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The Global Positioning System (GPS) is an invisible utility that has

had enormous impact in areas such as navigation, telecommunications, and

power grids. However, malicious so-called “field” attacks such as jamming and

spoofing threaten to disrupt and damage an infrastructure that has become so

dependent on an always available and trustworthy GPS. This dissertation pro-

vides solutions that, if deployed as part of a layered defense, can significantly

mitigate the effects of these emerging threats.

The first type of attack considered in this dissertation is GPS spoofing.

An attacker’s ability to covertly control a maritime surface vessel by broadcast-

ing counterfeit civil GPS signals is analyzed and demonstrated. It is shown

that, despite access to a variety of high-quality navigation and surveillance

sensors, modern maritime navigation depends crucially on satellite-based nav-

igation. A simple innovations-based detection framework for GPS deception
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is developed, and given real-world environmental and attack parameters, the

probability of hazardously misleading information or integrity risk is minimized

within the framework. A covert attack is designed to have a high integrity risk

and is possible because attacker-induced deviations in the vessel’s dynamics

can be disguised as the effects of slowly-changing ocean currents and wind.

A field experiment confirms the analysis by demonstrating covert control of a

65-m yacht in the Mediterranean Sea.

The second type of attack considered in this dissertation is GPS jam-

ming. A system for passively locating radio-frequency emitters is developed

and demonstrated. The system was originally motivated by the proliferation

of GPS jammers, but has broad applicability to any emitter of unknown wave-

form. A model for the cross-correlation of the emitter signal captured by

spatially distributed receivers with an independent local oscillator and an effi-

cient digital cross-correlation implementation is presented. Algorithms based

on grid search and the particle filter are developed to estimate the emitter state

directly from the cross-correlation, avoiding the inefficiency of an intermediate

time and frequency difference of arrival estimate. The system is proven in

several field experiments with the emitter on stationary or vehicular platforms

and with one experiment using a receiver on an airborne platform.
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2.6 Minimax integrity risk Ī?R vs. the hazardous condition thresh-
old L. For L ≤ 400 m, the worst-case attack will likely cause
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Chapter 1

Introduction

The next few decades will see pervasive autonomous control systems

become critical to the world economy—from autonomous cars and aircraft

to smart homes, smart cities, and vast energy, communication, and financial

networks controlled at multiple scales. Protecting these systems from malicious

attacks is a matter of urgent societal interest. The study of secure control has

made important advances over the past few years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16], but these constitute not solutions so much as problem framing

and an emerging consensus that traditional fault detection and mitigation

fails when confronted with a deliberate attacker: outlaws are different from

outliers; fraud is different from faults [3, 2, 10, 15]. Moreover, the majority

of this early literature focuses on standard cyber attacks—those that entail

infiltration of communications networks or computer systems within which

sensor measurements y and control commands u are conveyed or calculated.

This dissertation focuses on an emergent category of cyber-physical at-

tack that has seen little scrutiny in the secure control literature. Like cyber

attacks, these attacks are hard to detect and can be executed from a distance,

but unlike cyber attacks, they are effective even against control systems whose

software, data, and communications networks are secure, and so can be con-
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sidered a more menacing long-term threat. These are field attacks: attacks

on the physical fields—electromagnetic, magnetic, acoustic, etc.—measured by

system sensors. As specialized sensor attacks, field attacks seek to compro-

mise a system’s perception of reality non-invasively—from without, not from

within. This work emphasizes field attacks against navigation and timing sen-

sors, as these are of special importance to the rise of autonomous vehicles and

the smart grid.

