power

consumption as a function of the burst length Tb for performing reconstruction on a

simulated double-differenced residual GNSS signal. The signal was simulated with

a single-sided PSD defined by (2.37) with the h−2 and h0 power-law parameters
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varied according to the values in Table 2.1, representing the usage of a low-end

consumer-, high-end consumer-, and tactical-grade IMU. Additionally white phase

noise was added to the signal to simulate front-end noise representative of a receiver

C/N0 = 50 dB-Hz. The simulated dataset duration was 250 seconds. For simplicity,

it was assumed that the contribution to ∇∆φr(t) by unmodeled propagation and

multipath effects was small in comparison to the other noise sources, and as such,

the h-parameters characterizing the PSD of this noise source were set to 0.

In computing the power consumption values in Fig. 2.8, for each Tb the

largest value of Tp was chosen such that Pc,lb remained above .9999. The power

consumption was then computed using (2.40) and plotted. From the figure, one can

make two interesting observations. First, the minimal power consumption is attained

when the burst length is very small. This implies that, to save power, it is beneficial

for a GNSS receiver making duty-cycled phase measurements to use relatively short

burst lengths and short burst periods rather than long burst lengths and long burst

periods. Second, at shorter burst lengths (and burst periods), the quality of the

underlying IMU has a smaller impact on reducing power consumption. This implies

that a high-quality IMU can be forgone in favor of a lower-quality IMU as long as

the burst length and burst period are reduced enough to achieve the desired power

consumption. This is an important result as many mobile handheld devices come

with consumer-grade IMUs (or separate consumer-grade accelerometers and rate

sensors).

2.10.3 Power Consumption Overhead

Although measurement duty-cycling enables a large reduction in power con-

sumption at the rover receiver, it would be negligent to assume that the added

computational complexity required by the reconstruction algorithm to reconstruct a
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continuous phase-time history from the duty-cycled measurements does not consume

any power. Much computational complexity is added by the integer least-squares

ambiguity resolution algorithm, and this complexity increases exponentially with the

number of integer ambiguities to resolve [54]. Fortunately, unlike carrier-phase mea-

surement, carrier-phase reconstruction need not be executed at the rover receiver –

the discrete phase measurements can be relayed to the cloud for reconstruction. Fur-

thermore, because the CDGNSS algorithm requires a double-differencing of carrier-

phase measurements from the rover and a reference station, the rover would in any

case be required to offload its measurements to the network, since receiving refer-

ence station measurements from the network and computing the CDGNSS solution

locally would likely consume more power than relaying local phase measurements

to the network.

The additional power required to transmit data in an LTE network versus

receiving it is about 400 mW per 1 Mbps [82]. The average rate at which the rover

must send duty-cycled phase measurements to the cloud is fs · TbTp measurements per

second, which, for aggressive duty cycling (e.g., Tb
Tp

= 1
10

) and a modest sampling rate

(e.g., fs = 50 Hz), would result in an average code- and carrier-phase measurement

rate of 5 samples per second per signal tracked. Given 10 signals tracked and 32 bits

allocated per sample, the average transmission data rate is about 1.6 kbps, or ap-

proximately 0.6 mW of added power to transmit the carrier phase data rather than

receive it. Although this number does not account for the cost of transmitting the

code-phase and IMU measurements, the total rover power consumption for a cloud-

based CDGNSS solution will likely be far below the power consumption needed to

perform a local CDGNSS solution. Thus, under the current framework, the rover

will relay a batch of code- and carrier-phase measurements along with IMU measure-

ments to the network for processing. The network will perform phase differencing,
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IMU bias correction, reconstruction, and CDGNSS processing and then relay back

to the rover the latter’s precise position time history over the batch interval.

In addition to the overhead involved in transmitting data over the network,

the power consumption model in (2.40) also ignores the power overhead associated

with switching on and off the receiver components involved in sampling and dig-

itizing the GNSS signals. Such overhead is inversely proportional to Tp; as Tp is

decreased, there will come a point when the increase in power consumption due

to this overhead will outweigh the additional reduction in power consumption from

measurement duty-cycling. This “break-even” point places a lower bound on Tp (and

its associated Tb), below which the power consumption will no longer decrease. For

the power consumption analysis described in Sec. 2.10.2 whose results are displayed

in Fig. 2.8, Tp is always larger than 1 second. Such values of Tp are assumed to be

well above this break-even point. As such, the power overhead due to switching is

assumed to be negligible and is not modeled by (2.40).

2.10.4 Avoiding Phase-Locked Loop Transients using Batch Estimation

If the rover receiver’s phase-locked loop (PLL) re-synchronizes its local carrier

replica with the incoming carrier phase at the beginning of each measurement burst,

then this will result in short phase transients during re-synchronization [83]. These

transients are manageable so long as they settle prior to the end of the measurement

burst, i.e., the convergence time is less than Tb. However, only the phase measure-

ments taken after this settling period can be used during reconstruction. Rather

than forgo the information contained in these transients, which could benefit recon-

struction, a different methodology avoids them altogether. Instead of attempting

to track the incoming carrier-phase using a traditional PLL, the rover receiver can

generate a model line of sight trajectory to each GNSS satellite tracked and employ
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batch estimation on raw correlation outputs to measure carrier phase, code phase,

and Doppler with no phase pull-in transient. This model-trajectory methodology is

standard in so-called vector tracking, where traditional tracking loops are replaced

by a navigation filter that provides prior knowledge of receiver position and velocity

to the local replica generators [62, 84]. The only requirement is that the model-

trajectory be accurate enough that the difference between the received carrier phase

and the carrier-phase predicted by the model-trajectory does not drift by more than

1
2

cycle during the sampling interval 1
fs

.

2.11 Conclusions

A technique for reconstructing a continuous carrier-phase time history from

intermittent GNSS carrier-phase measurements has been developed. The technique

combines an integer least-squares method for estimating the phase ambiguity that

arises at the beginning of each measurement burst with a Kalman filter and smoother

that correct for these ambiguities and “stitch” the bursts together.

A Monte-Carlo-type simulation and test environment has been built in MAT-

LAB to simulate the intermittent GNSS phase measurements, implement the phase

reconstruction technique, and analyze the sensitivity of the technique to determine

the parameter space within which successful reconstruction is possible. Theoreti-

cal bounds predicting the probability of successful reconstruction were compared to

empirical results from the Monte-Carlo simulations.

Simulation results indicate that successful carrier-phase reconstruction is

strongly dependent on the burst period, the carrier-to-noise ratio, the ambiguity

factor, and the quality of the underlying inertial measurement unit employed by

the receiver. A demonstration on real data shows that the reconstruction tech-
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nique can successfully reconstruct carrier phase measurements made at a 5% duty

cycle by a GNSS receiver containing a consumer-grade IMU and receiving GNSS

signals with a carrier-to-noise ratio of 50 dB-Hz. The reconstruction technique as-

sumes the use of special batch tracking techniques to avoid PLL transients at the

start of each burst. Furthermore, an analytical power analysis indicates that the

reconstruction technique can permit potential power savings in excess of 95% for a

receiver duty-cycling its carrier phase measurements when compared against a re-

ceiver continuously tracking the incoming carrier phase. These results suggest that

the reconstruction technique could act as an enabler for high-precision positioning

in energy-limited mobile devices.
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Chapter 3

Proof of Concept and Techniques to Address the

Challenges of Carrier-Phase Positioning on

Low-Cost Mobile Platforms

This chapter demonstrates for the first time that centimeter-accurate posi-

tioning is possible based on data sampled from a smartphone-quality Global Nav-

igation Satellite System (GNSS) antenna. An empirical analysis of data collected

from a smartphone-grade GNSS antenna reveals the antenna to be the primary im-

pediment to fast and reliable resolution of the integer ambiguities which arise when

solving for a centimeter-accurate carrier-phase differential GNSS (CDGNSS) posi-

tion. The antenna’s poor multipath suppression and irregular gain pattern result

in large time-correlated phase errors which significantly increase the time to integer

ambiguity resolution (TAR) as compared to even a low-quality stand-alone patch

antenna.

To address this problem, this chapter investigates the presents and analyzes

the effectiveness of multipath-decorrelating antenna motion for reducing TAR in

receivers employing low-cost single-frequency antennas to obtain a CDGNSS po-

sition. This chapter demonstrates that the time to ambiguity resolution—and to

a centimeter-accurate fix—can be significantly reduced through gentle wavelength-

scale random antenna motion. Such motion acts to decrease the correlation time
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of the multipath-induced phase errors. A priori knowledge of the motion profile is

shown to further reduce TAR, with the reduction more pronounced as the initial-

ization scenario is more challenging.

3.1 Introduction

GNSS technology is now ubiquitous in smartphones and tablets, yet the underlying

positioning accuracy of consumer-grade GNSS receivers has stagnated over the past

decade. The latest clock, orbit, and atmospheric models have improved receiver

ranging accuracy to a meter or so [9], leaving receiver-dependent multipath- and

front-end-noise-induced variations as the dominant error sources in current consumer

devices [85]. Under good multipath conditions, 2-to-3-meter-accurate positioning is

typical; under adverse multipath, accuracy degrades to 10 meters or worse.

Yet outside the mainstream of consumer GNSS receivers, centimeter-accurate

GNSS positioning is routine. This exquisite accuracy, common in geodesy, agricul-

ture, and surveying, results from replacing standard code-phase positioning tech-

niques with carrier-phase differential GNSS (CDGNSS) techniques [17, 45]. Carrier

phase techniques offer far more accurate positioning due to the much smaller wave-

length of the GNSS signal’s carrier, approximately 20 centimeters, as compared its

spreading code, whose chip interval spans approximately 300 meters.

Currently, the primary impediment to performing centimeter-accurate CDGNSS

positioning on smartphones and other consumer handheld devices lies not in the

commodity GNSS chips, which actually outperform survey-grade chips in some re-

spects [86], but in the low-cost (e.g., a few cents to a few dollars), low-quality GNSS

antennas, whose chief failing is poor multipath suppression. Multipath, caused by

direct signals reflecting off the ground and nearby objects, induces centimeter-level
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phase measurement errors, which, for static receivers, have correlation times in the

hundreds of seconds [87]. The time correlation of these errors, coupled with their

relatively large magnitude, significantly increases the initialization period of GNSS

receivers using these antennas to achieve a centimeter-accurate CDGNSS position-

ing solution [2, 88, 89]. This is because, given a fixed measurement duration, a longer

measurement error correlation time results in less information being provided to the

CDGNSS estimator as it attempts to resolve the integer ambiguities inherent in

CDGNSS processing, making their successful estimation less likely. Consequently,

any strategy that reduces the measurement error correlation time—all else equal—

leads to an increased ambiguity resolution (AR) success rate and thus a decreased

initialization time, otherwise known as time to ambiguity resolution (TAR).

Prior work on mitigating the effect of time-correlated phase measurement

errors in CDGNSS processing has focused not on decreasing the correlation time of

the measurement errors but on appropriately modeling such correlation within the

CDGNSS estimator, which leads to more accurate validation of integer ambiguity

estimates but does not significantly reduce—and in some cases increases—TAR [90–

93].

This chapter proposes gentle wavelength-scale random antenna motion as

an effective strategy to reduce the correlation time of multipath-induced carrier

phase errors, thus reducing TAR. Insofar as this dissertation’s author is aware, no

prior work has advocated random antenna motion as a means to expedite CDGNSS

ambiguity resolution, likely because, as this chapter will show, antenna motion

is beneficial—and practical—primarily for CDGNSS with small low-cost single-

frequency antennas, which has been the subject of only recent study [2]. Single-

frequency antennas are of primary focus because multi-frequency antennas—while

offering increased AR performance that comes with more signals—will for many
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years remain too expensive (e.g, hundreds of dollars too expensive) for mass market

products.

Although it may seem counterintuitive that random antenna motion would

lead to reduced TAR, this chapter will show both in simulation and empirically

that for low-quality antennas, which experience relatively large phase measurement

errors, the reduction in measurement error correlation time due to motion more

than compensates for the increased dynamics uncertainty within a CDGNSS es-

timator. Conversely, it will be shown that this is not the case for high-quality

antennas. Moreover, it will be shown that TAR is further reduced with improved a

priori knowledge of the antenna motion profile. In the limit of perfect motion pro-

file knowledge, this chapter’s technique becomes similar to the synthetic aperture

technique of [94], the difference being that [94] uses the perfect motion profile to

coherently process the low-level complex GNSS correlation products, whereas this

chapter takes the slightly less optimal but simpler approach of operating on the

usual carrier phase observables typically ingested by CDGNSS estimators.

3.2 Test Architecture

This section describes the test architecture used to (1) collect data from a smartphone-

grade antenna and higher-quality antennas, (2) process these data through a software-

defined GNSS receiver, and (3) compute a CDGNSS solution on the basis of the

carrier phase measurements output by the GNSS receiver.

Fig. 3.1 illustrates the test architecture as configured for an in situ study of a

smartphone-grade GNSS antenna. The architecture has been designed such that

the antenna is left undisturbed within the phone; data are collected by tapping off
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Figure 3.1: Test architecture designed for an in situ study of a smartphone-grade

GNSS antenna. The analog GNSS signal is tapped off after the phone’s internal

bandpass filter and low-noise amplifier and is directed to a dedicated RF front-end

for downconversion and digitization. Data are stored to file for subsequent post-

processing by a software GNSS receiver and CDGNSS filter.

the analog signal immediately after the phone’s internal bandpass filter and low-

noise amplifier. This analog signal is directed to an external radio frequency (RF)

front-end and GNSS receiver. Use of an external receiver permits well-defined GNSS

signal processing unencumbered by the limitations of the phone’s internal chipset

and clock.

The clock attached to the external front-end was an oven-controlled crystal oscillator

(OCXO), which has much greater stability than the low-cost oscillators used to drive

GNSS signal sampling within smartphones. However, it was found that reliable

cycle-slip-free GNSS carrier tracking only required a 40-ms coherent integration (pre-

detection) interval, which is within the coherence time of a low-cost temperature-

compensated crystal oscillator (TCXO) at the GPS L1 frequency [41].
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Although only a single model of smartphone was tested using this architecture—a

popular mass-market phone—the results are assumed representative of all smart-

phones from the same manufacturer.

Using this architecture, many hours of raw high-rate (∼6 MHz) digitized interme-

diate frequency samples were collected and stored to disk for post processing. Also

stored to disk were high-rate data from a survey-grade antenna, which served as

the reference antenna for CDGNSS processing. An in-house software-defined GNSS

receiver, known as GRID [78–80], was used to generate, from these samples, high-

quality carrier phase measurements. GRID is a flexible receiver that can be easily

adapted to maintain carrier lock despite severe fading. Complex baseband accu-

mulations output from GRID allowed detailed analysis of the signal and tracking

loop behavior to ensure that no cycle slips occurred. The generated carrier phase

measurements were subsequently passed to a CDGNSS filter, a model for which is

described in the next section.

3.3 Antenna Performance Analysis

This section describes four antennas from which data were captured and processed

using the test architecture and CDGNSS filter described previously. It also quantifies

the characteristics that make low-quality smartphone-grade antennas poorly suited

to CDGNSS.

Table 3.1 describes a range of antenna grades of decreasing quality, noting prop-

erties relevant to CDGNSS. The loss numbers in the rightmost column represent

the average loss in gain relative to a survey-grade antenna, where the average is
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Table 3.1: Antenna Properties

Antenna Class Axial Polarization Relative

Ratio Loss

Survey-Grade [95] 1 dB Circular 0 dB

High-quality Patch [96] 2 dB Circular 0 - 0.5 dB

Low-quality Patch [97] 3 dB Circular 0.6 dB

Smartphone-Grade 10+ dB Linear 11 dB

Table 3.2: Antennas Under Test

Survey- High-Quality Low-Quality Smartphone-

Grade Patch Patch Grade

taken over elevation angles above 15 degrees. Table 3.2 shows four antennas, one of

each grade, from which many hours of data have been collected using the test ar-

chitecture. Survey-grade antennas, whose properties are described in the first row

of Table 3.1, have a uniform quasi-hemispherical gain pattern, right-hand circular

polarization, a stable phase center, and a low axial ratio. These are all desirable

properties for CDGNSS. Unfortunately, these properties inhere in the antennas’

large size; the laws of physics dictate that smaller antennas will typically be worse

in each property. Also listed in Table 3.1 are properties for three other antenna

grades. The second and third rows list properties for high- and low-quality patch

antennas. These antennas have similar properties to a survey-grade antenna and

lose, on average, less than 0.5 dB and 1 dB respectively in sensitivity as compared

to the survey-grade antenna [96, 97].

The last row of Table 3.1 lists the properties for a smartphone-grade antenna. As
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Figure 3.2: Normalized histograms displaying the drop in carrier-to-noise ratio be-

tween a survey-grade antenna and a smartphone-grade (right) and low-quality patch

(left) antenna. Each histogram was generated from 2 hours of data and 9 tracked

satellites ranging in elevation from 15 to 90 degrees. The antennas remained station-

ary. The red traces represent Gaussian distribution models fit to each histogram.

shown subsequently, this antenna loses between 5 and 15 dB in sensitivity as com-

pared to the survey-grade antenna. Such a loss makes it difficult to retain lock on

GNSS signals. In addition, this antenna’s linear polarization leads to extremely

poor multipath suppression.

3.3.1 Antenna Gain Analysis

Fig. 3.2 quantifies one of the obvious drawbacks of a smartphone-grade antenna,

namely, its low gain. The rightmost histogram, in green, shows that the decrease

in carrier to noise ratio as compared to a survey-grade antenna is on average 11

dB, such that the smartphone-grade antenna only captures approximately 8% of

the signal power as compared its survey-grade counterpart. For comparison, shown

on the left, in blue, is a histogram of the decrease in carrier-to-noise ratio for the
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Figure 3.3: Time histories of double-differenced phase residuals for a 2000-second

batch of data captured from a survey-grade antenna. Each trace represents a resid-

ual for a different satellite pair. The ensemble average standard deviation of the

residuals is 3.4 millimeters.

low-quality patch antenna. This antenna only suffers about a 0.6 dB drop in power

on average relative to the survey-grade antenna. Each histogram was generated

from 2 hours of data with 9 tracked satellites ranging in elevation from 15 to 90

degrees. The antennas remained stationary. The variation in signal power around

the means is due to the multipath-induced power variations in the signal as well as

to the different gain patterns between each antenna and the survey-grade antenna.

3.3.2 Phase Residual Analysis

Shown in Figs. 3.3, 3.4, and 3.5 are 2000-second segments of double-differenced

phase residual time histories for data collected from a survey-grade, a low-quality

patch, and a smartphone-grade antenna, respectively. To produce these residuals,

the antenna position was locked to its estimated value within the CDGNSS filter.

The residuals represent departures of the carrier phase measurements from perfect

alignment at the average phase center of the antenna. Each different colored trace

corresponds to a different satellite pair. While the data segments were not captured

at the same time of day, they were captured at the same location, and thus the
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Figure 3.4: Time histories of double-differenced phase residuals for a 2000-second

batch of data captured from a low-quality patch antenna. Each trace represents a

residual for a different satellite pair. The ensemble average standard deviation of

the residuals is 5.5 mill-meters.
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Figure 3.5: Time histories of double-differenced phase residuals for a 2000-second

batch of data captured from a smartphone-grade antenna. Each trace represents a

residual for a different satellite pair. The ensemble average standard deviation of

the residuals is 11.4 millimeters.
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multipath environment was similar.

The ensemble average residual standard deviations increase with decreasing antenna

quality. The residuals for the survey-grade, low-quality patch, and smartphone-

grade antennas have ensemble average standard deviations of 3.4, 5.5, and 11.4

millimeters, respectively. This increase is due to the lower gain and less effective

multipath suppression of the lower-quality antennas.

Fig. 3.5 shows the presence of outlier residuals in the data collected from the

smartphone-grade antenna. These outliers, one of which persists for over 1000

seconds, are likely caused by either large and irregular azimuth- and elevation-

dependent antenna phase center variations or a combination of poor antenna gain

in the direction of the non-reference satellite coupled with ample gain in the di-

rection of a multipath signal such that the multipath signal is received with more

power than the direct-path signal. Obvious outliers such as these can be auto-

matically excluded by the CDGNSS filter via an innovations test. However, the

standard deviation of the remaining residuals still remains large compared to that

of the other antennas; the ensemble average standard deviation decreases from 11.4

to 8.6 millimeters upon exclusion of the two large outliers.

For antennas with a large ensemble average standard deviation in their double-

differenced phase errors, the time correlation in the phase errors becomes more im-

portant. This time correlation, which persists for 100-200 seconds, is a well-studied

phenomenon caused by slowly-varying carrier phase multipath [87, 88]. While corre-

lation is present in the residuals of all antenna types, and manifests approximately

the same decorrelation time, its effect is more of a problem for low-quality antennas
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because the phase errors are larger. Such correlation, coupled with a large devi-

ation, ultimately leads to a longer time to ambiguity resolution, as will be shown

subsequently.

Given a smartphone antenna’s extremely poor gain and multipath suppression as

compared to even a low-quality stand-alone patch antenna, one might question the

wisdom of attempting a CDGNSS solution using such an antenna. However, the next

section reveals that it is indeed possible to achieve a centimeter-accurate positioning

solution using a smartphone GNSS antenna despite its poor properties.

3.4 CDGNSS Performance using a Smartphone Antenna

This section discusses the results of performing a CDGNSS solution using data

collected from a smartphone-grade antenna and presents two strategies for improving

the performance of CDGNSS on smartphones.

Fig. 3.6 shows the result of an attempt to compute a CDGNSS solution using data

collected from the GNSS antenna of a smartphone. The cluster of red near the

top of the phone represents 400 CDGNSS position estimates over a 5-minute in-

terval, superimposed on the photo and properly scaled. This cluster is referenced

to a marker immediately under the phone whose position was surveyed to approx-

imately 1-centimeter accuracy using a high- quality patch antenna. The mean of

the clusters horizontal coordinates is approximately 2 centimeters from the phones

internal GNSS antenna. As such, Figure 3.6 shows the absolute horizontal accuracy

of a CDGNSS solution through the smartphones antenna to be approximately 2

centimeters.
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Figure 3.6: A successful CDGNSS solution using data collected from the antenna

of a smartphone. The cluster of red near the lower left-hand corner of the phone

represents 400 CDGNSS solutions over a 5-minute interval, superimposed on the

photo and properly scaled.
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Figure 3.7: A successful CDGNSS solution using data collected from the antenna

of a smartphone while held approximately steady in the hand of the author. The

cluster of red near represents the computed 3-dimensional position of the phone over

a 300-second interval, superimposed on the photo and properly scaled.

The data in Figure 3.6 were collected with a large conductive backplane below the

smartphone. However, the backplane is unnecessary. Figure 3.7 shows the result of

CDGNSS positioning solution computed using data collected from the smartphone

antenna while the device was held approximately steady in the hand of the author.

The cluster of red represents the computed 3-dimensional position of the phone over

a 300-second interval, superimposed on the photo and properly scaled. The authors

hand moved some during the interval, as reflected in the figure. Figure 3.8 shows

the residuals corresponding to the handheld CDGNSS solution of Figure 3.7. This

plot shows how the residuals look in practice for a scenario in which the phone is

held by a user. Two of the eight signals received were passing through the author’s

body. Despite this, the residuals are quite well-behaved, having a moderate standard

deviation and no large biases. It is not uncommon for the residuals to look as good
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Figure 3.8: A successful CDGNSS solution using data collected from the antenna

of a smartphone while held in the hand of the author. The cluster of red near

represents the computed 3-dimensional position of the phone over a 300-second

interval, superimposed on the photo and properly scaled.

as these, though cases do arise in which the residuals can be much worse, due to

a combination of poor antenna gain in the direction of the non-reference satellite

coupled with ample gain in the direction of a multipath signal.

Figure 3.9 shows a successful CDGNSS solution using data collected from the an-

tenna of a smartphone while moved slowly in the hand of a user. The yellow

star-shaped trace is the actual three-dimensional trajectory through which the user

moved the smartphone’s antenna, as recovered by processing of the GNSS carrier

phase observables. The trajectory is accurate in an absolute sense to a few centime-

ters. The user had to move slowly because the carrier tracking loop bandwidth was

narrowed to improve sensitivity; it took her about 35 seconds to complete the star.

Although the scenarios depicted in Figs. 3.6, 3.7, and 3.9 enjoyed a very short
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Figure 3.9: A successful CDGNSS solution using data collected from the antenna

of a smartphone while moved slowly in the hand of a user. The yellow star depicts

the actual 3-dimensional trajectory of the smartphone’s antenna over a 35-second

interval, superimposed on the photo and properly scaled.

baseline to a reference antenna (less than 10 meters), similar ambiguity resolution

performance is to be expected for baselines shorter than approximately 5 kilometers,

as differential ionospheric and tropospheric delays are negligible in this short-baseline

regime [98].

The possibility of CDGNSS-enabled centimeter positioning using a smartphone an-

tenna has been previously conjectured [99], but—to the authors’ knowledge—Figs.

3.6, 3.7, and 3.9 represent the first published demonstrations that this is indeed

possible. This significant result portends a vast expansion of centimeter-accurate

positioning into the mass market. However, serious challenges must be overcome

before mass-market CDGNSS can become practical, as described next.
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3.5 Existing Multipath Mitigation Techniques

Existing techniques for mitigating GNSS carrier phase multipath tend to be

unsuitable for low-cost platforms. Signal-processing-based techniques include the

Multipath-Estimating Delay-Lock Loop [100, 101], a coupled multipath estimating

phase-lock and delay-lock loop [102], signal-to-noise-ratio-based multipath error cor-

rection [103], the enhanced strobe correlator [104], and ray-tracing [105]. However,

these techniques either require (1) precise, centimeter-accurate a priori knowledge

of the motion profile of the GNSS antenna [102] and, in some cases, knowledge

of the range and bearing of nearby reflection surfaces [105], (2) extra computa-

tional power to generate measurements at more than the usual number of correlator

taps [100, 101], (3) a lengthy measurement duration, e.g., hundreds of seconds, for

the correct identification of the multipath error frequency [103], or (4) a high sam-

pling rate—in excess of 20 (real-valued) mega-samples per second [104].

Each of these enumerated requirements inhibits this chapter’s stated goal

of fast centimeter positioning on low-cost, computationally limited platforms: (1)

because a receiver will in most cases not have precise prior knowledge of its mo-

tion profile or of the relative position of nearby reflection surfaces; (2) because the

platform is often computationally limited; (3) because hundreds of seconds of pro-

cessing is too long; and (4) because a high sampling rate would add significant

hardware cost to mass market receivers, whose narrow front-end bandwidth renders

techniques such as that presented in [104] less effective [106]. Furthermore, many of

these techniques have significantly reduced performance when the reflecting surface

is less than about 10 meters from the receiving antenna [101, 104], a regime in which

multipath-induced phase errors have been shown to be the largest [107].

Antenna-based multipath mitigation strategies, such as specially-designed

groundplanes [108, 109] or antenna array solutions [110] are likewise inappropriate,
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as they require antenna setups that are at present far more expensive than the

low-cost antennas that are this chapter’s focus.

This chapter’s exploration of random antenna motion for multipath mitiga-

tion is motivated by the inapplicability of existing multipath mitigation techniques

to low-cost GNSS receivers.

3.6 CDGNSS Batch Estimator

The CDGNSS batch estimator employed in this chapter takes as its input

double-differenced (DD) carrier phase measurements made between two GNSS re-

ceivers, a reference and a rover, and processes these, together with a prior location

estimate of the rover antenna center of motion and a model of the magnitude of

variations about this center, to estimate (1) a centimeter-accurate relative position

time history between the two receivers, and (2) a vector of carrier-phase integer

ambiguities.

This chapter employs batch estimation, as opposed to filtering, because batch

estimation enables proper treatment of time correlation in the multipath-induced

DD carrier phase measurement errors. Due to the estimator state’s partial integer

nature, state augmentation strategies typically employed to address time-correlated

(colored) measurement errors in state estimation, such as those in [77, 90], actually

weaken the mixed real-integer model, ultimately degrading the ambiguity resolution

performance [93]. Batch estimation, by contrast, enables accurate and optimal

treatment of measurement error time correlation in mixed real and integer estimation

problems.
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3.6.1 State

The batch estimator’s state has a real-valued component that indirectly mod-

els the time-varying relative position between the reference and rover receiver, and

an integer-valued component that models the so-called DD phase ambiguities. Such

ambiguities are inherent in carrier phase differential positioning techniques; their

resolution has been the topic of much past research [15, 17] and is required to pro-

duce a centimeter-accurate CDGNSS positioning solution.

Let k be the total number of measurement epochs input to the batch esti-

mator and T be the time between consecutive epochs. The estimator’s real-valued

state component at tk = kT , denoted xk, is given by

xk = [rTC,q
T,vT

0 , . . . ,v
T
k−1]T, (3.1)

where

rC is the 3× 1 constant relative position vector between the reference antenna and

the center of motion of the rover antenna;

q is the 3× 1 constant relative position vector between the rover antenna center of

motion rC and the rover antenna initial relative position r0 at t0, i.e., r0 =

rC + q; and

vi for i = 0, 1, . . . , k − 1 is a 3 × 1 vector proportional to the change in relative

position between the reference and rover antenna from ti to ti+1. The ex-

act relationship between vi and the change in position is given in the next

subsection.

The vectors q and vi, i = 0, 1, . . . , k − 1, are modeled as independent, zero-mean,
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Gaussian random vectors with variance σ2
p:

q,vi ∼ N (03×1, σ
2
pI3×3), i = 0, 1, . . . , k − 1 (3.2)

The estimator’s integer-valued state component at tk, denoted nk, given by

nk = [N1, N2, . . . , NMk−1]T, (3.3)

where

Mk is the total number of satellites providing carrier phase measurements during

at least one measurement epoch up to and including time tk; and

Ni is the integer-valued phase ambiguity for the ith satellite pair, i = 1, 2 . . . ,Mk−1,

assumed constant so long as both the reference and rover receivers retain phase

lock on the signals tracked.

3.6.2 Relating the State to the Relative Rover Antenna Position

Let the rover antenna position relative to the reference antenna position at tk

be denoted rk. This vector sequence is assumed to evolve as an Ornstein-Uhlenbeck

(OU) process—a mean-reverting first-order Gauss-Markov process. Such a process

allows for adequate modeling of the time-correlated and mean-reverting motion a

rover antenna would experience when moved randomly in the extended hand of

an otherwise stationary user. Let f = e−T/τp be the correlation coefficient of the

per-dimension time-varying changes in rk, where τp is the correlation time of these

changes, in seconds. Under this model, rk is related to the components of xk by

r0 = rC + q

rk = rC + f (rk−1 − rC) +
√

1− f 2vk−1, k = 1, 2, . . .

= rC +
k−1∑
i=0

fk−i
(
q + f−1

√
1− f 2vi

)
, k = 1, 2, . . .

(3.4)
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To adapt (3.4) to enforce a static antenna constraint, one can set the standard

deviation of q and vi, i = 0, 1, . . . , k − 1, to zero, i.e., σp = 0.

3.6.3 Measurement Model

The batch estimator’s measurement model relates a time history of DD car-

rier phase measurements to the real- and integer-valued state components. The DD

phase measurement at time ti ≤ tk between satellites j and 1, with 1 denoting the

common reference satellite, and the reference (A) and rover (B) receivers, is defined

as

φj1
AB,i ,

[
φj

A,i − φ1
A,i

]
−
[
φj

B,i − φ1
B,i

]
, (3.5)

for j ∈ {2, 3, . . . ,Mk}, and where φβν,i, ν ∈ {A,B}, β ∈ {1, 2, . . . ,Mk}, is the

undifferenced carrier phase measurement at ti between receiver α and satellite β.

As this chapter’s focus is multipath mitigation, the rover-reference pair is assumed

to operate in the short-baseline regime for which atmospheric errors in the DD phase

measurements are negligible. In this regime, φj1
AB,i, which has units of cycles, can be

related to rk and nk by the following nonlinear measurement model [57]:

λφj1
AB,i = rj1

AB,i + λNj−1 + wj1
AB,i (3.6)

where

rj1
AB,i ,

(
rj

A,i − r1
A,i

)
−
(
rj

B,i − r1
B,i

)
(3.7)

is the DD range between the two receivers and two satellites and

λ is the GNSS signal wavelength;

Nj−1 is the integer ambiguity for the (j − 1)th satellite pair, as defined previously;
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wj1
AB,i is the DD carrier phase measurement error at ti;

rβα,i , ‖rβi − rα,i‖, ν ∈ {A,B}, β ∈ {1, 2, . . . ,Mk}, is the range between receiver α

and satellite β at ti, where ‖·‖ represents the Euclidean norm;

rα,i is the 3 × 1 absolute position of receiver ν ∈ {A,B} at ti, the time of signal

reception, in the global coordinate frame; and

rβi is the 3× 1 absolute position of satellite β ∈ {1, 2, . . . ,Mk} at the time of signal

transmission, in the global coordinate frame.

Assuming that the position of the reference receiver is known and constant, i.e.,

rA,i = rA ∀i, then (3.6) can be linearized about a guess r̄i of the relative rover

position ri , rB,i − rA, resulting in the linearized measurement model

λφj1
AB,i = r̄j1

AB,i + Hj1
AB,i(ri − r̄i) + λNj−1 + wj1

AB,i, (3.8)

where r̄j1
AB,i is the DD range between the two receivers and satellites j and 1 assuming

ri = r̄i, and

Hj1
AB,i ,

∂rj1
AB,i

∂ri

∣∣∣∣∣
ri=r̄i

=
(
ˆ̄r1

B,i

)T − (ˆ̄rjB,i)T
is the 1×3 linearized measurement sensitivity matrix, with ˆ̄rβB,i being the unit vector

pointing from rβi to r̄B,i = rA + r̄i, β ∈ {1, 2, . . . ,Mk}. Rewriting (3.8) with the

known terms on the left and the unknown terms on the right results in the following,

for i = 1, 2, . . . , k:

λφj1
AB,i − r̄j1

AB,i + Hj1
AB,ir̄i = Hj1

AB,iri + λNj−1 + wj1
AB,i (3.9)
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The estimator ingests, at tk, k = 1, 2, . . . , a (Mk − 1)k × 1 vector Yk of stacked

inter-epoch measurement vectors from t1 to tk:

Yk ,



y1

y2

...

yk


(3.10)

where yi, i = 1, 2, . . . , k, is an (Mk − 1)× 1 vector containing the known quantities

from the left-hand side of (3.9) at ti for j = 2, 3, . . . ,Mk:

yi ,



λφ21
AB,i − r̄21

AB,i + H21
AB,ir̄i

λφ31
AB,i − r̄31

AB,i + H31
AB,ir̄i

...

λφMk1
AB,i − r̄j1

AB,i + HMk1
AB,ir̄i


. (3.11)

Using (3.9), it is now possible to linearly relate the real- and integer-valued

state components in (3.1) and (3.3) to the DD carrier phase measurements in (3.10),

incorporating the kinematics of the relative antenna position as modeled in (3.4).

The linearized model becomes

Yk = H̃xkCkxk + H̃nknk + Wk, (3.12)

where

H̃xk is the time-dependent measurement sensitivity matrix for the real-valued state

component xk (expanded below);

Ck is the time-dependent correlation matrix modeling the dynamics of the reference–

rover three-dimensional relative position rk, as detailed in Sec. 3.6.2 (expanded

below);

89



H̃nk is the measurement sensitivity matrix for the integer-valued state component

(expanded below);

Wk is the discrete-time stacked DD measurement error vector, modeled as zero

mean with covariance matrix Rk, i.e., IE [Wk] = 0 and IE
[
WkW

T
k

]
= Rk

(expanded below).

H̃xk, Ck, H̃nk, and Wk can be expanded as

H̃xk ,



HAB,1 0 . . . 0

0 HAB,2
. . .

...

... 0

0 0 HAB,k


(3.13)

Ck , I3×3 ⊗



1 f 0 0 . . . . . . 0

1 f 1 af 0 0 . . . 0

...
...

...
. . . . . .

...

1 fk−1 afk−2 . . . af 0 0

1 fk afk−1 . . . af 1 af 0


(3.14)

H̃nk ,



λI(Mk−1)×(Mk−1)

λI(Mk−1)×(Mk−1)

...

λI(Mk−1)×(Mk−1)


(3.15)

Wk ,



w1

w2

...

wk


, (3.16)

where “⊗” denotes the Kronecker product, f is the correlation coefficient of the

time-varying reference–rover relative position changes, as introduced in (3.4), a ,
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√
1− f 2,

wi ,



w21
AB,i

w31
AB,i

...

wMk1
AB,i


, i = 1, 2, . . . , k

and

HAB,i ,



H21
AB,i

H31
AB,i

...

HMk1
AB,i


, i = 1, 2, . . . , k.

The measurement error covariance matrix Rk facilitates proper modeling of

the magnitude and time correlation of the DD phase measurement errors, which,

similar to the rover antenna position, are assumed to evolve as an OU process. Rk

can be expanded as

Rk , Rφ ⊗Dk, (3.17)

where

Rφ , σ2
φ



4 2 . . . 2

2 4
...

...
. . . 2

2 . . . 2 4


(3.18)

models the intra-epoch measurement error correlation resulting from the presence

of a common reference satellite in the DD measurements [see [45], Eq. (19)], and σ2
φ

is the average variance of the reference and rover antenna undifferenced phase error:

σ2
φ ,

σ2
φ,A + σ2

φ,B

2
. (3.19)
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Dk models the inter -epoch measurement error correlation, i.e., the correlation in

time. The measurement error time history for each DD satellite pair is modeled

as an OU process, which is the simplest process that accurately models the time-

correlated- and mean-reverting-nature of the DD phase errors. Choosing an OU

process also simplifies the relationship between statistics of the antenna motion,

also modeled as an OU process [see (3.4)], to the statistics of DD measurement

errors, as will be detailed later on. Dk can be expanded as

Dk ,



h(0) h(1) . . . h(k − 1)

h(1) h(0) . . . h(k − 2)

...
...

...
...

h(k − 2) h(k − 3) . . . h(1)

h(k − 1) h(k − 2) . . . h(0)


, (3.20)

where h(i) is the autocorrelation function of the DD reference and rover antenna

phase errors, defined as

h(i) ,
σ2
φ,Ag

i
A + σ2

φ,Bg
i
B

σ2
φ,A + σ2

φ,B

, i = 1, 2, . . . , k, (3.21)

and

gA , e−T/τφ,A

gB , e−T/τφ,B

are the correlation factors of the undifferenced rover and reference phase errors,

which are modeled as exponentially decreasing with correlation times τφ,A and τφ,B,

respectively.

3.6.4 State Estimation

Optimal state estimates x̂k and n̂k, k = 1, 2, . . . , are produced by incor-

porating all measurements and a priori information up to and including time tk.
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A square-root information implementation of a batch estimator is employed for an

accurate and computationally-efficient solution [44, 59].

A priori state information is provided to the estimator to enforce the models

for q and vi, i = 1, 2 . . . , k, detailed in (3.2), and to provide an approximation for

the relative rover antenna center of motion rC. This latter information is provided

to the estimator in the form of a normalized square-root information equation:

z̄xk = R̄xxkxk + w̄xk (3.22)

where

z̄xk , R̄xxkx̄k is the 3(k + 2)× 1 nonhomogeneous term;

x̄k ,
[
r̄TC,0

T
3×1, . . . ,0

T
3×1

]
is the prior estimate for the real-valued state component;

R̄xxk is the square-root information matrix (SRIM) containing the prior information

certainty corresponding to x̄k (expanded below); and

w̄xk is the 3(k + 2) × 1 error vector, modeled as zero mean with unit covariance,

i.e., IE [w̄xk] = 03(k+2)×1 and IE
[
w̄xkw̄

T
xk

]
= I3(k+2)×3(k+2).

R̄xxk is a block diagonal matrix, expanded as

R̄xxk ,



1
σrC

I3×3 03×3 . . . 03×3

03×3
1
σp

I3×3 . . . 03×3

...
...

. . .
...

03×3 03×3 . . . 1
σp

I3×3


, (3.23)

where σrC is the per-dimension error standard deviation of r̄C, in meters.
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The carrier phase measurements are also modeled by a normalized square-

root information equation through the following transformation of Yk:

zk , R−Tak Yk (3.24)

= Hxkxk + Hnknk + wk (3.25)

where

Rak , chol (Rk) is the Choleski factorization, i.e., the inverse square root, of the

measurement error covariance matrix Rk;

zk is the k(Mk − 1)× 1 nonhomogeneous term corresponding to xk and nk;

Hxk , R−Tak H̃xkCk is the normalized measurement sensitivity matrix for the real-

valued state component xk;

Hnk , R−Tak H̃nk is the normalized measurement sensitivity matrix for the integer-

valued state component nk; and

wk , R−Tak Wk is the normalized measurement error, modeled as zero mean with

unit covariance, i.e., IE [wk] = 0k(Mk−1)×1 and IE
[
wkw

T
k

]
= Ik(Mk−1)×k(Mk−1).

Optimal estimates of the real- and integer-valued state elements can be found

by choosing xk and nk to minimize the following cost function:

J (xk,nk) =
∥∥ Hxkxk + Hnknk − zk︸ ︷︷ ︸

Normalized Measurement Error

∥∥2

+
∥∥ R̄xxkxk − z̄xk︸ ︷︷ ︸

Normalized Prior Error

∥∥2
(3.26)

where ‖·‖ represents the Euclidean norm. Eq. (3.26) can be written equivalently as

J (xk,nk) =

∥∥∥∥∥∥∥∥∥∥∥

Hxk Hnk

R̄xxk 0


︸ ︷︷ ︸

H

xk

nk

−
 zk

z̄xk


︸ ︷︷ ︸

z

∥∥∥∥∥∥∥∥∥∥∥

2

. (3.27)
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By QR factorization [111], the block matrix H in (3.27) can be transformed into the

product of a square, orthonormal matrix and an upper triangular matrix:

Z = QbRb (3.28)

By left multiplying H and z of (3.27) by QT
b , the cost function can be written

equivalently as

J (xk,nk) =

∥∥∥∥∥∥∥∥∥∥


Rxxk Rxnk

0 Rnnk

0 0


xk

nk

−


zxk

znk

zr


∥∥∥∥∥∥∥∥∥∥

2

, (3.29)

where

Rxxk is the SRIM corresponding to xk and zxk;

Rxnk is the SRIM corresponding to nk and zxk;

zxk is the nonhomogeneous term corresponding to xk and nk;

Rnnk is the SRIM corresponding to nk and znk;

zxk is the nonhomogeneous term corresponding to nk; and

zr is the residual nonhomogeneous term.

This transformation leaves the cost in a convenient form that isolates a term involv-

ing only the integer-valued state component:

J (xk,nk) = ‖Rxxkxk + Rxnknk − zxk‖2︸ ︷︷ ︸
Term involving the integer- and real-valued states

+ ‖Rnnknk − znk‖2︸ ︷︷ ︸
Term involving only the integer-valued state

+ ‖zr‖2︸ ︷︷ ︸
Residual term

(3.30)
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Minimization of (3.30) proceeds as follows: First, one finds, via efficient

integer least-squares techniques [15, 33], the integer-valued vector state estimate n̂k

that minimizes the second term on the right-hand side, the term involving only the

integer-valued state. This is known as integer ambiguity resolution. Next, n̂k is

inserted into the first term, the term involving both the integer- and real-valued

states. At this point, it is possible to find the real-valued state estimate x̂k that

reduces the first term to zero. By this process the state that minimizes J (xk,nk) is

found subject to an integer constraint on nk.