1.1 Sensor Deception Problem

A particularly effective and mature field attack that exploits the insecu-

rity of civil Global Positioning System (GPS) signals is known as GPS “spoof-

ing” [17]. The University of Texas Radionavigation Laboratory has developed

an in-house GPS spoofing testbed that has been used to investigate the effects

of this attack on GPS receivers embedded in a diverse set of semi-autonomous

control systems. For example, GPS spoofing has been demonstrated against:

(i) an autonomous helicopter, which appeared to be as if caught in a trac-

tor beam [18, 19], (ii) a phasor measurement unit used in smart grids for

microsecond-accurate timing [20], and (iii) an $80M superyacht, which was

driven several kilometers off course without triggering alarms [21]. Emblem-

atic of the current literature’s limitations, no published secure estimation tech-

nique would be capable of thwarting the unmanned aerial vehicle (UAV) attack

described in [19] or the yacht attack described in this dissertation, given the

vehicles’ respective sensor suites.
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1.2 GPS Jamming Problem

Despite its marvelous success over the last three decades, the Global

Positioning System has an Achilles’ heel: its weak signals are an easy target

for jamming. GPS jamming is a blunt denial-of-service type of field attack

when compared to its more sophisticated, expensive, and targeted cousin,

GPS spoofing. The National Space-Based Positioning, Navigation, and Timing

Advisory Board in a recent white paper has concluded that the “United States

is now critically dependent on GPS” [22]. The paper notes an alarming increase

in the incidence rate of deliberate and unintentional GPS interference, which

in some cases renders GPS inoperable for critical infrastructure operations.

The white paper also notes the increasing availability of small and cheap GPS

jammers known as personal privacy devices (PPDs). Although the advertised

jamming coverage radius for these devices is small, typically 10 to 20 meters,

their actual range may extend to tens of kilometers [23].

In one recent case of interest, a test version of the GPS ground-based

augmentation system (GBAS) at Newark International Airport suffered from

periodic interference due to a PPD aboard a truck traveling on a nearby high-

way [24, 25]. The authorities took four months to track down the jammer.

Continued monitoring in the Newark airport area after this incident indicates

that during rush hours, there occur 4 to 5 interference events per hour, presum-

ably due to PPDs [26]. GPS-synchronized cellular communications networks

also report an increasing rate of periodic GPS outages, most likely due to pass-

ing PPDs. Although these networks are designed to fall back to a hold-over

mode that is capable of maintaining adequate synchronization for several days,
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such interference is nonetheless an annoyance for network operators.

Despite a recent effort by the Federal Communications Commission to

discourage sale, purchase, and use of PPDs [27], there is reason to believe that

they will only become more widespread in the future. The miniaturization

and proliferation of GPS trackers will likely lead to an increased use of PPDs,

despite their being illegal, as people seek to protect their privacy from invasive

tracking [28]. To aid in enforcing laws against PPDs and jamming devices,

there is a need for a persistent system capable of detecting and locating sources

of jamming.

The work by Scott (J911) [29], Brown (JLOC) [30], and Chronos Tech-

nology (GAARDIAN) [31] focus on building cheap, low-network-throughput

jamming-to-noise ratio sensors based on monitoring GPS carrier-to-noise ratio

and automatic gain control (AGC) values, making them suited only for trig-

gering and coarse localization. The work by Akos [32, 33] considers a network

of sensor nodes using a low-cost Global Navigation Satellite System (GNSS)

front end with AGC monitoring capability. Single-emitter interference local-

ization is implemented using AGC values coupled with power-law path loss

models for strong sources and cross-correlation-based time difference of arrival

(TDOA) estimation coupled with hyperbolic positioning for weak sources.

However, this dissertation will focus on direct geolocation techniques,

first explored by Weiss and Sidi [34, 35], where “direct” refers to estimating the

emitter state directly from the cross-correlation of the received signals, without

making an intermediate time and frequency difference of arrival (T/FDOA)
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estimate. Note that the methods developed in this dissertation can not only

find GPS jammers and spoofers, but any kind of radio-frequency (RF) emitter

transmitting an unknown waveform.

1.3 Dissertation Contributions

This dissertation makes two primary contributions:

(i) A GNSS deception detection technique implemented at the state estima-

tion level that minimizes the integrity risk (the probability of undetected

hazardous conditions) for a pre-determined false alarm probability. The

technique is a novel adaptation and optimization of the standard inno-

vations test for model correctness. As such, it is intuitive and simple to

implement, as shown in a demonstration of a GPS spoofing attack on a

yacht. The technique is developed and implemented in this dissertation

for maritime surface vessels, but is generalizable to any estimation and

control system that depends on GNSS such as for timing and aviation.