3.6.5 Phase Residuals

In addition to a time history of centimeter-accurate position estimates, the

CDGNSS batch estimator outputs a time history of phase residuals Ỹk, which

amount to departures of each DD phase measurement from phase alignment at

the estimated phase center of the antenna. The vector of phase residuals is defined

as

Ỹk , Yk − hk (x̂k) ,

where

hk (x̂k) ,



rAB,1 (x̂k) + λI(Mk−1)×(Mk−1)n̂k

rAB,2 (x̂k) + λI(Mk−1)×(Mk−1)n̂k
...

rAB,k (x̂k) + λI(Mk−1)×(Mk−1)n̂k


(3.31)
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and

rAB,i (x̂k) ,



r21
AB,i (x̂k)

r31
AB,i (x̂k)

...

rMk1
AB,i (x̂k)


, i = 1, 2, . . . , k. (3.32)

The quantity rj1
AB,i (x̂k) , j = 2, 3, . . . ,Mk is the DD range between satellites j and

the reference satellite 1 at time ti, which can be computed from the time-varying

estimated reference-to-rover relative antenna position ri and the position of the

reference antenna rA using (4.20); ri is derived from x̂k using using (3.4).

Phase residuals are examined in the next section to aid in motivating antenna

motion as an effective strategy to improve the performance of CDGNSS integer

ambiguity resolution.

3.7 Carrier Phase Multipath Error Model

In the short-baseline CDGNSS regime (i.e., when the rover and reference

antennas are separated by less than about 5 km), multipath errors remain substantial

in DD carrier phase measurements whereas all other modeling errors are effectively

cancelled by the DD operation detailed in (4.17) [112]. This explains why multipath

errors are the primary impediment to fast carrier phase ambiguity resolution in the

short-baseline regime [103, 113].

This section exploits an existing analytical model for carrier phase multipath

to develop an approximate statistical relationship between (1) rover antenna quality

and dynamics, and (2) carrier phase multipath errors. Subsequent sections will

analyze ambiguity resolution performance in terms of multipath errors to complete

the linkage from antenna quality and dynamics to ambiguity resolution success rate.
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3.7.1 Single Reflection Multipath Error Model

Multipath-induced error in the phase estimates produced by a GNSS re-

ceiver’s phase-locked loop as it tracks the carrier phase of a particular signal from a

specific satellite can be approximated, in radians, by the following single-reflection

error model [114]:

ψ ≈ arctan
α sin θ

1 + α cos θ
. (3.33)

In this model, α is the power ratio and θ is the phase difference, in radians, between

the reflected and line-of-sight (LOS) signals received by a GNSS antenna. Reflected

signals are typically associated with low-elevation LOS signals and have significant

non-right-hand-circularly-polarized (non-RHCP) components [115]. To attenuate

reflected signals, high-quality antennas are designed to have a high axial ratio (a high

level preference for RHCP) gain patterns that reject low-elevation signals. Because

lower-quality antennas are worse in each of these properties, they attenuate signal

reflections to a lesser extent. Thus, in the remainder of this chapter, α is considered a

proxy for reciprocal antenna quality, with α decreasing as antenna quality increases.

Although multipath commonly involves multiple reflections, the single-reflection

model in (3.33) remains useful because errors can often be traced to a single domi-

nant reflection [116]. The phase difference θ can be expanded as [105]

θ = 2π

(
dref − dlos

λ

)
, (3.34)

where dref is the total distance traveled by the reflecting signal and dlos is the total

distance traveled by the line-of-sight signal from the satellite to the receiving an-

tenna, in meters. The next two subsections invoke (3.33) and (3.34) to illustrate

how ψ is affected by satellite motion, receiver motion, and antenna quality.
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3.7.2 Influence of Motion on Phase Errors

Carrier phase multipath has a spatial correlation on the order of one wavelength—

approximately 19 centimeters at the GPS L1 frequency [117]. This spatial sensitivity

has two important consequences: (1) multipath errors for each satellite signal are

largely uncorrelated (between signals) at a particular location, and (2) the time

correlation of errors for each signal is strongly influenced by receiver motion. The

second of these consequences is further explained here.

Due to satellite motion, the difference dref −dlos, and, by extension, ψ, varies

over time. For static antennas, ψ changes at a rate proportional to the distance

between the receiving antenna and the closest reflecting surface [105, 112]. As most

reflection surfaces are nearby (within 10 meters), carrier phase errors with correla-

tion times in the hundreds of seconds are common [87, 112]. For moving antennas, ψ

varies as a function of both satellite motion and receiver antenna motion. Due to the

close proximity of the receiver antenna to the reflection surface, receiver motion—

even compact wavelength-scale motion—induces significant changes to dref − dlos,

and, by extension, to ψ.

To illustrate the influence of motion on phase errors, carrier phase data were

captured from a smartphone-grade antenna both while the antenna was static and

while it was moved in a quasi-random manner within a wavelength-scale volume.

The data capture setup was as follows: (1) radio frequency (RF) signals were received

through the smartphone’s internal antenna, RF filters, and low-noise amplifier and

were captured and digitized for external processing (see [36], Fig. 1, for further

details); (2) data for the static antenna scenario were obtained while the phone

rested on a flat plastic surface affixed to the top of a 2-meter tripod; (3) data for the

dynamic antenna scenario were obtained while the smartphone was moved randomly

in the outstretched hand of an otherwise stationary user. In both scenarios, the
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same set of satellites was tracked, as data were captured at nearly the same time

and location.

Fig. 3.10 shows DD the phase residuals and Fig. 3.11 shows the corre-

sponding autocorrelation functions for the static (top panels) and dynamic (bottom

panels) scenarios. It is clear that the phase residuals transform from slowly-varying

(> 100-second correlation) when the antenna is static to quickly-varying (sub-second

correlation) when the antenna is dynamic.

3.7.3 Relationship between Antenna Quality and Dynamics and Phase

Error Statistics

This section formalizes the relationship between antenna quality and dynam-

ics, characterized by α, σp and τp, and the undifferenced phase error, characterized

by either {σφ,B, τφ,B} or {σφ,A, τφ,A}, the rover and reference antenna phase error

statistics, respectively. Let wβα, for ν ∈ {A,B}, and β ∈ {1, 2, . . . ,Mk} be the un-

differenced contribution to the double differenced carrier phase measurement noise

term wj1
AB,i introduced in (3.8). Atmospheric and clock errors are ignored in wβα be-

cause they cancel in the double difference operation. Multipath errors are assumed

to dominate the remaining carrier phase noise so that wβα , ψ. The quantities

{σφ,A, τφ,A} and {σφ,B, τφ,B} are thus interpreted as the standard deviation and

time correlation of ψ for the respective antenna. For notational convenience in this

section, {σφ,u, τφ,u} represents the generalized statistics of the undifferenced phase

error, with u referring to either A or B.

Due to the strongly nonlinear nature of (3.33), the statistical relationship be-

tween phase errors and antenna quality and dynamics is difficult to define as closed-

form expression. Instead, a Monte-Carlo-type simulation study was performed to

approximate this relationship; the study’s procedure is detailed in Appendix 3.12.1.
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Figure 3.10: Time histories of phase residuals for a batch of data captured from

a smartphone-grade antenna while static (top panel) and while in motion (bottom

panel). Each trace represents a DD phase residual history for a different satellite

pair. A survey-grade antenna was used as the reference antenna, which remained

static throughout the data capture interval.
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Figure 3.12: Results of a Monte-Carlo-type simulation study showing the phase error

standard deviation σφ,u as a function of the antenna quality, characterized by α, and

the correlation time of the antenna dynamics, characterized by τp. The traces for

all three values of τp are coincident, indicating that σφ,u does not depend on τp. The

dependence of σφ,u on α is approximately linear with the slope shown. Points along

the σφ,u(α) trace corresponding to a survey-grade and smartphone-grade antenna

have been marked. These are based on empirical values for σφ,u [2].

Figures 3.12 and 3.13 indicate the significant relationships revealed by the study,

which can be summarized as follows:

• σφ,u ∼= 21.9 · α for 0 ≤ α ≤ 0.5. A linear relationship is consistent with (3.33)

for small α, since ψ → α sin θ as α→ 0.

• τφ,u ∼= 0.21 · τp · e−2.7σp for 0 ≤ τp ≤ 10 seconds.

• σφ,u does not depend significantly on σp or τp, and τφ,u does not depend on α.

The next section characterizes the dependence of CDGNSS integer ambiguity res-

olution on {σφ,u, τφ,u}, so that, together with the results of this section, one can
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error correlation time τφ,u as a function of the standard deviation and correlation

time of the antenna dynamics, σp and τp, respectively. It is clear that τφ,u decreases

exponentially in σp and is approximately linear in τp.

ultimately characterize ambiguity resolution performance in terms of antenna qual-

ity and dynamics.

3.8 Effect of Antenna Quality and Dynamics on Ambiguity

Resolution

This chapter’s primary claim is that gentle wavelength-scale random antenna

motion is an effective strategy to reduce TAR when performing a CDGNSS solution

based on data collected from a low-quality antenna. Such motion improves the so-

called ambiguity success rate (ASR), i.e., the probability that all integer ambiguities

are successfully resolved, as compared to a static antenna CDGNSS solution. This

section completes the linkage from {α, σp,τp} to ASR and thus to TAR.

Previous work has developed closed-form expressions relating the undiffer-

enced phase error statistics {σφ,u, τφ,u} to the so-called Ambiguity Dilution of Pre-
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cision (ADOP) [118, 119], a scalar metric that can be used to compute a tight ap-

proximation of ASR [73]. These expressions, however, make one of two simplifying

assumptions: they apply either under a short-time assumption, where phase error

time correlation is considered but satellite motion is assumed negligible, or under

a long-time assumption, where satellite motion is considered but phase error time

correlation is assumed negligible. It does not appear possible to develop a closed-

form approximation of ADOP which accounts for both satellite motion and error

time correlation, yet it can be shown by simulation that both of these significantly

affect ADOP, and thus ASR. Moreover, neither the short- nor long-term analyti-

cal expressions from [118, 119] account for the effect of receiver antenna trajectory

uncertainty within the CDGNSS estimator on ASR.

3.8.1 Approach

This chapter’s approach is to employ Monte-Carlo simulation and the full

batch CDGNSS estimator introduced in Sec. 4.2, complete with a statistical an-

tenna trajectory model, to determine the relationship between {α, σp, τp} and ASR.

The relationship is then validated with real data. The simulation study takes the

following steps: (1) the values of {α, σp, τp} given in Table 3.3 are used to generate

a simulated rover antenna motion trajectory and are also mapped to corresponding

values for τφ,u and σφ,u using the model from Sec. 3.7; (2) the simulated antenna

motion trajectory and the values for τφ,u and σφ,u are used to generate simulated

undifferenced carrier phase data for each satellite in the simulation; (3) the simu-

lated carrier phase data are fed to the batch CDGNSS estimator to produce a series

of batch solutions, and (4) analytical bounds on, and empirical estimates of, ASR

are computed from the batch estimator’s outputs after each measurement epoch;

analytical bounds are computed using the estimator’s state covariance matrix and
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Table 3.3: Model Parameters for Simulation Study of ASR

Motion Model Quality

τp σp τφ,u α σφ,u

(sec) (cycles) (sec) (mm)

Static n/a 0 100 Survey 0.09 2

Dynamic 2 0.5 0.12 Smartphone 0.32 7

empirical estimates are computed by comparing the batch estimator’s integer am-

biguity state estimate to the truth values. For all tests, the reference antenna is

assumed to be survey-grade and static. Further details of the simulation study’s

procedure are found in Appendix 3.12.2.

3.8.2 ASR Sensitivity to Antenna Quality

The simulation study considered survey- and smartphone-grade rover anten-

nas, with the α values shown in Table 3.3. The corresponding σφ,u values characterize

the magnitude of the simulated multipath-induced errors on the DD phase measure-

ments. Both reference and rover antennas were assumed to be static for the study

of ASR dependence on antenna quality. The results given in Fig. 3.14 show that

the measured ASR (dark traces) closely track the upper and lower bounds (dashed

traces) for each antenna type and that antenna quality strongly influences ASR, with

the survey-grade antenna having a 90% TAR—the time required to reach an ASR

exceeding 0.9—more than 10 times shorter than the smartphone-grade antenna.
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Figure 3.14: ASR as a function of the total measurement time for two antenna

grades: smartphone- and survey-grade. The dark solid traces denote the empirical

estimate of ASR, obtained via Monte Carlo analysis, while the lighter dashed traces

denote the analytically computed upper and lower bounds of ASR.
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Figure 3.15: ASR as a function of the total measurement time for a smartphone-

grade rover antenna in two different dynamics scenarios. The dark solid traces

denote the empirical estimate of ASR, obtained via Monte-Carlo simulation and

analysis, while the lighter dashed traces denote the analytically computed upper

and lower bounds of ASR.
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Figure 3.16: As Fig. 3.15 but for a survey-grade rover antenna. Note the shorter

time interval as compared to Fig. 3.15.

3.8.3 ASR Sensitivity to Antenna Dynamics

The simulation study considered two rover antenna dynamics scenarios, static

and gentle wavelength-scale random motion, labeled dynamic in Table 3.3. The

{τp,σp} pairs for each scenario were mapped to τφ,u values characterizing the cor-

relation time of the simulated multipath-induced errors on the DD phase measure-

ments using the model from Sec. 3.7. Figs. 3.15 and 3.16 show the results for the

smartphone- and survey-grade rover antennas, respectively.

For the smartphone antenna, antenna motion significantly reduces TAR. In

this case, the information gained by more rapid phase decorrelation exceeded the

information lost by not having a tight antenna position constraint. Comparison of

Figs. 3.15 and 3.14 reveals that a moving smartphone-grade antenna can rival the

TAR of a static survey-grade antenna. This is a significant result: it indicates that

centimeter-accurate CDGNSS positioning on mass-market receivers can be made

practically rapid. The result also holds, with even better TAR, for the next highest

grade above smartphone-grade antennas, the low-quality patch antenna described

in [36], though the static-to-dynamic improvement is not so drastic. The result is
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Table 3.4: Model Parameters for Empirical Study of ASR

Rover Reference

τp σp τφ,B σφ,B τφ,A σφ,A

(sec) (cycles) (sec) (mm) (sec) (mm)

Static n/a 0 300 6 100 2.5

Dynamic 1 1 0.01 6 100 2.5

confirmed with real data in Sec. 3.9.

Interestingly, Fig. 3.16 reveals that motion lengthens TAR for a survey-grade

rover antenna. It remains true that the phase measurement errors decorrelate more

rapidly when the survey-grade antenna is moved, but because the magnitude of

the phase errors is already so small, the information gained from faster phase error

decorrelation does not compensate for the loss in information due to the added

uncertainty (lack of constraint) in the motion model.

3.9 ASR Analysis using Real Data

This section provides a demonstration using real data of the improvement to

ASR that comes from motion for low-cost antennas.

3.9.1 Data Collection and Alignment

Raw digitized intermediate-frequency (IF) GPS L1 C/A data were collected

simultaneously by two receivers, a reference and a rover. The reference antenna

was a survey-grade Trimble Zephyr and the rover antenna was a low-cost Taoglas

patch. 5000 seconds of static rover data were collected, followed immediately by
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900 seconds of dynamic rover data. During the dynamic dataset the rover antenna

was moved in a random, wavelength-scale, three-dimensional pattern while held in

the hand of an otherwise stationary user. The 3-dimensional motion profile of the

rover antenna can be approximately modeled as an OU process with the values for

τp and σp found in the bottom row of Table 3.4. The reference antenna remained

stationary throughout data collection.

Each receiver ran a version of the GRID software-defined GNSS receiver [79],

which processed the raw IF data and produced undifferenced code- and carrier-phase

measurements. Each receiver’s clock offset from GPS time was calculated at each

measurement epoch from code phase measurements, enabling the carrier phase time

histories to be timestamped in a common time base to approximately 15 ns accuracy.

The rover’s phase measurements were then interpolated to the time instants of the

reference’s measurements and the time histories were differenced according to (4.17)

to form 7 DD carrier-phase time histories from the 8 highest elevation GPS satellites

overhead at the time of the recording.

3.9.2 Phase Error Characterization

The carrier phase time histories produced from the recorded data exhibited

errors whose statistics are summarized in Table 3.4 as {τφ,B, σφ,B} and {τφ,A, σφ,A}

for the rover and reference antennas, respectively. These values were computed

empirically from the DD residuals produced by CDGNSS batch processing over

the full static and dynamic datasets. One exception is the value τφ,B = 0.01 s for

the dynamic dataset which, to avoid inaccuracy due to quantization effects, was

calculated from the motion statistics τp and σp via the model in Sec. 3.7.3. The

time correlation τφ,A is shorter than τφ,B because the reference antenna was further

from reflecting surfaces than the rover antenna.
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3.9.3 Data Processing

The DD carrier-phase time histories were split into 20 150-second and 12 65-

second non-overlapping batches for the static and dynamic data sets, respectively.

Each batch was provided separately to the CDGNSS estimator for processing along

with the antenna motion and phase error statistics outlined in Table 3.4. For each

batch, the estimator output the following at each measurement epoch k (on the

basis of the measurements ingested from epoch 0 to k): (1) an estimate of the

integer-valued state n̂k, and (2) the square-root information matrix Rnnk denoting

the filter’s confidence in this integer-valued state estimate. Using these, empirical

ASR and analytical ASR bounds were computed as described in Appendix 3.12.2.

3.9.4 Results

Fig. 3.17 plots ASR estimates and bounds as a function of measurement

time for the two rover antenna dynamics scenarios characterized by the motion and

phase error statistics in Table 3.4. It is apparent that ASR performance improved

with rover antenna motion; the time for ASR to reach 0.9, i.e., the 90% TAR, was

reduced by over 50% for the dynamic vs. the static scenario.

3.10 Ambiguity Resolution with a Provided Motion Profile

Previous sections have established that for low-quality antennas, antenna

motion reduces TAR. In this case, the tradeoff between loss of information due to

lack of a motion constraint and gain in information from more quickly decorrelating

phase measurement errors favors motion. But if the moving antenna’s precise motion

profile were somehow provided to the estimator, there would be no tradeoff: the

receiver would enjoy the more rapid error decorrelation without losing the motion
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Figure 3.17: ASR as a function of measurement time for two different antenna

dynamics scenarios. The dark solid traces denote the empirical estimate of ASR,

obtained from analysis of many disjoint real data intervals, while the lighter dashed

traces denote the upper and lower ASR bounds, computed analytically based on the

Rnnk matrix.

112



constraint. Such a motion profile could be approximated from inertial sensors or

from processing of images captured by a camera attached to the receiver, as in [37].

The profile may only be known to within a translation, rotation, or scale factor. In

the limit of an error-free motion profile known to within a translation, the motion

constraint becomes as effective as a static constraint.

Motion-profile-aided ambiguity resolution with inertially-derived trajectories

has been shown to reduce the ambiguity search volume [120], but this earlier work

did not characterize improvement in terms of TAR nor attempt demonstration with

real data. Known motion profiles have also been used for multipath mitigation,

whether to enable estimation of multipath parameters [102] or synthetic aperture

processing [94]. The current chapter’s approach, described below, is similar to that

of [94] except that it operates on the usual carrier phase observables instead of

coherently processing the low-level correlation products.

3.10.1 Augmenting the CDGNSS Estimator with a Motion Profile

An a priori motion profile is incorporated into the CDGNSS estimator by

augmenting the rover antenna relative position model of (3.4):

rk = rC +
k∑
i=1

ui +
k∑
i=1

fk−i
√

1− f 2vi (3.35)

where ui is a 3× 1 vector of the change in antenna position from ti−1 to ti. Collec-

tively, ui for i = 1, 2, . . . , k form the a priori antenna motion profile. The real-valued

state components vi for i = 1, 2, . . . , k now model the changes to rk from ti−1 to ti not

already captured by the a priori motion profile. Thus, the per-dimension standard

deviation of vi, denoted σp, now models the uncertainty of ui for i = 1, 2, . . . , k.

Incorporating the augmented kinematic model of (3.35) into the batch esti-
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mator’s measurement model results in the following augmented measurement model:

Yk −GkUk = HxkCkxk + Hnknk + Wk (3.36)

where

Uk ,



u1

u2

...

uk


(3.37)

is a 3k×1 vector containing the a priori knowledge of the change in antenna position

from ti−1 to ti for i = 1, 2, . . . , k and

Gk =



HAB,1 0 . . . 0

HAB,2 HAB,2
. . .

...

...
...

. . . 0

HAB,k HAB,k HAB,k


(3.38)

is the time-dependent lower-triangular measurement sensitivity matrix for Uk.

3.10.2 Applying a Motion Profile to Real Data

An analysis of the TAR improvement offered by an a priori motion profile

was performed with real data. The motion profile was obtained and was applied

within the estimator as follows:

1. The absolute rover antenna three-dimensional trajectory was computed by

performing a CDGNSS solution on the basis of the entire 900 second batch

of dynamic data mentioned previously using phase measurements from all 12

satellites overhead at the time of the recording.
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2. An unknown three-dimensional translation was added to the computed tra-

jectory to obtain a translation-ambiguous motion profile. Such a translation

ambiguity would also be present in a motion profile obtained using an inertial

or vision system.

3. This motion profile was provided to the CDGNSS estimator in the form epoch-

by-epoch antenna position changes, as the quantities ui, for i . . . k in (3.35).

These vectors were stacked into a 3k × 1 vector Uk and integrated into the

estimator’s measurement model as in (3.36).

4. The assumed accuracy of the motion profile can be conveyed to the estimator

through the statistics of the unknown receiver position, i.e., σp and τp. As

the limiting case of a noise-free profile was most interesting for the current

chapter, it was assumed that σp = 0 and τp =∞.

3.10.3 Results

Fig. 3.18 shows that, for the data set studied, which is typical, motion profile

aiding reduced the empirical 90% TAR by approximately 30%. The dark solid trace

in the lower panel hangs below the ASR bounds because the motion profile was not,

in fact, error free as the estimator was configured to assume. The bounds predict a

reduction in 90% TAR for the error-free case of slightly more than 30%. Other tests

revealed that the percent by which motion profile aiding improves TAR increases

when there are fewer satellite signals available, i.e., when the initialization scenario

is more challenging.
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Figure 3.18: ASR as a function of the total measurement time for a dynamic scenario

without (top panel) and with (bottom panel) motion profile aiding. The dark solid
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the analytically-computed ASR upper and lower bounds.
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3.11 Conclusions

Using both simulated and empirical data it was shown that wavelength-scale

random antenna motion is an effective strategy for significantly speeding integer

ambiguity resolution when performing a CDGNSS solution using a low-cost GNSS

antenna. Empirical resolution time was reduced by over 50% when the antenna was

moved as compared to static. It was further shown that if a priori knowledge of the

antenna’s motion profile is available, such a constraint further reduces resolution

time: an additional 30% reduction was shown for an empirical scenario in which a

mm-accurate motion profile was known to within a translation. These results are

significant: they portend an expansion of CDGNSS positioning into the mass mar-

ket, where low-cost, low-quality antennas are abundant and CDGNSS initialization

time is seen as a primary limiting factor.

3.12 Appendix

3.12.1 Multipath Simulation Study

This section describes the Monte-Carlo-type simulation study performed to

approximate the statistical relationship between phase errors and antenna quality

and dynamics.

1. A 200-second one-dimensional antenna position trajectory was simulated at

100 Hz with variations modeling an Ornstein-Uhlenbeck process characterized

by a fixed standard deviation σp and correlation time τp. Only one dimension

needs to be simulated because a three-dimensional antenna reference frame

can always be rotated to align one dimension parallel to the direction of the

reflected signal, making phase errors largely unaffected by positional variations

in the other two dimensions.
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2. The simulated one-dimensional positional variations (assumed aligned with

direction of the reflected signal) are assumed equivalent to variations in the

term dref − dlos in (3.34). These positional variations can then be converted

into a phase difference time history using (3.34).

3. 10 initial phase offsets, evenly spaced between 0 and 2π, are added to the

simulated phase difference time history to generate 10 phase difference time

histories. This guarantees that the phase difference means over all 10 time

histories are evenly distributed between 0 and 2π, appropriately modeling

real-world scenarios.

4. Each of the 10 phase difference time histories is converted to a phase measure-

ment error time history using (3.33), assuming a constant α.

5. The standard deviation σφ,u and correlation time τφ,u are computed for each

of the simulated 200-second phase error time histories. These values are then

averaged across all 10 time histories and stored.

6. Simulation input parameters, σp, τp, and α are modified and steps (1)–(5)

are repeated to obtain averaged σφ,u and τφ,u terms on the basis of these new

values. The range of input parameter values over which data were simulated

and averaged σφ,u and τφ,u values were computed is listed in Table 3.5.

3.12.2 Details of Simulation Study of ASR

This section describes the details of the simulation study employed to deter-

mine the sensitivity of ASR to antenna quality and antenna dynamics.
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Table 3.5: Range of σp, τp, and α over which data were simulated

Characteristic Range

Antenna Quality 0.1 ≤ α ≤ 1

Antenna Motion Correlation Time (s) 0 ≤ τp ≤ 10

Antenna Motion Standard Deviation (cycles) 0.5 ≤ σp ≤ 4

3.12.2.1 Data Simulation

Carrier phase measurements are simulated as would be received by an an-

tenna located on roof of the W.R. Woolrich building in Austin, Texas during a 6

hour period of the early morning hours of December 14, 2014. These simulated

measurements properly account for satellite motion, receiver motion, and phase

measurement error.

The position of each satellite tracked is computed in the Earth-Centered

Earth-Fixed (ECEF) reference frame for each time epoch, using the broadcast satel-

lite ephemerides. The simulated rover antenna trajectory conforms to either a static

or a dynamic scenario as modeled by an Ornstein Uhlenbeck process with parameters

outlined in Table 3.3. The reference antenna is taken to be static. Once satellite

and receiver positions are determined for all desired time epochs, the true range

from the rover and reference antennas to each satellite is computed at each epoch,

resulting in error-free undifferenced carrier phase measurement time-histories.

Phase error time histories are simulated according to an Ornstein Uhlenbeck

process characterized by a value of σφ,u corresponding to a particular antenna quality

and a value of τφ,u antenna-motion–phase-noise corresponding to particular antenna

dynamics. Table 3.3 lists σφ,u values corresponding to the two antenna qualities to

be tested, a survey-grade antenna and a smartphone-grade antenna, and τφ,u values
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corresponding to the two antenna dynamics scenarios to be tested, a static and

a dynamic scenario. The σφ,u values were deduced empirically from thousands of

seconds of data collected from both antenna types while the antenna was static and

the τφ,u values were deduced, for the static scenario, from earlier work by others [87],

and for the dynamic scenario, from the antenna-motion–phase-error relationship

detailed in Fig. 3.13 using the antenna motion statistics of Table 3.3.

Once simulated, these phase error time histories are added to previously sim-

ulated error-free carrier phase measurement time-histories to produce high-fidelity

undifferenced carrier phase measurement time histories. Note that other commons

sources of error such as atmospheric- and clock-induced errors are not simulated

as they are assumed to be cancelled out during the subsequent double-differencing

operation.

3.12.2.2 Processing and Analysis

For each scenario, data are simulated as above, passed through the CDGNSS

estimator, and the outputs of the estimator are used to compute ASR a function

of the total measurement duration t and one of either varying antenna quality or

antenna dynamics, depending on the scenario under test. All other parameters are

held constant. In particular, for each scenario, the test procedure will be to:

1. Fix the time between subsequent measurement epochs to 0.5 seconds for the

dynamic antenna scenario and 10 seconds for the static antenna scenario.

2. Fix the number of satellites used in the CDGNSS solution Mk to 8.

3. Fix the rover antenna quality to be of smartphone-grade and the dynamics to

be static when not being varied.
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4. Fix the reference antenna to be stationary and of survey-grade quality through-

out.

5. Simulate 50 non-overlapping 200 second batches of undifferenced carrier phase

measurements according to the desired motion and phase error statistics de-

tailed in Table 3.3.

6. Double difference the simulated undifferenced phase measurements according

to (4.17), resulting in 50 DD batches.

7. Feed each DD batch, one at a time, into the CDGNSS estimator. For each

batch, compute a CDGNSS solution on the basis epochs 0 through l, where

0 ≤ l ≤ k. Increase l by 1, computing a new CDGNSS solution after each

increase.

8. After each CDGNSS solution, compute (1) an empirical estimate of ASR, (2)

an ADOP-based estimate of ASR (see [118, 119]), and (3) a covariance-based

analytical upper and lower bound of ASR. The empirical ASR was computed

via Monte-Carlo simulation from the 50 batches of simulated DD phase data,

as follows:

(a) For each time epoch k, the estimator computes an estimate of the integer-

valued ambiguities n̂k on the basis of the data ingested from time 0 to

k.

(b) The integer estimates n̂k, for k = 1, 2, . . . , are compared against the true

vector of integer ambiguities n. For each k, if n̂k matches n, a flag is set

at time tk to “1”; if incorrect, the flag is set to “0”.

(c) At each tk, the flags produced in step 2 are averaged across 50 batches

to generate an empirical ASR value at each time epoch.
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The lower and upper bounds on ASR were computed analytically at each epoch

using the estimator-produced integer-state information matrix Rnnk; refer to

section IV of [33] for details on computing these bounds.
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Chapter 4

VISRTK: A Framework for Fast, Accurate, and

Robust Smartphone Pose Determination

This chapter presents and analyzes an estimation framework that combines

monocular camera images with GNSS carrier phase measurements for fast, robust,

precise, and globally-referenced mobile device position and orientation (pose) de-

termination. The framework, which will be termed VISRTK after the common

industry synonym for CDGNSS, Real Time Kinematic (RTK), augments the bundle-

adjustment- (BA-)-based structure from motion (SFM) algorithm with carrier phase

differential GNSS (CDGNSS) algorithm in a way that preserves both the sparse-

ness of the Jacobian matrix in BA and the integer structure of the ambiguities in

CDGNSS. In doing so, the proposed fused framework is able to exploit the compu-

tational efficiency of BA and the precision of CDGNSS to efficiently and accurately

determine the pose of the mobile device in a global reference frame. Comparisons to

existing approaches which combine GNSS and camera measurements for globally-

referenced pose determination reveal that these do not combine measurements as

tightly nor optimally as the proposed approach, resulting in the proposed approach

having a faster, more robust, and more accurate solution. Empirical simulation

results and results using real data in the form of images and GNSS carrier phase

measurements captured from a low-cost GNSS receiver and smartphone platform

show that the proposed estimation framework (1) achieves centimeter- and sub-
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degree-accurate pose estimates, (2) leads to faster resolution of the CDGNSS integer

ambiguities as compared to standalone CDGNSS, and (3) is able to use prior infor-

mation from previously-localized point features for instantaneous CDGNSS integer-

ambiguity resolution.

4.1 Introduction

The need for centimeter- and sub-degree-accurate device position and orien-

tation (together known as “pose”) is present in many applications, including, but

not limited to, surveying, photogrammetry, semi-autonomous and autonomous driv-

ing, and augmented and virtual reality. However, obtaining such accuracy has so-far

been costly, particularly for consumer mass-market applications. Current solutions

require either GPS-aided inertial navigation systems (INS) or motion-capture sys-

tems costing in the thousands of dollars [121–123].

The wide adoption of smartphones has resulted in rapid accuracy improve-

ments to and a reduction in cost of microelectromechanical systems (MEMS) inertial

sensors, GNSS chips, and camera technology, all of which are embedded sensors in-

side these devices. Over the past decade, many researchers have studied the viability

of these smartphone sensors for precise pose determination. Research in coupling

a smartphone-grade inertial measurement unit (IMU), magnetometer, and GNSS

receiver has shown orientation accuracies of around 1–2 degrees and positional ac-

curacies of a few meters [121, 124, 125] during continuous GNSS tracking. However,

in the absence of continuous GPS measurements the accuracy degrades to a few

degrees and many tens of meters in a matter of seconds [121, 124]. Despite these

improvements, these pose accuracies—even with continuous tracking—are not good

enough for many applications, including surveying and virtual reality.
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Recent work by the authors has investigated ways to improve the pose ac-

curacy of low-cost platforms to less than a decimeter in position and a degree in

orientation, while also maintaining a slow degradation in accuracy in the event of

a GNSS outage. In particular, [2] has shown that centimeter-accurate position es-

timation is possible with a smartphone antenna and software-based GNSS receiver,

while [126] has shown in simulation that coupling this technology with image mea-

surements can facilitate sub-degree orientation as well.

Over the base 20 years, researchers in the computer vision, estimation, and

mathematical communities have developed a great body of literature in the areas of

photogrammetry, structure from motion (SFM), multiple view geometry, and visual

simultaneous localization and mapping algorithm (SLAM) [127–130]. All of these

research areas describe a similar topic approached from multiple starting disciplines

by which the end goal is to locate a receiver or map its surroundings using vision,

and, in some cases, coupling vision measurements with other sensors. The current

work builds on this great body of literature by combining these techniques with a

centimeter-accurate positioning technique from the navigation community known as

Real Time Kinematic (RTK) or carrier phase differential GNSS (CDGNSS).

Researchers in the computer vision community have developed a BA-based

SLAM algorithm capable of running in real-time on a smartphone processor [131].

The resulting accuracies are sub-degree accurate, although the resulting pose esti-

mates contain scale, rotational, and translational ambiguities which prevent it from

being globally referenced.

Other prior work in the computer vision community combines GNSS and

image measurements to get globally referenced pose. However, this combination is

done in the most decoupled manner possible—by computing a least-squares solution

between the (1) GPS and (2) BA-based camera trajectories to solve for the scale,
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rotational, and translational ambiguities needed to bring the BA-based trajectory

into a global reference frame. Unfortunately, this approach—which will be subse-

quently referred to as the Horn transform—does not enable the optimal sharing of

GNSS and image measurement information. Relative errors in the BA trajectory,

for instance, will remain in the final solution, albeit now in a globally-referenced

frame.

The prior work by the current authors outlined in [32, 126] showed that the

centimeter-accurate carrier-phase differential GNSS (CDGNSS) positioning algo-

rithm can be fused in a with BA in a loosely-coupled manner (although more

tightly-coupled then the horn-transform method) to produce centimeter-accurate

position and sub-degree accurate device orientation [32, 126]. However, this work

(1) used external, high-cost GNSS and camera sensors and (2) did not fuse the mea-

surements as optimally as the proposed approach, and (3) only offered a simulation

study of the results. This loosely-coupled approach, for instance, does not enable

the vision measurements to aid in resolving the CDGNSS ambiguities needed before

a centimeter-accurate position trajectory can be determined.

In contrast to the prior work by the authors and others, the current chapter

proposes combining GNSS and smartphone camera measurements in the most opti-

mal manner yet for absolute pose determination. In contrast to previous work, the

current approach is a tightly-coupled fusion of the CDGNSS and bundle-adjustment

(BA) algorithms. As such, this approach is faster, in that it can resolve the CDGNSS

ambiguities faster that standalone CDGNSS, and more accurate, it that it enables

vision measurements to aid in detecting and minimizing the effects of carrier phase

outlier and cycle slips. It is also more elegant while being no more computationally

demanding than the approach of [126]. Finally, it enables prior information re-

garding the position of point features computed earlier to be easily integrated with
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current GNSS phase and point feature measurements to compute a pose estimate

much more rapidly than could be achieved on the basis of current measurements

alone. Such prior information then enables the current CDGNSS ambiguities to

be resolved almost instantaneously, a technique by which we will term Jumpstart

VISRTK.

4.2 VISRTK Batch Estimator

The VISRTK batch estimator takes as its input double-differenced (DD) car-

rier phase measurements made between two GNSS receivers, a reference and a rover

and image feature measurements and processes these, together with any prior in-

formation on the point feature locations, to estimate (1) the camera position and

orientation at each measurement epoch and (2) a vector of carrier-phase integer

ambiguities. The estimator will preserve and exploit the sparse structure of the

Jacobian matrix, as is typically done in vision-only Bundle Adjustment [132], for a

computationally efficient result, while using the Least-Squares Ambiguity Decorre-

lation Adjustment (LAMBDA) [15] and corresponding search function to solve for

the integer ambiguities and lock them in prior to solving for the rest of the state,

thus improving the ultimate accuracy of their estimates.

4.2.1 State

The estimator’s state is as follows:

XBA =


XC

N

XP

 (4.1)

where
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XC is a 6L×1 vector modeling the position and attitude of the camera at each pose

(expanded below), where L is the total number of poses,

N is a P × 1 integer-valued vector of carrier phase ambiguities (expanded below),

where P + 1 is the total number of GNSS signals tracked (the “+1” denotes

the reference signal), and

XP is a 3M×1 vector modeling the feature point positions (expanded below), where

M is the total number of feature points.

XC, N, and XP can be expanded as

XC =

[(
xC1G
)T

x
(
qC1G
)T

. . .
(
xCLG
)T (

qCLG
)T]T

N =

[
N1 N2 . . . NP

]T
(4.2)

XP =

[(
xP1
G
)T (

xP2
G
)T

. . .
(
xPMG

)T]T
where

xCiG is a 3 × 1 vector modeling the position of the camera at pose i, i = 1, 2 . . . , L,

in the global earth-centered-earth-fixed (ECEF) coordinate system,

qCiG is a 3× 1 quaternion vector representation of the attitude of the camera at pose

i, i = 1, 2 . . . , L, in the global earth-centered-earth-fixed (ECEF) coordinate

system,

Nk is the integer-valued phase ambiguity for the kth satellite pair, k = 1, 2 . . . , P ,

assumed constant so long as both the reference and rover GNSS receivers

retain phase lock on the signals tracked, and

x
Pj
G is a 3× 1 vector modeling the position of the jth point feature, j = 1, 2 . . . ,M ,

in the global earth-centered-earth-fixed (ECEF) coordinate system.
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4.2.2 Measurement Models

The batch estimator’s measurement model relates the point feature and

GNSS carrier-phase measurements to the state.

4.2.2.1 Point Feature Measurement Model

The measurement of the jth point feature taken at pose i is modeled as

y
pj
i = hy

(
x
pj
Ci

)
+ w

pj
i =

[
x
pj
Ci
z
pj
Ci

y
pj
Ci
z
pj
Ci

]T
+ w

pj
i (4.3)

where hs(·) is the non-linear perspective projection measurement model, relating

the 2×1 point feature measurement y
pj
i to the 3×1 position of the jth point feature

referenced to the ith the camera frame x
pj
Ci . w

pj
i is zero-mean Gaussian white noise.

x
pj
Ci is related to the state variables through the equation:

x
pj
C =


x
pj
C

y
pj
C

z
pj
C

 =
(
R
(
qCG
))T (

x
pj
G − xCG

)
(4.4)

where R(·) is the 3×3 rotation-matrix-representation of the camera attitude defined

by qCG. As described in [126], it is assumed that a calibrated camera is used and

that any distortion caused by the lens is removed by passing the raw measurements

through the inverted distortion model prior to passing the measurements to the

estimators. This enables the distortion-free point feature measurements to be aptly

described by the pinhole-type prospective projection model of (4.3).

The non-linear point feature measurement model of (4.3) can be linearized

with respect to the state to form the following linearized measurement model

y
pj
i ≈ hy

(
x̄CiG , q̄

Ci
G , x̄

pj
G
)

+Hj
i |X̄BA

∆XBA + w
pj
i (4.5)
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where

Hj
i |X̄BA

=
∂hy
∂XBA

(4.6)

=

[
0, . . . , 0,

∂hy

∂xCiG
,
∂hy

∂δeCiG
, 0, . . . , 0,

∂hy

∂x
Pj
G

, 0, . . . , 0

]∣∣∣∣∣
X̄BA

(4.7)

is the 1× (6L+ P + 3M) Jacobian matrix, δeCiG is the 3× 1 minimal attitude rep-

resentation of the differential quaternion δqCiG [126, 133]. As specified in [126], “dif-

ferential quaternions represent a small rotation from the current attitude to give an

updated estimate of the attitude through the equation

q′ = δq(δe)⊗ q (4.8)

where q′ is the updated attitude estimate, ⊗ represents quaternion multiplication,

and δq(δe) is the differential quaternion”. ∂hy

∂x
Ci
G

, ∂hy

∂δe
Ci
G

, and ∂hy

∂x
Pj
G

are the partial

derivatives of (4.3) with respect to the relevant state elements and can be expanded

as:

∂hy

∂xCiG
=
∂hy

∂x
Pj
C

∂x
Pj
C

∂xCiG
(4.9)

∂hy

∂δeCiG
=
∂hy

∂x
Pj
C

∂x
Pj
C

∂δeCiG
(4.10)

∂hy

∂x
Pj
G

=
∂hy

∂x
Pj
C

∂x
Pj
C

∂x
Pj
G

(4.11)
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where

∂hy
∂x

pj
C

∣∣∣∣
X̄

=


1

z̄
pj
C

0
−x̄pjC(
z̄
pj
C
)2

0
1

z̄
pj
C

−ȳpjC(
z̄
pj
C
)2

 (4.12)

∂x
Pj
C

∂xCiG

∣∣∣∣∣
X̄

=−
(
R
(
q̄CG
))T

(4.13)

∂x
Pj
C

∂δeCiG

∣∣∣∣∣
X̄

=− 2
(
R
(
q̄CG
))T [(

x̄
pj
G − x̄CG

)
×
]

(4.14)

∂x
Pj
C

∂x
Pj
G

∣∣∣∣∣
X̄

=
(
R
(
q̄CG
))T

(4.15)

where [(·)×] represents the cross product equivalent matrix of the argument defined

as [126]

[x×] =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (4.16)

where xi is the ith element of x.

4.2.2.2 GNSS Carrier Phase Measurement Model

The DD GNSS carrier phase measurement of satellite pair k taken at the

time of pose i, ti, is modeled as

ykφ,i ,
[
φk

A,i − φ1
A,i

]
−
[
φk

B,i − φ1
B,i

]
, (4.17)

where

φβα,i, α ∈ {A,B}, β ∈ {1, 2, . . . , P}, is the undifferenced carrier phase mea-

surement at ti between receiver α and satellite β. As seen, satellite 1 is the common

reference satellite. ykφ,i, which as units of meters, can be related to the camera po-

sition and integer ambiguity state elements xCiG and Nk of (4.2) by the following
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nonlinear measurement model [57]:

ykφ,i = hφ
(
xCiG ,q

C
G, N

k
)

+ wj1
AB,i (4.18)

= rk
AB,i + λNk + wk

AB,i (4.19)

where

rk
AB,i ,

(
rk

A,i − r1
A,i

)
−
(
rk

B,i − r1
B,i

)
(4.20)

is the DD range between the two receivers and two satellites and

λ is the GNSS signal wavelength;

Nk is the integer ambiguity for the kth satellite pair, as defined previously;

wk
AB,i is the DD carrier phase measurement error at ti;

rβα,i ,
∥∥∥xβi − xα,i

∥∥∥ , α ∈ {A,B}, β ∈ {1, 2, . . . ,Mk}, is the range between receiver α

and satellite β at ti, where ‖·‖ represents the Euclidean norm; rβB,i is expanded

below to relate this range to the estimator state elements.

rβA,i ,
∥∥∥xβi − xα,i

∥∥∥ , β ∈ {1, 2, . . . , P}, is the range between the antenna of reference

receiver A and satellite β at ti, where ‖·‖ represents the Euclidean norm;

rβB,i ,
∥∥∥xβi − xα,i

∥∥∥ =
∥∥∥xβi − (xCiG +R

(
qCG
)
xAB
C
)∥∥∥ , β ∈ {1, 2, . . . , P}, is the range

between the antenna of mobile receiver B—the receiver attached to the camera—

and satellite β at ti.

xα,i is the 3 × 1 absolute position of the GNSS antenna of receiver α ∈ {A,B} at

the time of signal reception ti, in the global coordinate frame; and

xβi is the 3× 1 absolute position of satellite β ∈ {1, 2, . . . , P} at the time of signal

transmission, in the global coordinate frame.
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xAB
C is the 3 × 1 position of receiver B’s GNSS antenna in the camera coordinate

frame, which is constant so long as the antenna and camera are rigidly con-

nected to the same platform.

rβB,i is the range between the antenna of mobile receiver B—the receiver attached to

the camera—and satellite β at ti. It can be related to the state elements through

the following model

rβB,i ,
∥∥∥xβi − xB,i

∥∥∥ (4.21)

=
∥∥∥xβi − (xCiG +R

(
qCG
))

xACi

∥∥∥ , β ∈ {1, 2, . . . , P}, (4.22)

where xACi is the fixed 3× 1 position of receiver B’s GNSS antenna in the Ci frame.