(ii) A particle filter for direct geolocation of radio-frequency emitters with

unknown deterministic waveforms. The technique, which was developed,

implemented, and tested concurrent with and independently of [35], ex-

ploits the estimation efficiency of a direct geolocation approach and the

reduction of the emitter state search space when compared to naive grid

search. Although this contribution is similar to [35], this dissertation ex-

tends beyond [35] in three important ways. First, it considers practical

implementation issues of a deployed system such as time synchronization
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of receivers and long coherent integration for non-constant T/FDOA.

Second, it goes beyond the simulations in [35] to conduct and report on

three field experiments. Third, it provides a comparative study of the

performance and complexity of various estimation algorithms, including

but not limited to those presented in [34, 35].
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8. J. Bhatti, B. Ledvina, and T. Humphreys, “Analysis and experimental

results of direct geolocation techniques,” Navigation, Journal of the In-

stitute of Navigation, 2015, (In preparation.)
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demonstration of a TDOA-based GNSS interference signal localization

system,” in Proceedings of the IEEE/ION PLANS Meeting, April 2012,
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The paper develops a TDOA-based multiple-emitter localization sys-

tem using GPS-synchronized sensor nodes and subspace-based estima-

tion methods. The paper gives results for a test exercise in which the

system with three sensors locates at least one emitter within 20 meters

among a field of two emitters with significant multipath.
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1.5 Dissertation Organization

Chapter 2 develops a GPS spoofing detection framework for maritime

surface vessels. The components of modern integrated bridge system are de-

scribed and their dependency on GPS is investigated. The effect of a GPS

spoofing attack on an unprotected vessel is illustrated by analogy to the de-

scription of the Royal Majesty grounding in 1995 [47]. A model for the closed-

loop ship and spoofing dynamics is presented. The performance of the detec-

tion framework, characterized in terms of the integrity risk, or equivalently

the probability of hazardously misleading information, is optimized against

a set of spoofing attack profiles. Lastly, the detection framework is applied

to simulated and experimental data, and the performance is compared to the

theoretical integrity risk.
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Chapter 3 begins with the necessary background on the cross-correlation

model that allows direct geolocation. The model takes into account the time-

delay and Doppler effect of the geometric propagation of the transmitted emit-

ter signal and the receiver clock offset. A zero-order hold approximation of the

cross-correlation model is derived that allows an efficient digital implementa-

tion. A tightly-coupled RF receiver architecture that can simultaneously cap-

ture the emitter signal and a reference signal is presented. The reference signal,

typically GPS, in a tightly-coupled receiver allows coherent cross-correlation

between spatially distributed receivers with independent local oscillators. Al-

gorithms for direct emitter localization based on grid search, the Kalman filter,

and the particle filter are developed. The algorithms are tested against three

different types of emitter dynamics model with field experiments conducted in

amateur radio and GPS bands.

Chapter 4 concludes this dissertation with a summary of contributions

and suggestions for future work.
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Chapter 2

Hostile Control of Surface Vessels via
Counterfeit GPS Signals: Demonstration and

Detection

Surface vessels, from fishing boats to container ships to deep-water oil

rigs, depend crucially on Global Positioning System (GPS) signals for naviga-

tion, station keeping, and surveillance [48, 49, 50, 51]. GPS, its ground and

satellite-based augmentation systems, and other Global Navigation Satellite

Systems (GNSS) are used as the primary position-fixing system, especially in

open waters. They are an important maritime navigation aid even for ves-

sels actively piloted by human operators, except in familiar littoral waters

such as port entry and within natural or man-made channels where conven-

tional “optical” navigation is used. Moreover, as surface craft become more

autonomous, the trend is toward increased reliance on GNSS: current autopi-

lot systems, dynamic-positioning systems, and fully unmanned surface vehicles

are designed under the assumption that GNSS signals are usually available and

trustworthy [49, 52, 53, 50]. Even autonomous underwater vehicles typically

depend indirectly, or periodically, on GNSS [54].