This term is typically non-zero due to the physical offset between the GNSS an-

tenna’s phase center and the center of the camera lens.

The non-linear GNSS carrier phase measurement model of (4.18) can be

linearized with respect to the state information to form the following linearized

measurement model:

ykφ,i ≈ hφ
(
x̄CiG , q̄

C
G, N̄

k
)

+Hk
φ,i|X̄BA

∆XBA + wj1
AB,i (4.23)

where

Hk
φ,i|X̄BA

=
∂hφ
∂XBA

(4.24)

=

[
0, . . . , 0,

∂hφ

∂xCiG
,
∂hφ

∂δeCiG
, 0, . . . , 0,

∂hφ
∂Nk

, 0, . . . , 0

]∣∣∣∣∣
X̄BA

(4.25)

is the 1×(6L+ P + 3M) Jacobian matrix, where
∂hφ

∂x
Ci
G

,
∂hφ

∂δe
Ci
G

, and
∂hφ
∂Nk are the partial

derivatives of (4.3) with respect to the relevant state elements and can be expanded
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as:

∂hφ

∂xCiG

∣∣∣∣∣
X̄

=
(
ˆ̄r1

B,i − ˆ̄rjB,i
)T

(4.26)

∂hφ

∂δeCiG

∣∣∣∣∣
X̄

=2
(
ˆ̄r1

B,i − ˆ̄rjB,i
)T [

R
(
q̄CG
)

xACi×
]

(4.27)

∂hφ
∂Nk

∣∣∣∣
X̄

= λ (4.28)

(4.29)

where

ˆ̄rβB,i ,
xβi − x̄B,i∥∥∥xβi − ¯xB,i

∥∥∥ (4.30)

is the unit vector pointing from x̄B,i to xki . x̄B,i is the prior position estimate of

receiver B’s GNSS antenna phase center, which can be modeled as a function of

prior state elements as follows:

x̄B,i =
(
x̄CiG +R

(
q̄CG
))

xACi . (4.31)

4.2.3 State Estimation

Optimal maximum a posteriori state estimates, x̂k and n̂k, k = 1, 2, . . . , can

be produced by incorporating all GNSS carrier phase and feature point measure-

ments into a cost function and minimizing the cost as a function of the state.

4.2.3.1 Cost Function

The cost function can be written as a function of the state XBA as follows:

fNL (XBA) =
L∑
i=1

[∥∥∥R−1/2
yφ,i

(
yφ,i − hφ

(
xCiG ,q

Ci
G ,N

))∥∥∥
+

M∑
j=1

∥∥∥R−1/2

y
pj
i

(
y

pj
i − hy

(
xCiG ,q

Ci
G ,x

pj
G
))∥∥∥] (4.32)
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where y
pj
i and hy

(
xCiG ,q

Ci
G ,x

pj
G
)
, for i = 1, 2 . . . , L, j = 1, 2 . . . ,M , are the point

feature measurements and measurement models, as defined previously, yφ,i and

hφ
(
xCiG ,q

C
G, N

)
are stacked vectors of the previously defined GNSS carrier phase

measurements and measurement models at pose i for i = 1, 2 . . . , L, expanded as

yφ,i ,
[
y1
φ,i, y

2
φ,i, . . . , y

P
φ,i

]T
(4.33)

hφ
(
xCiG ,q

C
G, N

)
,



hφ
(
xCiG ,q

C
G, N

1
)

hφ
(
xCiG ,q

C
G, N

2
)

...

hφ
(
xCiG ,q

C
G, N

P
)


, (4.34)

and

R
y
pj
i

, σ2
pji



1 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1


(4.35)

and

Ryφ,i , σ2
φi



4 2 . . . 2

2 4
...

...
. . . 2

2 . . . 2 4


(4.36)

are the measurement covariance matrices for the feature point and carrier phase mea-

surements, respectively, whose inverse square root are used to normalize the noise in

the measurements. σpji
is the standard deviation of the point feature measurement

noise, in pixels, for i = 1, 2 . . . , L, j = 1, 2 . . . ,M , and σφi is the standard devia-

tion of the undifferenced carrier phase measurements, in meters, for i = 1, 2 . . . , L.

The measurement noise is assumed zero mean and uncorrelated in time. Such is a
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reasonable assumption for feature point measurements, in general, and for a GNSS

receiver antenna that is in motion.

Minimization of (4.32) is performed by linearizing the function about an

initial guess of the state X̄BA and then solving for the incremental state update

∆XBA, as described in the next two subsections.

4.2.3.2 Linearized Cost Function

The linearized form of (4.32) can be written as a function of ∆XBA as follows:

fL (∆XBA) |X̄BA
=

L∑
i=1

[∥∥∥R−1/2
yφ,i

(z̄φ,i −Hφ,i∆XBA)
∥∥∥ (4.37)

+
M∑
j=1

∥∥∥R−1/2

y
pj
i

(
z̄ji −Hj

i ∆XBA

)∥∥∥]

where

z̄ji , y
pj
i − hy

(
x̄CiG , q̄

Ci
G , x̄

pj
G
)

(4.38)

and

z̄φ,i , yφ,i − hφ
(
x̄CiG , q̄

C
G, N̄

)
. (4.39)

Hφ,i is a vector of stacked Jacobian matrices of the GNSS carrier phase measurement

model at pose i, i = 1, 2 . . . , L, giving

Hφ,i ,
[
H1
φ,i|X̄BA

, H2
φ,i|X̄BA

, HP
φ,i|X̄BA

]T
, (4.40)

and Hj
i is the Jacobian matrix of the point feature measurement model, defined

previously.
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4.2.3.3 Minimization of the Linearized Cost Function

According to the first-order necessary conditions for the minimization of a

linear function, the minimization of (4.37) can be achieved by setting its gradient

with respect ∆XBA to zero and solving for ∆XBA [77]. This gives

0 =∇∆XBA
f1 (∆XBA) (4.41)

=
L∑
i=1

[
− (Hφ,i)

TR−1
yφ,i

(z̄φ,i −Hφ,i∆XBA) (4.42)

+
M∑
j=1

−(Hj
i )
TR−1

y
pj
i

(
z̄ji −Hj

i ∆XBA

) ]
. (4.43)

Bringing the unknown terms to the left-hand side and known terms to the right-hand

side of the equation, we arrive at

L∑
i=1

[
(Hφ,i)

TR−1
yφ,i
Hφ,i +

M∑
j=1

(Hj
i )
TR−1

y
pj
i

Hj
i

]
∆XBA (4.44)

=
L∑
i=1

[
(Hφ,i)

TR−1
yφ,i

z̄φ,i +
M∑
j=1

(Hj
i )
TR−1

y
pj
i

z̄ji

]

After performing the summations, (4.44) can be re-written in matrix form, giving

 U W

W T V



∆XC

∆N


∆XP


︸ ︷︷ ︸

∆XBA

=


εc
εn


εp

 , (4.45)

where ∆XC, ∆N, and ∆XP are the components of ∆XBA corresponding to incre-

ments to the the camera pose, the carrier phase integer ambiguity, and the point

feature state elements, respectively. Note that, due to the integer nature of N, ∆N

is also integer, and thus we cannot solve for an exact solution to (4.45). We shall

instead solve for ∆XBA subject to this integer-state constraint, which minimizes the

difference between both sides of (4.45).
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V in (4.45) is sparse. By sparse, we mean that V is block diagonal with

3 × 3 block diagonal elements corresponding to each point feature location. Such

sparsity can be taken advantage of here in our combined CDGNSS-BA estimator—

as in traditional image-only bundle adjustment problems [127]—to more efficiently

solve for the minimizing ∆XBA in (4.45); rather than inverting the entire matrix

on the left side of (4.45), we can first pre-multiply both sides of (4.45) by a special

matrix [127], giving I −W (V )−1

0 I


 U W

W T V



∆XC

∆N


∆XP



=

 U −W (V )−1W T 0

W T V



∆XC

∆N


∆XP



=

 I −W (V )−1

0 I



εc
εn


εp

 ,

(4.46)

and then solve for ∆XC, ∆N, and ∆XP incrementally, as follows∆X̂C

∆N̂

 =
(
U −W (V )−1W T

)−1


εc
εn

−W (V )−1 εp

 (4.47)

where the “^” on ∆XC and ∆N denotes these being estimates on the basis of float

ambiguities. That is, these are the estimates on the basis of non-integer-constrained

estimate for ∆N. The integer-constrained or “fixed” estimate of ∆N, denoted ∆̌N,

can be determined using the Least-squares Ambiguity Decorrelation Adjustment

(LAMBDA) method [15] to solve the following minimization problem

∆̌N = argmin
∆N∈ZP

(
∆N̂−∆N

)T
Q−1

N

(
∆N̂−∆N

)
(4.48)
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where  QXC QXCN

QNXC QN

 , U −W (V )−1W T . (4.49)

The fixed ambiguity estimate ∆Ň can then be used to determine ∆X̌C, the estimate

of ∆XC on the basis of integer-constrained ambiguities [15]:

∆X̌C = ∆X̂C −QXCNQ
−1
N

(
∆N̂−∆N

)T
(4.50)

Lastly, the state increment for the point feature positions ∆XP can be determined

via back-substitution, giving

∆X̌P = (V )−1

εp −W T

∆X̌C

∆Ň


 . (4.51)

We now have all the components to form the state increment estimate

∆X̂BA =


X̌C

Ň

X̌P

 (4.52)

that minimizes the linearized cost function of (4.37).

4.2.3.4 Solution Computational efficiency

Note that the only matrix inversions necessary during this minimization were

V −1, which, due to the sparse block-matrix-form of V , is computationally efficient

to compute, and
(
U −W (V )−1W T

)
in (4.47), which, although not sparse like V ,

is only of dimension 6L+ P .

4.2.3.5 Levenberg-Marquardt Algorithm

The procedure outlined in Sec. 4.2.3.3 to determine the state increment

estimate ∆X̂BA defines one iteration of the Levenberg-Marquardt algorithm (LMA),
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a popular iterative non-linear solver. To converge on the solution, it is often the

case that multiple LMA iterations are needed. The full procedure for LMA is as

follows:

1. Given a prior for the state X̄BA, use the procedure of Sec. 4.2.3.3 to determine

the state increment estimate ∆X̂BA.

2. Accumulate ∆X̂BA with the prior state estimate, giving the updated state

estimate,

X̂BA , X̄BA+̃∆X̂BA (4.53)

where the +̃ term represents the accumulation of all state elements via stan-

dard addition except for the quaternion elements, which must be accumulated

via quaternion multiplication as outlined in (4.8).

3. Insert X̂BA into (4.32) and compute a new cost.

4. Compare this new cost to the old cost computed on behalf of the estimate from

the previous LMA iteration or the initial guess, if this is the first iteration.

5. If the cost decreased, then X̂BA is set to be the prior, giving

X̄BA = X̂BA, (4.54)

and the algorithm skips to the last step.

6. If the cost has increased, then the diagonal elements of U and V are inflated

by a multiplicative factor as follows [126, 127]:

U∗ij =

 (1 + λ)Uii ; i = j

Uij ; otherwise

V ∗ij =

 (1 + λ)Vii ; i = j

Vij ; otherwise

(4.55)
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and the minimization procedure of Eqs. (4.47)– (4.52) is repeated with U∗

and V ∗ in place of U and V to obtain a new X̂BA and thus a new cost. This

current step is repeated, multiplying λ by a factor of 10 each repeat until the

cost has decreased (as compared to the cost from the previous LMA iteration).

Then, skip to step 3.

7. Check for LMA convergence is determined by comparing (1) the norm of the

estimated state increment vector and (2) the change in the cost at the end of

each iteration to threshold values [126]. If both threshold checks are passed,

then the algorithm is declared to have converged and this procedure exits.

Otherwise return to step 1, and repeat.

4.2.4 Covariance

The covariance matrix of the VISRTK solution, assuming an entirely real-

valued state, could be solved for by inverting the LHS matrix of the normal equation

in (4.45), as is typical in batch least squares estimation [77], giving

Pxx =

 U W

W T V


−1

. (4.56)

Furthermore, this inversion can be simplified [126, 127], giving

Pxx =



A︷ ︸︸ ︷Pcc Pcn

Pnc Pnn


Pcp

Pnp

[
P T

cp P T
np

]
Ppp


, (4.57)

where

A =

Pcc Pcn

Pnc Pnn

 ,
(
U −WV −1W T

)−1
(4.58)
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is the joint camera pose–integer ambiguity covariance matrix, with Pcc, Pnn, and Pcn

being the camera pose, integer ambiguity and camera pose/integer ambiguity cross

covariance matrices, respectively. Additionally,

Ppp , V −TW TAWV −1 + V −1 (4.59)

is the point feature position covariance matrix andPcp

Pnp

 , −AWV −1 (4.60)

is a matrix containing the cross-covariances between the camera pose and integer

ambiguity states and the point feature position state.

However, since the state component N is constrained to be integer-valued,

it is often the case that it is resolved correctly by the VISRTK estimator. Con-

sequently, the covariance can be adjusted to reflect the (significant) increase in

accuracy to the other state components under the assumption that N is correct. In

particular, the covariance for the non-integer-valued state elements conditioned on

N can be shown to be:

Pcc|N = Pcc − PcnP
−1
nn P

T
cn (4.61)

and

Ppp|N = Ppp − P T
npP

−1
nn Pnp (4.62)

4.3 VISRTK Comparison to Existing Estimation Architec-

tures

The current chapter is not the first to suggest combining image measurements

with GNSS measurements in a bundle-adjustment-type estimation framework as
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outlined in the previous section. This section will discuss trade-offs between the

current chapter’s framework and two existing approaches.

4.3.1 Similarity Transform

One existing way to combine GNSS measurements with image measurements

is to do so in a very loosely coupled manner by computing camera pose and point

feature position estimates using standard bundle adjustment in the vision coordinate

frame, then computing a similarity transformation, i.e., a translation vector, rotation

matrix, and scale factor, to translate the estimates from the vision frame into the

globally-referenced GNSS reference frame.

A similarity transformation is computed by minimizing the squared differ-

ence between the the camera positions computed via GNSS measurements those

computed via standalone bundle adjustment and translated into the GNSS frame.

Such minimization can be solved in closed form using the so-called Horn transforma-

tion [134] if the GNSS antenna and camera centers are aligned or iteratively using

a modified form of the Horn transformation [126] if the centers are offset (but still

rigidly connected) as is more commonly the case.

The Horn Transform minimizes the following cost function [126]:

g
(
s,xVG ,q

V
G
)

=
1

2

L∑
i=1

∣∣∣∣∣∣∣∣ 1√
s

(
x̂AiG − xVG −R

(
qVG
)
R
(
q̂CiV
)
xAC
)

−√sR
(
qVG
)

x̂CiV
∣∣∣∣2 (4.63)

where s, xVG , and qVG are the scale-factor, translation, and rotation unknowns, respec-

tively, parameterizing the transform from the vision frame to the GNSS reference

frame, x̂CiV and q̂CiV are the estimates of the camera position and attitude, respectively,

in the vision frame at each epoch i for i = 1, 2 . . . , L, computed from the stand-alone
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bundle adjustment algorithm, and x̂AiG is the position of the GNSS antenna phase

center in the GNSS reference frame, computed from the GNSS measurements.

Once the parameter estimates ŝ, x̂VG , and q̂VG characterizing the similarity

transform from the vision to the GNSS reference frame similarity transform are de-

termined, the camera pose and feature point position estimates can be transformed

into the GNSS reference frame, giving

x̂CiG =x̂CiV + xVG

q̂CiG =qVG ⊗ qCiV (4.64)

x̂
Pj
G = + x̂VG

for i = 1, 2 . . . , L.

Despite that the end result of the horn transform being that the camera

pose and feature positions are in the globally reference GNSS reference frame, the

downside to this loosely-coupled similarity transform approach is as follows. Errors

in the camera pose and point feature position estimates computed via BA in the

vision frame will still remain in the GNSS frame after applying the similarity trans-

form. This downside is particularly notable over datasets during which the camera

is traveling a far distance or there is little point feature overlap between consecutive

camera frames. In these scenarios, the camera pose errors will accumulate from

frame-to-frame resulting in a significant camera position and orientation drift.

4.3.2 Loosely Coupled

A second existing way to combine GNSS measurements with image measure-

ments is to do so by combining GNSS position measurements with camera feature

point measurements into a weighted cost function and minimizing the cost as a func-

tion of the camera poses and feature point positions. The position measurements
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are obtained by a computing a standard pseudorange- or CDGNSS-based solution.

By analogy to the coupling of an IMU+GNSS data, this level of coupling—at the

level of GNSS positioning solutions—is termed loosely coupled. In particular, the

cost function that is minimized is as follows:

gNL (XBA) =
L∑
i=1

[∥∥∥R−1/2

xAG,i

(
x̃AG,i −

(
xCiG +R

(
qCG
)
xAB
C
))∥∥∥

+
M∑
j=1

∥∥∥R−1/2

y
pj
i

(
y

pj
i − hy

(
xCiG ,q

Ci
G ,x

pj
G
))∥∥∥] (4.65)

where x̃AG,i is the measurement of the position of the GNSS antenna at epoch i,

i = 1, 2 . . . , L and the other terms are as defined previously.

Like the previously discussed similarity transform approach, the end result

of this loosely-coupled approach is that estimates of camera pose and point fea-

ture positions are in a global coordinate frame. Unlike, the similarity transform

approach, which simply scales, rotates, and translates the BA-based camera pose

and point feature position estimates from the camera coordinate system into the

global coordinate system, this approach enables the GNSS measurements to correct

relative errors in the BA camera pose and point feature position estimates. This is

due to the presence of the GNSS position measurements in the first part of the cost

function of (4.65).

4.3.3 Tightly Coupled VISRTK (Current Solution)

The current chapter’s approach combines GNSS carrier phase and point fea-

ture measurements to simultaneously compute (1) camera pose and point feature

position estimates in the global coordinate frame and (2) CDGNSS integer ambigu-

ities. By analogy to the coupling of an IMU+GNSS data, this level of coupling—at

the level of GNSS carrier phase observables—is termed tightly coupled. As with
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the loosely coupled approach discussed previously, this approach enables the GNSS

measurements to correct relative errors in the camera pose and point feature posi-

tion estimates through a least squares cost minimization (see (4.32)). As compared

to the loosely coupled approach, however, this tightly-coupled approach has the

following advantages:

• More Robust: Much like the benefit that IMU measurements offer to an IMU-

CDGNSS framework, the added information from the feature point measure-

ments are in effect a tight constraint on the receiver motion profile. As such,

these measurements can be used within the estimator to detect phase mea-

surement outliers and cycle slips and compensate for these. This results in a

more accurate camera positioning solution than would have been achievable

on the basis of carrier phase measurement alone or a loosely-coupled approach.

• Faster Initialization: The motion profile constraint that results from the

feature point measurements can additionally be used to reduce the CDGNSS

time to ambiguity resolution (TAR) as compared to the TAR achievable on the

basis of carrier phase measurement alone, as shown in [35] for an arbitrarily

provided motion profile. Sections 4.4 and 4.6 will demonstrate this benefit

using simulated and real data, respectively.

• More Optimal: The current approach is optimal under the maximum a poste-

riori criteria. It enables the CDGNSS carrier phase and image measurements

to be fused into the same non-linear estimator, rather than in two separate

estimators, as in the loosely coupled approach, where losses resulting from

the non-linearity of the CDGNSS measurement model and the carrier phase

integer ambiguity resolution prevent the two methods from being equivalent.
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4.3.4 Iterative Loosely Coupled

Yet another approach would be an iterative, back and forth loosely-coupled

solution where the output from of the loosely coupled solution described previously

is used as a prior in re-computing a CDGNSS solution, the output of which is

then again provided to the loosely-coupled algorithm. This is repeated a number

of times until convergence. This approach, while removing the optimality downside

of the loosely coupled approach, is no better than the tightly coupled solution and

would also be more computationally demanding. As such, the approach will not be

considered in the subsequent analysis.

4.4 VISRTK Demonstration on Simulated Data

This section analyzes the results of the VISRTK algorithm run on simulated

data with noise statistics that model a smartphone camera and GNSS antenna setup.

Figure 4.1 shows the results. The red dots in the center of the figure represent the

estimated position of the feature points, which were simulated to be uniformly dis-

tributed around a cylinder of radius 4 meters. 15 camera poses were simulated in

total. Point feature measurements were simulated as would be collected from a series

of 15 images, one taken at each camera pose. Additionally, carrier phase measure-

ments were simulated to be collected from signals received by a GNSS antenna fixed

atop the camera at the same time epoch that each image was taken. Epochs are

simulated to be spaced 30 seconds apart, with the camera moving counterclockwise

around the cylinder’s center. The cylinder is assumed non-transparent, so only mea-

surements from non-occluded point features are simulated at each epoch. A second

GNSS receiver, acting as the reference, with a survey-grade antenna was simulated

to be positioned at the center of the cylinder, also collecting carrier phase measure-
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Figure 4.1: Using VISRTK, a three-dimensional, globally referenced, scene is recon-

structed from simulated data. The red dots represent the estimated position of the

feature points, which were simulated to be uniformly distributed along an cylinder of

radius 4 meters. 15 camera poses were simulated in total, evenly distributed around

the cylinder’s center at a radius of 14 meters. Measurements of each feature point

in view and a single epoch of GNSS carrier phase measurements were simulated to

be collected at each pose. The reference frame of the plot is in the ECEF coordi-

nate frame, with the origin translated to be that of the reference GNSS antenna,

which was simulated to be located at the origin of the cylinder, also collecting GNSS

carrier phase measurements.
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Table 4.1: Simulated Data Parameters

σpji
σφi,B σφi,A xACi

Point

Density
Num. SVs

Time

Between

Epochs

1 pixel 8 mm 2 mm [0, -.05, -.015] m 3 points/m2 6 30 s

point index
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Figure 4.2: VISRTK 3-dimensional point position estimate errors for the 533 points

from the simulated seen shown in Fig. 4.1. Errors are in the sub-centimeter range.

ments from the same set of satellites. The GNSS carrier phase measurements from

this reference antenna were double-differenced with those collected by the antenna

atop the camera. The remainder of the simulation parameters are listed in Table

4.1.

Figures 4.2 and 4.3 display the point feature position and camera pose errors,

respectively, from a VISRTK solution computed using measurements from all 15

poses. To compute these errors the known truth values at each point or camera

pose index are subtracted from the VISRTK state estimates. A majority of the

point feature position estimates are accurate to less than 0.5 millimeters. The

camera positions are accurate to less than 1 cm and the camera orientations are
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Figure 4.3: VISRTK 3-dimensional camera position (top panel) and attitude (bot-

tom panel) estimate errors for the 15 camera poses illustrated in Fig. 4.1. Camera

positional errors are in the sub-centimeter range and attitude errors are in the sub-

degree range.
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accurate to less than 0.1 degrees.

4.5 Demonstrating VISRTK Key Advantages

This section demonstrates using simulated data two advantages of the VIS-

RTK estimation architecture over the two preexisting estimation architectures dis-

cussed in Sec. 4.3, the similarity transform architecture and the loosely-coupled

architecture.

4.5.1 Reduced Time to Successful Ambiguity Resolution

One advantage of VISRTK over the existing approaches is that it enables

information the image measurements to aid in the resolution of the CDGNSS integer

ambiguities, enabling a shorter TAR as compared to existing approaches. Feature

point measurements and carrier phase ambiguities are jointly processed within the

same non-linear cost function (see (4.32)), enabling the feature point measurements

to aid in the estimation of the integer ambiguity vector N. Such aiding is not possible

in existing frameworks, e.g., the Horn transform and loosely-coupled framework,

as a standalone CDGNSS solution is carried out in advance. Consequently, for

these existing frameworks, the information transfer is one way; from the standalone

CDGNSS solution (in which the integer ambiguities were already resolved) to the

horn transform or loosely coupled framework.

Figure 4.4 compares the VISRTK ambiguity success rate (ASR) as a function

of the number of measurement epochs used in the solution to that of (1) a standalone

CDGNSS solution computed on behalf of GNSS carrier phase measurements only

and (2) a standalone CDGNSS solution with a noise-free antenna motion profile

prior, i.e., assuming the between-epoch relative trajectory of the GNSS antenna is
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Figure 4.4: Plot comparing the VISRTK ASR (orange dashed trace), the standalone

CDGNSS ASR (blue solid trace), and the CDGNSS ASR given a perfect motion

profile (yellow dash-dotted trace) as a function of the number of measurement epochs

used in the solution. All were computed on the basis of simulated data, characterized

in Table 4.1. It is clear that the motion constraint offered by the addition of feature

point measurements enables faster ambiguity resolution for VISRTK, approaching

the TAR of the CDGNSS solution in which an error-free motion constraint was

provided.

known perfectly and provided to the standalone CDGNSS estimator (see [35]). All

three solutions were computed using simulated measurements from the simulation

scenario depicted in Fig. 4.4, the parameters for which are listed in Table 4.1. It is

clear from the figure that the information provided to the VISRTK estimator by the

feature point measurements resulted in faster ambiguity resolution than standalone

CDGNSS for which no feature point measurements were available. This benefit to

TAR is similar to that gained by a CDGNSS solution with an a priori motion profile,

as evidenced by the orange and yellow traces in Fig. 4.4 both outperforming that

of the blue trace. The feature point measurements effectively act as a near-perfect

antenna motion constraint within VISRTK, constraining the relative camera pose
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and positions. As seen in the figure, however, the effective motion profile constraint

offered by the image measurements, while very good, is still noisy, degrading its

benefit to ASR as compared to that of a perfect motion profile prior.

4.5.2 Jumpstart VISRTK

A second advantage of VISRTK is that it can incorporate prior information

on the position of identified point features to improve the estimability of the esti-

mator’s state, particularly, the integer ambiguity state component N. This process

shall be termed “Jumpstart VISRTK,” as this information results in a speed up

or jumpstart of the ambiguity resolution process, in many cases, leading to single-

epoch or instantaneous ambiguity resolution, e.g., successful ambiguity resolution

requiring only one epoch of measurements.

To include a priori point feature position information within the batch esti-

mation framework, the cost function of (4.32) is expanded as follows:

fNL (XBA) =
L∑
i=1

[∥∥∥R−1/2
yφ,i

(
yφ,i − hφ

(
xCiG ,q

Ci
G ,N

))∥∥∥︸ ︷︷ ︸
Term involving GNSS measurements

+
M∑
j=1

∥∥∥R−1/2

y
pj
i

(
y

pj
i − hy

(
xCiG ,q

Ci
G ,x

pj
G
))∥∥∥︸ ︷︷ ︸

Term involving point feature measurements

]

+
M∑
j=1

∥∥∥∥R−1/2

x̄
pj
G

(
x̄

pj
G − x

pj
G
)∥∥∥∥︸ ︷︷ ︸

Term involving a priori point feature information

(4.66)

where x̄
pj
G , j = 1, 2, . . . ,M are the 3× 1 point position priors and

R
x̄
pj
G

, σ2

x̄
pj
G

I3×3, j = 1, 2, . . . ,M (4.67)
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3 × 3 measurement covariance matrices associated with these priors, where σ
x̄
pj
G

,

j = 1, 2, . . . ,M model the per-dimension standard deviation. For the subset of

feature points, k ⊆ {1, 2, . . . ,M}, for which no prior information is available, the

standard deviation associated with these points is set to infinity, i.e., σx̄pk
G

=∞, k ⊆

{1, 2, . . . ,M}.

Figure 4.5 illustrates a reconstructed scene whereby 50 feature points (shown

in blue) have centimeter-accurate positional priors that are provided to the VISRTK

estimator and used to compute single-epoch VISRTK solution. Using this prior

information along with measurements of the 50 feature points and the GNSS carrier

phase measurements from this 1 camera frame, the camera’s pose was estimated

in the global ECEF reference frame to sub-centimeter and sub-degree accuracy.

Accordingly, the carrier phase integer ambiguities were also successfully estimated.

Figure 4.6 illustrates the results of a VISRTK solution computed using point

feature and GNSS measurements from 15 cameras frames. The blue points are

the points for which a positional prior was available, the same 50 points and point

priors used in Fig. 4.5. The red points, in contrast, are points for which no prior

information was available. Through linearization and iterative minimization of the

augmented cost function of (4.66), the positional priors were able to aid in the

estimation of all state components, including the CDGNSS integer ambiguity state

vector.

Figure 4.7 compares the ASR of Jumpstart VISRTK solution whose results

are visualized in Fig. 4.6 to that of standalone CDGNSS solution. It is clear that

the VISRTK solution for which prior information on the location of the 50 feature

points was available enables accurate integer ambiguity resolution, even on the basis

of measurements from the first camera frame. Accordingly, unlike would be the

case when incorporating prior point feature position information into the Horn or
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Figure 4.5: A 3D reconstruction using Jumpstart VISRTK from simulated GNSS

and GNSS carrier phase data collected by the first camera frame of the simulation

scenario outlined in. The 50 points shown (in blue) are the only points observable

from the measurements made by a single camera frame as they have positional prior

information associated with them. This prior information along with the GNSS and

feature point measurements was by VISRTK to accurate estimate the pose of the

camera as well as successfully resolve the carrier phase ambiguities.
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Figure 4.6: A 3D reconstruction using Jumpstart VISRTK from simulated feature

point and GNSS carrier phase measurements collected by the first camera frame

of the simulation scenario illustrated in Fig. 4.1. The 50 points (shown in blue)

have positional prior information associated with them and are thus the only points

whose positions are observable on the basis of measurements from a single camera

pose. This positional prior information along with the GNSS and feature point

measurements were ingested by VISRTK and used to accurately estimate the pose

of the camera, while successfully resolving the carrier phase ambiguities associated

with the GNSS carrier phase measurements.
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Figure 4.7: Plot comparing the VISRTK ASR (orange dashed trace) and the stan-

dalone CDGNSS ASR (blue solid trace) as a function of the number of measurement

epochs used in the solution. Both were computed on the basis of simulated data,

characterized in Table 4.1, whose results are simulated in Fig. 4.6. Centimeter-

accurate positional priors on the 50 points illustrated in blue in Fig. 4.6 were used

in VISRTK to enable instantaneous ambiguity resolution.
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loosely-coupled frameworks described in Sec. 4.3, Jumpstart VISRTK enables the

carrier phase ambiguity resolution to be aided by this prior information and, in this

simulated scenario, resolved instantaneously, on the basis of feature point and GNSS

measurements from only one camera frame. Furthermore, as illustrated by the blue

trace, when resolving the integer ambiguities using standard CDGNSS in which no

vision measurements are available, it takes 14 frames of GNSS measurements to

resolve the ambiguities correctly.

4.6 VISRTK Demonstration on Real Data

This section describes the results of a VISRTK solution computed using

real data. Data were collected using a VISRTK platform consisting of a Samsung

Galaxy Note 4 smartphone whose camera was used to take images while a low-cost

25 millimeter GPS patch antenna affixed atop the smartphone was used to collect

GPS data. Figure 4.8 illustrates this platform.

4.6.1 Data Collection and Processing

The procedure for collecting images and GPS data for VISRTK processing

was as follows:

1. The VISRTK platform pictured in Fig. 4.8 was affixed atop a tripod with

the smartphone’s camera pointed downward, slightly, toward a scene on the

ground. Fig. 4.9 shows the scene.

2. A photo was taken of the scene while raw intermediate-frequency (IF) GPS

samples were collected from the GPS antenna affixed atop the smartphone.

3. The tripod was moved 25 degrees counter-clockwise in a 2-meter-radius arc
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Figure 4.8: The VISRTK platform consisting of a Samsung Galaxy Note 4 smart-

phone whose camera was used to take images while a low-cost 25 millimeter Abracon

GPS patch antenna affixed atop the smartphone was used to collect raw intermedi-

ate frequency (IF) GPS data. While a user is shown holding the platform here, to

enable spatial synchronization between the images taken and GNSS data collected

from the antenna, most of the data was collected with the platform atop a tripod.
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around the scene.

4. Another photo was taken, again, while was static in the new location.

5. Steps 3 and 4 were repeated until the platform completed a full 360-degree

arc around the scene. 14 photos at 14 different poses were taken in all, spaced

approximately uniformly around the scene. Consecutive poses are separated

in time by approximately 30 seconds.

6. Raw IF GPS samples were collected continuously throughout from the GPS

antenna affixed atop the smartphone and also from a nearby survey-grade

antenna, acting as a reference.

7. Immediately prior to the above data collection, 15 minutes of raw IF GPS

samples were collected from the high-quality patch antenna shown on top of

the sewer grate in Fig. 4.9. These data will be used to determine the accuracy

of the VISRTK solution, as detailed in Sec. 4.6.2.3.

The collected data were next prepared and processed through the VISRTK

algorithm as follows:

1. The smartphone and reference antenna raw IF data streams were provided as

inputs to a software GNSS receiver known as GRID [78–80]. GRID processed

the data and produced as its output undifferenced carrier-phase measurement

time histories for each signal tracked. The time histories were timestamped to

nanosecond accuracy in GPS time.

2. The undifferenced carrier phase measurements produced from the rover an-

tenna (on the VISRTK platform) were time aligned with those from the refer-

ence antenna via interpolation. The aligned time histories were double differ-
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Figure 4.9: One of the 14 images taken of a scene using the VISRTK platform il-

lustrated in Fig. 4.8. The scene, which is on the roof of WRW building at The

University of Texas at Austin, consists of (1) a drop-light, (2) a large metal beam,

and (3) a high-quality GPS patch antenna. Measurements from the this GPS an-

tenna will later be used to provide ground truth when evaluating the accuracy of a

VISRTK solution.

161



enced according to (4.17) to form 6 DD carrier-phase time histories from the

7 highest-elevation GPS satellite signals present in the data.

3. Standalone CDGNSS processing was used to produce from the DD carrier

phase measurement time history a centimeter-accurate position time history.

This position time history was then used to identify and store 14 measurement

epochs during which the tripod was static and a new images was taken.

4. The 14 images were pre-processed using a freely-available structure from mo-

tion tool known as VisualSFM [135–137]. VisualSFM identified feature points

common between 3 or more images and produced measurements of these

points. The tool also provided, in the “vision” reference frame, estimates

of the position of each identified point as well the position and orientation

(pose) of the camera lens when each image was taken.

5. The VisualSFM-produced camera pose estimates in the vision reference frame

and the CDGNSS-produced antenna positions in the global reference frame

(computed in Step 9) were used to compute a similarity transform between the

two reference frames (see the Horn Transform of Eq. (4.63). This transform

produced the scale-factor, translation, and rotation matrix parameters that

were subsequently used to transform the VisualSFM point feature position

and camera pose estimates into the global reference frame (see (4.64)).

6. The resulting transformed estimates were used to form an initial guess for the

VISRTK state (X̄BA).

7. Finally, a VISRTK solution was computed using the iterative LMA outlined in

Sec. 4.2.3.5 with X̄BA, the VisualSFM-produced point feature measurements,

and the DD GNSS carrier phase time history used as inputs.
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Figure 4.10: Using VISRTK, a three-dimensional, globally referenced, scene is recon-

structed from real data collected using the low-cost platform illustrated in Fig. 4.8.

The red dots represent the estimated position of the feature points identified in at

least three of the 14 images taken around the scene, while the square-shaped objects

above the points represent the estimated pose of the camera while each image was

taken. The reference frame of the plot is in the East-North-Up (ENU) coordinate

frame, with the origin translated to be that of the reference GNSS antenna, which

was located east of the scene.

Output from VISRTK are the camera pose estimates, point feature position esti-

mates, and carrier phase integer ambiguity estimates.

4.6.2 Reconstruction Results

Figure 4.10 illustrates the results of VISRTK using measurements from all 14

frames of the data collected via the data collection procedure outlined in Sec. 4.6.1.

The reconstructed scene illustrates the estimated pose of all 14 cameras and the

so-called “sparse point cloud” of estimated feature point positions, in the globally-

163



referenced East-North-Up (ENU) reference frame. The metal pipe, sewer grate, and

the GPS patch antenna which are visible in the scene (see Fig. 4.9) are all apparent

in the sparse point cloud. The next few subsections will further analyze this VISRTK

solution in terms of (1) it’s ability to speed carrier phase ambiguity resolution as

compared to standalone CDGNSS and (2) in terms of its absolute accuracy.

4.6.2.1 TAR Improvement

Figure 4.11 compares the ASR of a VISRTK solution computed on real data

as compared to that of (1) a standalone CDGNSS solution and (2) a standalone

CDGNSS solution aided with an centimeter-accurate antenna motion profile prior.

VISRTK was able successfully resolve the ambiguities when computing a solution

on behalf of 10 (or more) epochs of data (dashed orange trace). CDGNSS, in

comparison required 11 epochs of data to do the same. This improvement was not

as significant as the improvement seen with the simulated data in Fig. 4.7, when

the VISRTK TAR neared that of a solution computed a perfect motion profile,

likely due to incorrectly identified point features in the real data, which loosened

the accuracy of the relative motion profile provided from the image measurements.

4.6.2.2 Jumpstart Improvement

This section analyzes the ASR improvement that comes when performing

jumpstart VISRTK on behalf of the real data collected using the procedure outlined

in Sec. 4.6.1. Figure 4.12 illustrates the Jumpstart VISRTK scene reconstruction

in which 20 of the point features (denoted as large blue points) had position priors.

The positions of these 20 point features were not exactly known, but their positions

were first approximated to millimeter accuracy via a VISRTK solution computed on

behalf of all 14 epochs of measurements. Figure 4.13 illustrates the ASR results as
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Figure 4.11: Plot comparing the VISRTK ASR (orange dashed trace), the stan-

dalone CDGNSS ASR (blue solid trace), and the CDGNSS ASR given a precise

motion profile (yellow dash-dotted trace) as a function of the number of measure-

ment epochs used in the solution. All were computed on the basis of the real data

collected using the procedure outlined in Sec. 4.6.1. The constraint offered by the

addition of feature point measurements enables faster ambiguity resolution for VIS-

RTK as compared to standalone CDGNSS, but not as fast as that facilitated by a

perfect motion profile prior.
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Figure 4.12: A 3D reconstruction using Jumpstart VISRTK solution computed on

the basis of real data collecting using the procedure outlined in Sec. 4.6.1. The 20

points in blue are those for which prior information on their position is available

to the VISRTK algorithm while the points in red are those for which no prior is

available.
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Figure 4.13: Plot comparing the VISRTK ASR (orange dashed trace) and the stan-

dalone CDGNSS ASR (blue solid trace) as a function of the number of measurement

epochs used in the solution. Both were computed on the basis of real data, collected

using the procedure outlined in Sec. 4.6.1. Centimeter-accurate positional priors on

the 20 points illustrated in blue in Fig. 4.12 were used by Jumpstart VISRTK to

enable instantaneous ambiguity resolution as depicted by the VISRTK ASR trace.

compared to a standalone CDGNSS solution. As with the simulated data, Jumpstart

VISRTK facilitates instantaneous ambiguity resolution. This result is significant. It

demonstrates that a low-cost GNSS antenna and a smartphone-grade camera can

be used to remove one of the largest barriers to mass-market centimeter-accurate

positioning today: convergence time. With only a single image and at least 4 pre-

mapped feature points, instantaneous ambiguity resolution is achievable.

4.6.2.3 Accuracy

This section analyzes the accuracy of VISRTK when applied to the real

data collected using the procedure outlined in Sec. 4.6.1. Figure 4.14 illustrates

the metric accurate dense reconstruction of the scene illustrated in Fig. 4.9.
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Figure 4.14: A 3-dimensional metric-accurate dense reconstruction of the scene

illustrated in Fig. 4.9. Dense reconstruction was performed on the output of the

VISRTK-produced pose and sparse point reconstruction illustrated in Fig. 4.10,

with the goal of using dense reconstruction to “add” more points to clearly locate

the center of the GNSS antenna in the scene. The highlighted point in the yellow

bubble denotes the VISRTK+Dense Reconstruction-estimated position of the center

of the surface of the GNSS antenna, which will be compared against the surveyed

location of the antenna to evaluate the VISRTK reconstruction accuracy.
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Table 4.2: GNSS Antenna Position as computed using VISRTK+MVS and

CDGNSS (in meters)

Position East North Up

VISRTK+MVS -24.280 -3.722 -7.438

CDGNSS -24.278 -3.721 -7.440

Difference -0.002 -0.001 0.002

Expected Std. 0.004 0.008 0.005

Dense reconstruction, also known as multi-view stereo (MVS), is a procedure which

takes the original set of images and estimated camera poses and reconstructs a

dense point cloud representation of the scene [138, 139]. Dense reconstruction was

performed after the VISRTK solution using VisualSFM [135] using the original

image files and the VISRTK-estimated camera poses. VisualSFM performed the

dense reconstruction using an underlying MVS toolchain known as Clustering Views

for Multi-View Stereo (CMVS) [138].

As with the sparse point cloud of Fig. 4.10, the dense point cloud produced

from dense reconstruction was globally-referenced to the ENU reference frame. A

point, which was on the surface and in the center of the GNSS antenna pictured in

the scene, was selected, revealing its ENU coordinates (see Fig. 4.14). To evaluate

the accuracy of the VISRTK+MVS solution, this coordinate was compared to the

surveyed location of the antenna, determined from a CDGNSS solution computed on

behalf of the earlier IF data collected from the antenna (see Sec. 4.6.1, step 7). Table

4.2 shows the results. For the CDGNSS surveyed coordinate shown in the table, the

antenna calibration values published by the National Geodetic Survey [140] were

used to translate the surveyed position from that of the antenna’s phase center to
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Figure 4.15: VISRTK 3-dimensional point position estimate errors for the approx-

imately 3500 points shown in Fig. 4.10. A majority of the errors are in the sub-

centimeter range.

that of the center of its top surface. As such, both coordinates (VISRTK+MVS and

CDGNSS) now refer to the position of the center of the antenna’s top surface.