Given the fragility of GNSS signals under conditions of signal blockage

or jamming, and given that the signals do not penetrate underwater, there
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is interest in developing GNSS-independent maritime navigation and control

systems [49, 55]. Terrain-relative navigation has been successfully employed

in autonomous submersibles [55], and could serve as a backup to GNSS for

surface vessels. This technique has historically required high-resolution (e.g.,

m-level) underwater terrain maps, which are available for only a tiny fraction

of the seafloor, but recent results indicate that coarser (e.g., 20-m-resolution)

ship-based bathymetry maps may be adequate for 10-meter-level positioning,

provided sufficient terrain variability [56]. Nonetheless, for the present, terrain-

relative navigation does not even appear to be an active research topic for

civil surface maritime transportation. What is more, the only widespread

radionavigation backup to GNSS, Loran-C, was abandoned by the U.S. Coast

Guard in 2010 [57], and there are no official U.S. plans for a successor, despite

continued lobbying for deployment of its upgrade, eLoran, which is available

in other parts of the world [58]. Consequently, one can expect most maritime

navigation systems to rely primarily on GNSS for position-fixing for years to

come.

By standard practice marine craft are equipped with redundant GNSS

units so that one serves as backup if the other experiences a fault. And for

extremely critical applications, an entirely GNSS-free positioning system may

be available, such as the acoustic positioning system required as a backup to

GNSS on dynamically-positioned deepwater drilling vessels [50]. But these fail-

safe systems are designed to handle obvious faults or GNSS outages caused by

signal blockage or ionospheric effects. They are likely to fail when confronted

with a sophisticated and deliberate attacker: outlaws are different from out-
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liers; fraud is different from faults.

A GNSS deception attack, in which counterfeit GNSS signals are gen-

erated for the purpose of manipulating a target receiver’s reported position,

velocity, or time, is a potentially dangerous tool in the hands of a deliberate

attacker. While there have been no confirmed reports of such attacks per-

formed with malice, convincing demonstrations have been conducted both in

the laboratory and in the field with low-cost equipment against a wide vari-

ety of GPS receivers [17, 59, 19]. The key to the success of these so-called

GPS spoofing attacks is that, whereas the military GPS waveforms are by de-

sign unpredictable and therefore resistant to spoofing, civil GPS waveforms—

and those of other civil GNSS—are unencrypted, unauthenticated, and openly

specified in publicly-available documents [60, 61]. Also, although not entirely

constrained by the GNSS signal specifications, the navigation data messages

modulating these civil waveforms are highly predictable. The combination of

known signal structure and navigation data predictability makes civil GNSS

signals an easy target for spoofing attacks.

The departure point for development of a spoofing detection framework

is the impressive corpus of fault detection and isolation (FDI) literature, the

result of more than four decades of effort. Sensor deception can be thought of

as a special type of sensor fault in which a strategic attacker has some level of

control over the fault behavior and applies this control with malicious intent.

Several classes of methods for sensor FDI in stochastic linear dynamic systems

are surveyed in [62, 63, 64, 65]. Although many sophisticated approaches have

been developed in this mature field, most fault-detection methods focus on
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minimizing time-to-detect without regard to integrity risk, as noted by Jo-

erger [66]. Integrity risk is the appropriate figure of merit for dynamic systems

with clearly specified alert limits such as aviation and maritime navigation and

time transfer. For these systems, state estimation errors that remain within

the alert limits cause no performance degradation or heightened safety risk,

but undetected errors exceeding the alert limit can have severe consequences.

The first attempt to address sensor deception by minimizing integrity

risk appears to be [67], where a model-based spoofing detection method was

developed for an aircraft’s GPS-aided inertial navigation system. However,

the analysis considered a batch detection test whose batch interval is aligned

with the attack interval, a coincidence that cannot be expected in practice.