The difference between the VISRTK+MVS solution and the phase-center-

compensated CDGNSS solution is on the millimeter-level. This accuracy falls well

within the VISRTK-estimator’s expected accuracy for points which fall on the top

surface of the antenna, as shown in the last column of Table 4.1. Fig. 4.15 shows

that the per-dimension error standard deviation of most point features is on the

sub-centimeter-level. Consequently, since the VISRTK estimator’s expected point

feature accuracy matches the empirical accuracy, there is some reason to believe

that the estimator’s expected pose accuracy can also be trusted. Figure 4.16 shows

the attitude error and positional error standard deviation for each camera pose. The

expected camera position accuracy is on the sub-centimeter level, while the camera

attitude accuracy is on the sub-degree level.
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Figure 4.16: VISRTK 3-dimensional camera position (top panel) and attitude (bot-

tom panel) estimate errors for the 15 camera poses illustrated in Fig. 4.10. Camera

positional errors are in the sub-centimeter range and attitude errors are in the sub-

degree range.
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Table 4.3: Simulated Data Parameters

σpji
σφi,B σφi,A xACi

Point

Density
Num. SVs

Time

Between

Epochs

1 pixel 8 mm 2 mm [0, -.05, -.015] m 0.3 points/m2 11 30 s

4.6.3 VISRTK Comparison to Existing Frameworks

This section compares, in simulation, the solution accuracy of the VISRTK

tight-coupled framework to that of the existing similarity transform and loosely-

coupled frameworks. Fig. 4.17 shows the VISRTK-reconstructed result of the sim-

ulated scene, whereby 17 cameras are positioned 10 meters from the outside of a

20-meter-radius cylinder of point features, collecting a single epoch of feature point

and GNSS carrier phase measurements at each location. The cameras are purposely

simulated to not complete the circle around the cylinder in order to analyze solution

accuracy under scenario in which the advantages that come from loop closure [3, 4]

are not attainable. Such scenarios are typical as there are many cases in which a

receiver is exploring and does not wish to return to locations to which it has already

been. One of the advantages of VISRTK and also the loosely-coupled approach is

that they integrate the GNSS measurements into their estimators’ cost functions

at a deep enough level to prevent drift and reduce the necessity of loop closure. In

contrast, as the results of this section will reveal, the similarity transform framework

is unable to take advantage of GNSS measurements in a way that prevents drift in

the absence of loop closure.

The full simulation parameters are shown in Table 4.3.

Figures 4.18 4.20 compare the camera pose and point feature position ac-
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Figure 4.17: A VISRTK-produced 3-dimensional scene reconstruction of a simulated

scene, whereby 17 cameras are positioned 10 meters from the outside of a 20-meter-

radius cylinder of point features. A single epoch of feature point and GNSS carrier

phase measurements at each camera pose were provided to the estimator for re-

construction. The circle of cameras was purposefully left “unclosed” to enable the

analysis of the accuracy of the VISRTK framework (and of the other two existing

frameworks presented in Sec. 4.3) under a scenario in which the advantages that

come from loop closure [3, 4] are not realized.
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curacy of the VISRTK and loosely coupled frameworks to that of the similarity

transform framework. The number of GNSS signals are enough to guarantee near-

instantaneous integer ambiguity resolution for both the VISRTK framework and for

the standalone CDGNSS algorithm that computes, from the carrier phase measure-

ments, centimeter-accurate position measurements for the loosely coupled frame-

work. Consequently, as the carrier phase measurements provided to the CDGNSS

algorithm are a near-linear function of its state—provided that the integer ambigui-

ties are resolved correctly—the information provided to the loosely coupled estima-

tor in the form of CDGNSS-derived position estimates is nearly equivalent to that

provided by the carrier phase measurements to the VISRTK estimator. Therefore,

the results of VISRTK and the loosely-coupled framework are nearly equivalent,

and as such, the estimates shown in the top panels of Figs. 4.18 4.20 represent the

accuracy of both the VISRTK and loosely coupled frameworks. The bottom panels

represent the accuracy of the similarity transform framework.

It is clear from the figures that the VISRTK and loosely coupled frameworks

are superior to that of the similarity transform. The similarity transform solution

experiences drift in all three of its estimates: camera position, attitude, and point

feature position. This drift is especially noticeable for poses and points on the

“outside edges” of the trajectory, e.g., in camera pose estimates with no neighboring

poses (pose indices 1 and 17) and in the position errors of the point features seen

by these cameras (point indices less than 50 and greater than 200).

4.7 Conclusion

This chapter presented and analyzed an estimation framework that combines

monocular camera images with GNSS carrier phase measurements for fast, robust,
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Figure 4.18: Plot comparing the camera position errors of the similarity transform

framework (top panel) to that of the VISRTK and loosely coupled architectures

(bottom subplot). Results were computed on the basis of simulated measurements,

characterized in Table 4.3. The VISRTK reconstructed scene is illustrated in Fig.

4.17. It is clear that the positional errors are larger for the similarity transform

framework as the framework does not couple GNSS position or carrier phase mea-

surements into the same least squares cost function as the feature point measure-

ments and is thus sub-optimal as compared to the other two frameworks. Significant

error drift can be seen in the similarity transform solution, particularly on the outer

poses, as there is not way for the GNSS measurements to be used to correct relative

errors present in the vision-only BA solution.

175



A
tt

it
u

d
e

 E
rr

o
r 

(d
e

g
)

0

0.1

0.2

0.3

0.4

0.5

Pose Index

0 5 10 15 20

A
tt

it
u

d
e

 E
rr

o
r 

(d
e

g
)

0

0.1

0.2

0.3

0.4

0.5

Figure 4.19: Plot comparing the camera attitude errors of the similarity transform

framework (top panel) to that of the VISRTK and loosely coupled architectures

(bottom subplot). It is clear that the attitude errors are larger for the similarity

transform framework than for the other frameworks.
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Figure 4.20: Plot comparing the point feature position errors of the similarity trans-

form framework (top panel) to that of the VISRTK and loosely coupled architectures

(bottom subplot). It is clear that the position errors are larger for the similarity

transform framework than for the other frameworks.
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precise, and globally-referenced mobile device position and orientation (pose) deter-

mination. The framework, which is termed VISRTK after the common industry syn-

onym for CDGNSS, Real Time Kinematic (RTK), augments the bundle-adjustment-

(BA-)-based structure from motion (SFM) algorithm with carrier phase differential

GNSS (CDGNSS) algorithm in a way that preserves both the sparseness of the Jaco-

bian matrix in BA and the integer structure of the ambiguities in CDGNSS. In doing

so, the proposed fused framework is able to exploit the computational efficiency of

BA and the precision of CDGNSS to efficiently and accurately determine the pose of

the mobile device in a global reference frame. Comparisons to existing approaches

which combine GNSS and camera measurements for globally-referenced pose deter-

mination reveal that these do not combine measurements as tightly nor optimally

as the proposed approach, resulting in the proposed approach having a faster, more

robust, and more accurate solution. Empirical simulation results and results using

real data in the form of images and GNSS carrier phase measurements captured from

a low-cost GNSS receiver and smartphone platform show that the proposed estima-

tion framework (1) achieves centimeter- and sub-degree-accurate pose estimates, (2)

leads to faster resolution of the CDGNSS integer ambiguities as compared to stan-

dalone CDGNSS, and (3) is able to use prior information from previously-localized

point features for instantaneous CDGNSS integer-ambiguity resolution.
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Chapter 5

Conclusion

The uses of centimeter-accurate positioning in the mass market are becom-

ing increasingly numerous. It is anticipated that a device with low-cost centimeter-

accurate positioning and sub-degree accurate orientation capabilities will usher in

a host of new and useful applications to the commercial and consumer industries.

In the wireless communication industry, the ability to use GNSS measurements to

obtain precise antenna position and orientation information could benefit V2V and

millimeter wave communication where centimeter-accurate position information can

facilitate high gain, narrow beamwidth communication links that require minimal

feedback overhead. In another wireless application, two rigidly attached GNSS

antennas could be used to provide sub-degree heading determination of cellular

basestation antennas to perform precise antenna alignment and maximize coverage

efficiency. Furthermore, a mobile device with robust centimeter positioning capabil-

ity could be used in the entertainment industry for geo-referenced augmented and

virtual reality, in the construction industry for low-cost surveying and 3-D map mak-

ing, and in the automotive industry to provide guidance, navigation, and collision

avoidance of autonomous and semi-autonomous vehicles. This dissertation defends

the following thesis statement:

Centimeter-accurate GNSS positioning on low-cost mobile plat-

forms is achievable, but hard. These platforms, however, have certain

intrinsic features that can be exploited to make the process easier.
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The following section offers a summary of the contributions proving this thesis state-

ment.

5.1 Summary

• Chapter 2 presents a carrier phase reconstruction technique to enable low-

power centimeter-accurate positioning on mobile devices is developed and an-

alyzed. Carrier-phase positioning solutions currently require continuous, non-

duty-cycled signal phase measurements. Accurate carrier phase reconstruction

permits the aggressive duty cycling of phase measurements, significantly de-

creasing the overall energy consumption of existing solutions.

• Chapter 3 demonstrates for the first time that a centimeter-accurate posi-

tioning solution is possible based on data collected from the internal antenna

of a smartphone. It is shown that the primary impediment to performing

CDGNSS positioning on low-cost mobile platforms lies not in the commodity

GNSS chipset within the phone, but instead in the antenna, whose chief fail-

ing is its poor multipath suppression [2]. It is demonstrated wavelength-scale

random antenna motion can be used to substantially improve the CDGNSS

initialization time as compared to keeping the antenna stationary.

• Chapter 4 presents a joint image and GNSS measurement estimation frame-

work that fuses smartphone camera measurements with differential GNSS car-

rier phase measurements to reduce the CDGNSS initialization times and es-

timate to centimeter- and sub-degree-accuracy the pose of consumer mobile

platforms.
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5.2 Future Work

This section outlines a number of future research directions that build upon

this dissertations contributions.

5.2.1 VISRTK Observability Analysis

It is well known that a standalone CDGNSS solution computed on the basis

of carrier phase measurements only (no pseudorange measurements or position prior

information) requires at least two measurement epochs to be observable [20]. How-

ever, with a position prior, the problem becomes observable even after a single epoch

of data. Furthermore, depending on the accuracy of this position prior and the accu-

racy and quantity of the carrier phase measurements, these ambiguities become not

only observable, but estimable to a high degree of certainty as well. High ambiguity

estimability facilitates what is known as instantaneous or single-epoch ambiguity

resolution within the GNSS community [27, 141, 142], where a centimeter-accurate

CDGNSS position can be computed instantly after only a single epoch of measure-

ments. In chapter 4, a method called “jumpstart,” was explained and analyzed

to show that, instead of a position prior on the GNSS antenna, prior information

regarding the position of identified point features in images taken by a smartphone

or other camera fixed to the same platform as the GNSS antenna, such prior infor-

mation could be used to enable instantaneous ambiguity resolution when properly

considered within the VISRTK framework.

In the earlier analysis of Chapter 4, the number of point features with po-

sitional priors was 50, likely exceeding the absolute minimum required. Future

work could perform a theoretical observability analysis of the VISRTK framework

to identify the minimum number of point feature priors required for full state ob-

servability assuming (1) a single epoch and (2) multiple epochs of phase and image
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measurements. Prior work in the computer vision community has shown that at

least four points are required for camera pose observability when no other measure-

ments, e.g., phase measurements, are present [143, 144]. With the added constraint

of phase measurements, even with added integer ambiguity needing to be resolved,

this minimum of four points could very likely be reduced.

5.2.2 Phase Outlier and Cycle Slip Detection and Correction

The combination of image measurement with GNSS carrier phase measure-

ments in the tightly coupled VISRTK framework discussed in Chapter 4 introduces

many more constraints into the framework’s centralized batch estimator. These ad-

ditional constraints were used, as described in the chapter, to reduce the time to

ambiguity resolution and, consequently to a centimeter-accurate position fix as com-

pared to standalone CDGNSS. As it turns out, these constraints can also be used to

detect and correct for abnormalities in the carrier phase measurements themselves,

thereby preventing these abnormalities from negatively impacting the resulting state

estimate. In particular, future work would develop and analyze techniques to per-

form cycle slip detection and correction and phase error outlier detection within the

VISRTK framework. Such work future work could build upon prior work in the area

of tightly coupled GNSS/INS systems [145–147].

5.2.3 Receiver versus Reference Network Tradeoff Analysis

The analysis performed in this dissertation has assumed the use of single fre-

quency GNSS antennas due to their low cost and current availability in mass mar-

ket mobile devices. However, the added signals that dual-frequency GNSS would

bring would improve the accuracy, robustness, and ambiguity resolution time of de-

vices employing CDGNSS. Dual frequencies would also enable the estimation of the
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double-differenced ionospheric errors [148], enabling the same ambiguity resolution

time with a denser reference receiver network, all else equal. However, the require-

ment of a second antenna and front end required to produce dual-frequency GNSS

measurements would add cost, even if only a few cents, to every device produced.

As the number of devices increases, there becomes a point whereby it may be more

beneficial to shift the cost to the network by densifying the reference network. A

denser network would ensure that single frequency devices can achieve the same

convergence time of a dual frequency device with a sparser network. Future work

would analyze these trade-offs, considering the ambiguity resolution performance,

robustness, and accuracy improvements that dual frequency would enable while in-

creasing device cost. Such analysis could be performed not under the assumption of

point-to-point CDGNSS, as was considered herein, but also Network RTK and PPP-

RTK techniques that enable sparser reference stations as compared to standalone

CDGNSS without giving up on convergence time [149–151].

183



Bibliography

[1] D. L. Warren and J. F. Raquet, “Broadcast vs. precise GPS ephemerides: a
historical perspective,” GPS Solutions, vol. 7, no. 3, pp. 151–156, 2003.

[2] K. M. Pesyna, Jr., R. W. Heath, Jr., and T. E. Humphreys, “Centimeter
positioning with a smartphone-quality GNSS antenna,” in Proceedings of the
ION GNSS+ Meeting, 2014.

[3] E. Eade and T. Drummond, “Unified loop closing and recovery for real time
monocular SLAM.,” in BMVC, vol. 13, p. 136, Citeseer, 2008.

[4] C. Stachniss, D. Hähnel, and W. Burgard, “Exploration with active loop-
closing for fastslam,” in Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 2, pp. 1505–
1510, IEEE, 2004.

[5] D. Jewell, “Trends in GPS/PNT user equipment,” 2013. http://gpsworld.

com/trends-in-gpspnt-user-equipment/.

[6] H. Dediu, “Invaluable.” http://www.asymco.com/2014/03/18/invaluable/,
2014.

[7] R. B. Langley, “Innovation: Mobile phone GPS antennas,” pp. 29–35, Feb.
2010. GPS World.

[8] W. Ballantyne, G. Turetsky, G. Slimak, and J. Shewfelt, “Achieving low
energy-per-fix with A-GPS cellular phones,” in Proceedings of the ION GPS
Meeting, pp. 2234–2242, 2001.

[9] K. Alexander, “U.S. GPS program and policy update,” in 26th SBAS Inter-
national Working Group, National Coordination Office, Feb. 2014.

[10] Department of Defense, “Global Positioning System Standard Positioning Ser-
vice performance standard,” tech. rep., Assistant secretary of defense for com-
mand, control, communications, and intelligence, 2008.

[11] WAAS Test Team, “Wide-Area Augmentation System performance analysis
report,” tech. rep., Federal Aviation Administration, January 2014.

184



[12] P. Misra and P. Enge, Global Positioning System: Signals, Measurements,
and Performance. Lincoln, Massachusetts: Ganga-Jumana Press, revised
second ed., 2012.

[13] J. Betz and K. Kolodziejski, “Generalized theory of code tracking with an
early-late discriminator part i: lower bound and coherent processing,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1538–
1556, 2009.

[14] K. Dixon, “Starfire: A global SBAS for sub-decimeter precise point position-
ing,” in Proceedings of the ION GNSS Meeting, pp. 26–29, 2006.

[15] P. Teunissen, P. De Jonge, and C. Tiberius, “The LAMBDA method for fast
GPS surveying,” in Proceedings of International Symposium on GPS Tech-
nology Applications, vol. 29, (Bucharest, Romania), pp. 203–210, Union of
Romanian Geodesy, Sept. 1995.

[16] C. Counselman and S. Gourevitch, “Miniature interferometer terminals for
earth surveying: ambiguity and multipath with global positioning system,”
IEEE Transactions on Geoscience and Remote Sensing, no. 4, pp. 244–252,
1981.

[17] C. C. Counselman III, R. I. Abbot, S. A. Gourevitch, R. W. King, and A. R.
Paradis, “Centimeter-level relative positioning with GPS,” Journal of Survey-
ing Engineering, vol. 109, no. 2, pp. 81–89, 1983.

[18] P. Henkel, Reliable carrier phase positioning. PhD thesis, Munchen, Techn.
Univ., Diss., 2010, 2010.

[19] B. W. Parkinson and P. K. Enge, Global Positioning System: Theory and
Applications, vol. 2, ch. 1: Differential GPS, pp. 3–50. Washington, D.C.:
American Institute of Aeronautics and Astronautics, 1996.

[20] P. Teunissen, P. De Jonge, and C. Tiberius, “Performance of the LAMBDA
method for fast GPS ambiguity resolution,” Navigation, Journal of the Insti-
tute of Navigation, vol. 44, no. 3, pp. 373–383, 1997.

[21] M. Ge, G. Gendt, M. Rothacher, C. Shi, and J. Liu, “Resolution of GPS
carrier-phase ambiguities in precise point positioning (ppp) with daily obser-
vations,” Journal of Geodesy, vol. 82, no. 7, pp. 389–399, 2008.

[22] D. Laurichesse and F. Mercier, “Integer ambiguity resolution on undifferenced
GPS phase measurements and its application to ppp,” in Proceedings of the
20th International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS 2007), pp. 839–848, 2001.

185



[23] Broadcom, Product Brief: BCM4750 AGPS chip, 2007.

[24] F. van Diggelen, “Who’s your daddy? Why GPS will continue to dominate
consumer GNSS,” Inside GNSS, pp. 30–41, March/April 2014.

[25] E. Gakstatter, “Centimeter-level RTK accuracy more and more available for
less and less,” 2014. GPS World.

[26] Qualcomm, “Gps and glonass: dual-core” location for your phone,” Dec.
2011. http://www.qualcomm.com/media/blog/2011/12/15/gps-and-glonass-
dual-core-location-your-phone.

[27] G. Giorgi, P. J. Teunissen, S. Verhagen, and P. J. Buist, “Instantaneous
ambiguity resolution in global-navigation-satellite-system-based attitude de-
termination applications: A multivariate constrained approach,” Journal of
Guidance, Control, and Dynamics, vol. 35, no. 1, pp. 51–67, 2012.

[28] P. Teunissen, P. De Jonge, and C. Tiberius, “The least-squares ambiguity
decorrelation adjustment: its performance on short GPS baselines and short
observation spans,” Journal of geodesy, vol. 71, no. 10, pp. 589–602, 1997.

[29] P. Teunissen, “Closed form expressions for the volume of the GPS ambiguity
search spaces,” Artificial Satellites- Planetary Geodesy, vol. 32, no. 1, pp. 5–20,
1997.

[30] T. E. Humphreys, K. M. Pesyna, Jr., F. van Diggelen, and S. Podshivalov, “On
the feasibility of centimeter-accurate positioning via a smartphone’s antenna
and GNSS chip,” in Proceedings of the ION GNSS+ Meeting, 2015. (In
preparation.).

[31] D. P. Shepard, K. M. Pesyna, Jr., and T. E. Humphreys, “Precise augmented
reality enabled by carrier-phase differential GPS,” in Proceedings of the ION
GNSS Meeting, (Nashville, Tennessee), Institute of Navigation, 2012.

[32] D. Shepard, “Fusion of carrier-phase differential GPS, bundle-adjustment-
based visual slam, and inertial navigation for precisely and globally-registered
augmented reality,” Master’s thesis, The University of Texas at Austin, May
2013.

[33] K. M. Pesyna, Jr., Z. M. Kassas, R. W. Heath, Jr., and T. E. Humphreys,
“A phase-reconstruction technique for low-power centimeter-accurate mobile
positioning,” IEEE Transactions on Signal Processing, vol. 62, pp. 2595–2610,
May 2014.

186



[34] K. M. Pesyna, Jr., Z. M. Kassas, and T. E. Humphreys, “Constructing a con-
tinuous phase time history from TDMA signals for opportunistic navigation,”
in Proceedings of the IEEE/ION PLANS Meeting, pp. 1209–1220, April 2012.

[35] K. M. Pesyna, Jr., T. Novlan, C. Zhang, R. W. Heath, Jr., and T. E. Humphreys,
“Exploiting antenna motion for faster initialization of centimeter-accurate
GNSS positioning with low-cost antennas,” IEEE Transactions on Aerospace
and Electronic Systems, 2015. (Submitted for review.).

[36] K. M. Pesyna, Jr, R. W. Heath, Jr., and T. E. Humphreys, “Accuracy in the
palm of your hand: Centimeter positioning with a smartphone-quality GNSS
antenna,” GPS World, vol. 26, pp. 16–31, Feb. 2015.

[37] K. M. Pesyna, Jr., D. P. Shepard, R. W. Heath, Jr., and T. E. Humphreys,
“VISRTK: Fusion of camera and GNSS carrier phase measurements for fast,
robust, precise, and globally-referenced mobile device pose determination,”
IEEE Transactions on Signal Processing, 2015. (In preparation.).

[38] K. M. Pesyna, Jr., R. W. Heath, Jr., and T. E. Humphreys, “Precision limits
of low-energy GNSS receivers,” in Proceedings of the ION GNSS+ Meeting,
(Nashville, Tennessee), Institute of Navigation, 2013.

[39] K. M. Pesyna, Jr., K. D. Wesson, R. W. Heath, Jr., and T. E. Humphreys,
“Extending the reach of GPS-assisted femtocell synchronization and localiza-
tion through tightly-coupled opportunistic navigation,” in IEEE GLOBECOM
Workshop, 2011.

[40] K. M. Pesyna Jr., Z. M. Kassas, J. A. Bhatti, and T. E. Humphreys, “Tightly-
coupled opportunistic navigation for deep urban and indoor positioning,” in
Proceedings of the ION GNSS Meeting, (Portland, Oregon), Institute of Nav-
igation, 2011.

[41] K. D. Wesson, K. M. Pesyna, Jr., J. A. Bhatti, and T. E. Humphreys, “Op-
portunistic frequency stability transfer for extending the coherence time of
GNSS receiver clocks,” in Proceedings of the ION GNSS Meeting, (Portland,
Oregon), Institute of Navigation, 2010.

[42] D. P. Shepard, T. E. Humphreys, K. M. Pesyna, Jr., and J. A. Bhatti, “A
system and method for using global navigation satellite system (GNSS) navi-
gation and visual navigation to recover absolute position and attitude without
any prior association of visual features with known coordinates,” Feb. 2014.
US Patent filed on Feb., 3, 2014.

[43] u-Blox, Datasheet: NE0-7 GPS/GNSS Module, 2013.

187



[44] M. Psiaki, “Kalman filtering and smoothing to estimate real-valued states
and integer constants,” Journal of Guidance, Control, and Dynamics, vol. 33,
pp. 1404–1417, Sept.-Oct. 2010.

[45] S. Mohiuddin and M. L. Psiaki, “High-altitude satellite relative navigation
using carrier-phase differential global positioning system techniques,” Journal
of Guidance, Control, and Dynamics, vol. 30, pp. 1628–1639, Sept.-Oct. 2007.

[46] T. Bell, “Automatic tractor guidance using carrier-phase differential GPS,”
Computers and electronics in agriculture, vol. 25, no. 1, pp. 53–66, 2000.

[47] J. Farrell, T. Givargis, and M. Barth, “Real-time differential carrier phase
GPS-aided INS,” Control Systems Technology, IEEE Transactions on, vol. 8,
no. 4, pp. 709–721, 2000.

[48] K. Alanen, L. Wirola, J. Käppi, and J. Syrjärinne, “Mobile rtk using low-cost
GPS and internet-enabled wireless phones,” Inside GNSS, vol. 1, pp. 32–39,
2006.

[49] D. B. Cox and J. D. Brading, “Integration of lambda ambiguity resolution
with kalman filter for relative navigation of spacecraft,” Navigation, Journal
of the Institute of Navigation, vol. 47, no. 3, pp. 205–210, 2000.

[50] S. Mohiuddin and M. Psiaki, “Carrier-phase differential Global Positioning
System navigation filter for high-altitude spacecraft,” Journal of Guidance,
Control, and Dynamics, vol. 31, no. 4, pp. 801–814, 2008.

[51] K. Q. Chiang, M. L. Psiaki, S. P. Powell, R. J. Miceli, and B. W. O’Hanlon,
“GPS-based attitude determination for a spinning rocket,” in Proceedings of
the ION GNSS Meeting, (Nashville, Tennessee), pp. 2342–2350, Institute of
Navigation, 2012.

[52] P. De Jonge and C. Tiberius, “The LAMBDA method for integer ambigu-
ity estimation: implementation aspects,” Publications of the Delft Geodetic
Computing Centre, LGR-Series, 1996.

[53] A. Hassibi and S. Boyd, “Integer parameter estimation in linear models with
applications to GPS,” IEEE Transactions on Signal Processing, vol. 46, no. 11,
pp. 2938–2952, 1998.

[54] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected
complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2806–
2818, 2005.

188



[55] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital
communications,” IEEE Transactions on Signal Processing, vol. 53, no. 4,
pp. 1474–1484, 2005.

[56] M. Pohst, “On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications,” ACM SIGSAM Bulletin, vol. 15,
no. 1, pp. 37–44, 1981.

[57] M. Psiaki and S. Mohiuddin, “Modeling, analysis, and simulation of GPS
carrier phase for spacecraft relative navigation,” Journal of Guidance Control
and Dynamics, vol. 30, no. 6, p. 1628, 2007.

[58] T. E. Humphreys, M. L. Psiaki, and P. M. Kintner, Jr., “Modeling the effects
of ionospheric scintillation on GPS carrier phase tracking,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 46, pp. 1624–1637, Oct. 2010.

[59] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation. New
York: Academic Press, 1977.

[60] G. Bierman, M. Belzer, J. Vandergraft, and D. Porter, “Maximum likelihood
estimation using square root information filters,” IEEE Transactions on Au-
tomatic Control, vol. 35, no. 12, pp. 1293–1298, 1990.

[61] R. G. Brown and P. Y. Hwang, Introduction to Random Signals and Applied
Kalman Filtering. Wiley, 1997.

[62] M. L. Psiaki and H. Jung, “Extended Kalman filter methods for tracking weak
GPS signals,” in Proceedings of the ION GPS Meeting, (Portland, Oregon),
pp. 2539–2553, Institute of Navigation, 2002.

[63] J. T. Curran, G. Lachapelle, and C. C. Murphy, “Improving the design of
frequency lock loops for GNSS receivers,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 48, no. 1, pp. 850–868, 2012.

[64] K. M. Pesyna, Jr. and T. E. Humphreys, “Cost analysis of square root infor-
mation filtering and smoothing with a mixed real-integer state,” Whitepaper,
2013. http://radionavlab.ae.utexas.edu/reconstruction/.

[65] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lat-
tices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2201–
2214, 2002.

[66] P. Teunissen, “An optimality property of the integer least-squares estimator,”
Journal of Geodesy, vol. 73, no. 11, pp. 587–593, 1999.

189



[67] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534, 1982.

[68] M. Psiaki and S. Mohiuddin, “Global positioning system integer ambiguity
resolution using factorized least-squares techniques,” Journal of Guidance,
Control, and Dynamics, vol. 30, pp. 346–356, March-April 2007.

[69] X.-W. Chang and T. Zhou, “MILES: MATLAB package for solving Mixed
Integer LEast Squares problems,” GPS Solutions, vol. 11, no. 4, pp. 289–294,
2007.

[70] P. Xu, “Voronoi cells, probabilistic bounds, and hypothesis testing in mixed
integer linear models,” IEEE Transactions on Information Theory, vol. 52,
no. 7, pp. 3122–3138, 2006.

[71] P. Teunissen, “Success probability of integer GPS ambiguity rounding and
bootstrapping,” Journal of Geodesy, vol. 72, no. 10, pp. 606–612, 1998.

[72] P. Teunissen, “Gnss ambiguity bootstrapping: theory and application,” in
Proceedings of International Symposium on Kinematic Systems in Geodesy,
Geomatics and Navigation, pp. 246–254, 2001.

[73] S. Verhagen, “On the reliability of integer ambiguity resolution,” Navigation,
Journal of the Institute of Navigation, vol. 52, no. 2, pp. 99–110, 2005.

[74] S. Verhagen, B. Li, and P. J. Teunissen, “Ps-lambda: Ambiguity success
rate evaluation software for interferometric applications,” Computers & Geo-
sciences, vol. 54, pp. 361–376, 2013.

[75] A. Thompson, J. Moran, and G. Swenson, Interferometry and Synthesis in Ra-
dio Astronomy, ch. 9: Very-Long-Baseline Interferometry, pp. 304–382. Wiley,
2001.

[76] O. Woodman, “An introduction to inertial navigation,” University of Cam-
bridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696, 2007.

[77] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation. New York: John Wiley and Sons, 2001.

[78] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, and P. M. Kintner, Jr., “GNSS
receiver implementation on a DSP: Status, challenges, and prospects,” in Pro-
ceedings of the ION GNSS Meeting, (Fort Worth, TX), pp. 2370–2382, Insti-
tute of Navigation, 2006.

190



[79] T. E. Humphreys, J. Bhatti, T. Pany, B. Ledvina, and B. O’Hanlon, “Exploit-
ing multicore technology in software-defined GNSS receivers,” in Proceedings
of the ION GNSS Meeting, (Savannah, GA), pp. 326–338, Institute of Navi-
gation, 2009.

[80] B. O’Hanlon, M. Psiaki, S. Powell, J. Bhatti, T. E. Humphreys, G. Crowley,
and G. Bust, “CASES: A smart, compact GPS software receiver for space
weather monitoring,” in Proceedings of the ION GNSS Meeting, (Portland,
Oregon), pp. 2745–2753, Institute of Navigation, 2011.

[81] STMicroelectronics, Datasheet: ST iNEMO inertial module, 2012.

[82] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close
examination of performance and power characteristics of 4g lte networks,” in
Proceedings of the 10th international conference on Mobile systems, applica-
tions, and services, pp. 225–238, ACM, 2012.

[83] W. Mao, H. Tsao, and F. Chang, “Intelligent GPS receiver for robust carrier
phase tracking in kinematic environments,” in IEE Proceedings, Radar, Sonar
and Navigation, vol. 151, pp. 171–180, IET, 2004.

[84] M. Lashley, D. M. Bevly, and J. Y. Hung, “Performance analysis of vector
tracking algorithms for weak GPS signals in high dynamics,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 3, no. 4, pp. 661–673, 2009.

[85] M. Sahmoudi and R. J. Landry, “Multipath mitigation techniques using maximum-
likelihood principle,” Inside GNSS, pp. 24–29, 2008.

[86] F. van Diggelen, “Expert advice: Are we there yet? The state of the consumer
industry,” GPS World, Mar. 2010. GPS World.

[87] C. Miller, K. O’Keefe, and Y. Gao, “Time correlation in GNSS positioning over
short baselines,” Journal of Surveying Engineering, vol. 138, no. 1, pp. 17–24,
2011.

[88] C. Miller, K. OKeefe, and Y. Gao, “Operational performance of RTK posi-
tioning when accounting for the time correlated nature of GNSS phase errors,”
in Proceedings of the ION GNSS Meeting, pp. 21–24, 2010.

[89] K. O’Keefe, M. Petovello, G. Lachapelle, and M. E. Cannon, “Assessing proba-
bility of correct ambiguity resolution in the presence of time-correlated errors,”
Navigation, Journal of the Institute of Navigation, vol. 53, no. 4, pp. 269–282,
2007.

191



[90] M. G. Petovello, K. OKeefe, G. Lachapelle, and M. E. Cannon, “Consideration
of time-correlated errors in a Kalman filter applicable to GNSS,” Journal of
Geodesy, vol. 83, no. 1, pp. 51–56, 2009.

[91] S. Han and C. Rizos, “Standardization of the variance-covariance matrix for
GPS rapid static positioning,” Geomat. Res. Aust., vol. 62, pp. 37–54, 1995.

[92] P. Teunissen, “GPS ambiguity resolution: impact of time correlation, cross-
correlation and satellite elevation dependence,” Studia Geophysica et Geodaet-
ica, vol. 41, no. 2, pp. 181–195, 1997.

[93] B. Li, S. Verhagen, and P. J. Teunissen, “Robustness of GNSS integer ambigu-
ity resolution in the presence of atmospheric biases,” GPS Solutions, vol. 18,
no. 2, pp. 283–296, 2014.

[94] T. Pany, N. Falk, B. Riedl, C. Stber, J. Winkel, and H.-P. Ranner, “GNSS
synthetic aperture processing with artificial antenna motion,” in Proceedings
of the ION GNSS+ Meeting, (Nashville, Tennessee), Institute of Navigation,
2013.

[95] Novatel, Datasheet: GPS-702L Dual-Frequency Pinwheel GPS Antenna, 2014.

[96] Antcom, Datasheet: Active L1/L2 GPS Antenna, P/N: 53G1215A-XT-1,
2006.

[97] Taoglas, Datasheet: Active L1 GPS Antenna, P/N: Dominator AA.161.

[98] T. Takasu and A. Yasuda, “Kalman-filter-based integer ambiguity resolution
strategy for long-baseline RTK with ionosphere and troposphere estimation,”
in Proceedings of the ION National Technical Meeting, 2010.

[99] T. E. Humphreys, “How to fool a GPS,” Feb. 2012. http://www.ted.com/

talks/todd_humphreys_how_to_fool_a_gps.

[100] R. van Nee, J. Siereveld, P. Fenton, and B. Townsend, “The multipath estimat-
ing delay lock loop: approaching theoretical accuracy limits,” in Proceedings
of the IEEE/ION PLANS Meeting, pp. 246–251, IEEE, 1994.

[101] B. Townsend, P. Fenton, K. Van Dierendonck, and R. Van Nee, “L1 carrier
phase multipath error reduction using MEDLL technology,” in Proceedings of
the ION GPS Meeting, vol. 8, pp. 1539–1544, INSTITUTE OF NAVIGATION,
1995.

[102] M. L. Psiaki, T. Ertan, B. W. O’Hanlon, and S. P. Powell, “GNSS multi-
path mitigation using antenna motion,” Navigation, Journal of the Institute
of Navigation, vol. 62, no. 1, pp. 1–22, 2015.

192



[103] P. Axelrad, C. J. Comp, and P. F. MacDoran, “SNR-based multipath error
correction for GPS differential phase,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 32, no. 2, pp. 650–660, 1996.

[104] L. Garin and J.-M. Rousseau, “Enhanced strobe correlator multipath rejection
for code & carrier,” in Proceedings of the ION GPS Meeting, pp. 559–568, 1997.

[105] L. Lau and P. Cross, “Development and testing of a new ray-tracing approach
to GNSS carrier-phase multipath modelling,” Journal of Geodesy, vol. 81,
no. 11, pp. 713–732, 2007.

[106] M. S. Braasch, “Performance comparison of multipath mitigating receiver ar-
chitectures,” in Aerospace Conference, 2001, IEEE Proceedings., vol. 3, pp. 3–
1309, IEEE, 2001.

[107] C. Mekik and O. Can, “An investigation on multipath errors in real time kine-
matic GPS method,” Scientific Research and Essays, vol. 5, no. 16, pp. 2186–
2200, 2010.

[108] J. Tranquilla, J. Carr, and H. M. Al-Rizzo, “Analysis of a choke ring ground-
plane for multipath control in global positioning system (gps) applications,”
IEEE Transactions on Antennas and Propagation, vol. 42, no. 7, pp. 905–911,
1994.

[109] W. Kunysz, “High performance GPS pinwheel antenna,” in Proceedings of the
ION International Technical Meeting, pp. 19–22, 2000.

[110] J. Ray, M. Cannon, and P. Fenton, “GPS code and carrier multipath miti-
gation using a multiantenna system,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 37, no. 1, pp. 183–195, 2001.

[111] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization. Academic
press, 1981.

[112] J. Ray and M. Cannon, “Characterization of GPS carrier phase multipath,”
in Proceedings of the ION National Technical Meeting, 1999.

[113] D. F. Bétaille, P. A. Cross, and H.-J. Euler, “Assessment and improvement
of the capabilities of a window correlator to model GPS multipath phase er-
rors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2,
pp. 705–717, 2006.

[114] J. J. Spilker, Jr., Global Positioning System: Theory and Applications, ch. 14:
Multipath Effects, pp. 547–568. Washington, D.C.: American Institute of
Aeronautics and Astronautics, 1996.

193



[115] V. U. Zavorotny, K. M. Larson, J. J. Braun, E. E. Small, E. D. Gutmann, and
A. L. Bilich, “A physical model for GPS multipath caused by land reflections:
Toward bare soil moisture retrievals,” Selected Topics in Applied Earth Ob-
servations and Remote Sensing, IEEE Journal of, vol. 3, no. 1, pp. 100–110,
2010.

[116] P. Closas, C. Fernandez-Prades, and J. A. Fernandez-Rubino, “A Bayesian ap-
proach to multipath mitigation in GNSS receivers,” IEEE Journal of Selected
Topics in Signal Processing, vol. 3, pp. 695–706, Aug. 2009.

[117] S. N. Sadrieh, A. Broumandan, and G. Lachapelle, “Spatial/temporal charac-
terization of the GNSS multipath fading channels,” in Proceedings of the ION
GNSS Meeting, pp. 393–401, 2010.

[118] P. J. Teunissen and D. Odijk, “Ambiguity dilution of precision: definition,
properties and application,” Proceedings of ION GPS-1997, pp. 16–19, 1997.

[119] D. Odijk and P. Teunissen, “Sensitivity of ADOP to changes in the single-
baseline GNSS model,” Artificial Satellites, vol. 42, no. 2, pp. 71–96, 2007.

[120] J. Skaloud, “Reducing the GPS ambiguity search space by including inertial
data,” in Proceedings of the ION International Technical Meeting, pp. 2073–
2080, 1998.

[121] J. Wendel, J. Metzger, R. Moenikes, A. Maier, and G. Trommer, “A perfor-
mance comparison of tightly coupled GPS/INS navigation systems based on
extended and sigma point kalman filters,” Navigation, Journal of the Institute
of Navigation, vol. 53, no. 1, pp. 21–31, 2006.

[122] C. Goodall, S. Carmichael, N. El-Sheimy, and B. Scannell, “INS face off:
MEMS versus FOG,” Inside GNSS, pp. 48–55, July/August 2012.

[123] B. Carse, B. Meadows, R. Bowers, and P. Rowe, “Affordable clinical gait
analysis: An assessment of the marker tracking accuracy of a new low-cost
optical 3d motion analysis system,” Physiotherapy, vol. 99, no. 4, pp. 347–
351, 2013.

[124] A. K. Brown, “GPS/INS uses low-cost MEMS IMU,” Aerospace and Electronic
Systems Magazine, IEEE, vol. 20, no. 9, pp. 3–10, 2005.

[125] A. Angrisano, M. Petovello, and G. Pugliano, “Benefits of combined GPS/GLONASS
with low-cost MEMS IMUs for vehicular urban navigation,” Sensors, vol. 12,
no. 4, pp. 5134–5158, 2012.

194



[126] D. P. Shepard and T. E. Humphreys, “High-precision globally-referenced po-
sition and attitude via a fusion of visual SLAM, carrier-phase-based GPS, and
inertial measurements,” in Proceedings of the IEEE/ION PLANS Meeting,
May 2014.

[127] R. Hartley and A. Zisserman, Multiple view geometry in computer vision,
vol. 2. Cambridge Univ Press, 2000.

[128] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjustment–
a modern synthesis,” Vision algorithms: theory and practice, pp. 153–177,
2000.

[129] H. Strasdat, J. Montiel, and A. J. Davison, “Visual slam: Why filter?,” Image
and Vision Computing, 2012.

[130] G. Nuetzi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of IMU and vi-
sion for absolute scale estimation in monocular SLAM,” Journal of Intelligent
& Robotic Systems, vol. 61, pp. 287–299, Jan. 2011.

[131] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
in 6th IEEE and ACM International Symposium on Mixed and Augmented Re-
ality, pp. 225–234, IEEE, 2007.

[132] M. I. Lourakis and A. A. Argyros, “SBA: A software package for generic sparse
bundle adjustment,” ACM Transactions on Mathematical Software (TOMS),
vol. 36, no. 1, p. 2, 2009.

[133] T. E. Humphreys, “Attitude determination for small satellites with modest
pointing constraints,” in Proc. 2002 AIAA/USU Small Satellite Conference,
(Logan, Utah), 2002.

[134] B. K. Horn, “Closed-form solution of absolute orientation using unit quater-
nions,” JOSA A, vol. 4, no. 4, pp. 629–642, 1987.

[135] C. Wu, “VisualSFM: A visual structure from motion system,” 2011. http:

//ccwu.me/vsfm.

[136] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjust-
ment,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pp. 3057–3064, IEEE, 2011.

[137] C. Wu, “Siftgpu: A gpu implementation of scale invariant feature transform
(sift),” 2007. http://cs.unc.edu/~ccwu/siftgpu.

195



[138] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Clustering views for
multi-view stereo,” IEEE Trans. Pattern Anal. Mach. Intell, pp. 1362–1376,
2010.

[139] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stere-
opsis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 32, no. 8, pp. 1362–1376, 2010.

[140] G. L. Mader, “GPS antenna calibration at the national geodetic survey,” GPS
solutions, vol. 3, no. 1, pp. 50–58, 1999.

[141] S. Verhagen, P. J. Teunissen, and D. Odijk, “The future of single-frequency
integer ambiguity resolution,” in VII Hotine-Marussi Symposium on Mathe-
matical Geodesy, pp. 33–38, Springer, 2012.

[142] M. Pratt, B. Burke, and P. Misra, “Single-epoch integer ambiguity resolution
with GPS-GLONASS L1 data,” in Proceedings of the 53rd Annual Meeting of
The Institute of Navigation, (Albuquerque, NM), pp. 691–699, 1997.

[143] Y. Wu and Z. Hu, “PnP problem revisited,” Journal of Mathematical Imaging
and Vision, vol. 24, no. 1, pp. 131–141, 2006.

[144] C.-X. Zhang and Z.-Y. Hu, “Probabilistic study on the multiple solutions of
the P3P problem.,” Ruan Jian Xue Bao(Journal of Software), vol. 18, no. 9,
pp. 2100–2104, 2007.

[145] T. Takasu and A. Yasuda, “Cycle slip detection and fixing by MEMS-IMU/GPS
integration for mobile environment RTK-GPS,” in Proc. 21st Int. Tech. Meet-
ing of the Satellite Division of the Institute of Navigation (ION GNSS 2008),
Savannah, GA, pp. 64–71, 2008.

[146] C. Altmayer, “Enhancing the integrity of integrated GPS/INS systems by
cycle slip detection and correction,” in Intelligent Vehicles Symposium, 2000.
IV 2000. Proceedings of the IEEE, pp. 174–179, IEEE, 2000.

[147] O. L. Colombo, U. V. Bhapkar, and A. G. Evans, “Inertial-aided cycle-slip
detection/correction for precise, long-baseline kinematic GPS,” in Proceedings
of the ION GPS, 1999.

[148] A. J. Van Dierendonck, “How GPS receivers measure (or should measure)
ionospheric scintillation and TEC and how GPS receivers are affected by
the ionosphere,” in Proc. 11th International Ionospheric Effects Symposium,
(Alexandria, VA), 2005.

196



[149] P. Teunissen and A. Khodabandeh, “Review and principles of PPP-RTK meth-
ods,” Journal of Geodesy, vol. 89, no. 3, pp. 217–240, 2014.

[150] D. Odijk, P. J. Teunissen, and A. Khodabandeh, “Single-frequency PPP-RTK:
theory and experimental results,” in Earth on the Edge: Science for a Sus-
tainable Planet, pp. 571–578, Springer, 2014.

[151] G. Hu, H. Khoo, P. Goh, and C. Law, “Development and assessment of GPS
virtual reference stations for RTK positioning,” Journal of Geodesy, vol. 77,
no. 5-6, pp. 292–302, 2003.

197