The current work adopts a sequential detection approach, which is more ap-

propriate for attacks of unknown start time and duration. But as opposed to

sequential detection techniques designed to minimize time-to-detect for fixed

probabilities of false alarm and detection, such as the sequential probability

ratio test [68], the current work adopts a fixed time-to-detect approach and

follows [66] and [67] in seeking to minimize integrity risk. More precisely, this

work minimizes mean integrity risk, or integrity risk averaged over all possible

attack start times.

The heart of a detection technique is the so-called detection statistic,

a function of the sensor measurements that gets compared to a threshold [69].

This work adopts an innovations-based detection statistic whose performance

is insensitive to the particular time history of false differential position and

velocity induced by the attacker.
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A key feature of the current work’s detection framework is that it op-

timizes the measurement sampling interval; the standard innovations-based

detection approach makes no attempt at such optimization [70, 62]. The op-

timization seeks to minimize worst-case integrity risk over a set of reasonable

attack profiles. Measurement sampling interval optimization was previously

considered in [71], but that work minimized time-to-detect, whereas the cur-

rent work’s criterion is integrity risk.

This chapter makes three contributions. First, it details the path-

ways and effects of GNSS deception on maritime navigation and surveillance.

Whereas maritime transportation’s vulnerability to GNSS jamming has been

previously established [49], this work offers the first detailed analysis of the ef-

fects of GNSS deception on a surface vessel. Second, it develops an innovations-

based spoofing detection framework and optimizes the worst-case mean in-

tegrity risk within this framework given a set of reasonable attack profiles.

Third, it presents the results of an unprecedented field experiment demon-

strating hostile control of a 65-m yacht in the Mediterranean Sea.

2.1 GNSS Dependencies of a Modern Integrated Bridge
System

This section details the pathways and effects of GNSS deception on

maritime navigation and surveillance. Besides providing a deeper understand-

ing of the vulnerability of maritime vessels to GNSS spoofing, this overview

will identify a subset of ship sensors that can conveniently and effectively be

applied to the problem of spoofing detection. Although the focus here and
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throughout the rest of the chapter is on manned surface vessels, the conclu-

sions apply with slight modification to unmanned surface vessels.

2.1.1 Compass

The magnetic compass and gyrocompass (a gyroscope designed to be

north-seeking by taking advantage of Earth’s rotation) depend only weakly

on GNSS. A magnetic compass requires knowledge of latitude and longitude

to correct for magnetic variation [72]. A gyrocompass requires knowledge of

the latitude and speed in the north/south direction to correct for “northing”

error [72]. However, outside of the polar regions, position errors on the order

of tens of kilometers and velocity errors on the order of meters per second will

only cause pointing errors on the order of a degree. Therefore, this work will

neither exploit nor model the weak coupling between GNSS and traditional

ship compasses.

However, a satellite compass [73], which provides both the position and

three-axis attitude of the ship, is fully reliant on GNSS. A common satellite

compass comprises two GPS receivers separated by a 0.2–10 meter baseline

coupled with miniature accelerometers, gyros, and a magnetometer. The low

cost, size, weight, and power consumption of satellite compasses, and the fact

that they never require calibration, make these devices an increasingly popular

compass option for surface vessels.
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2.1.2 Collision Avoidance

The Automatic Radar Plotting Aid (ARPA) is the primary tool used

for collision avoidance by the navigator, along with the view from the bridge

windows. The ARPA processes and displays the raw radar data in a polar

azimuth-range plot, tracks targets, and computes time and distance of closest

approach for each target [74]. Without the additional information that sen-

sors like compass, speed log, and GNSS provide, the ARPA can still perform

collision-avoidance functions but can only display target information oriented

along the ship’s heading, the so-called heads-up mode, with relative motion.

With compass information, the ARPA can present the radar data oriented

along the ship’s velocity vector, the so-called course-up mode, which prevents

smearing of the returns during course-change manuevers. Similarly, the ARPA

can present the radar data in a so-called true motion mode, where the mo-

tion is either sea-stabilized by compass and speed log or ground-stabilized by

GNSS. Additionally, GNSS information allows the ARPA to compute latitude

and longitude for the tracked targets. Nevertheless, convenience features such

as ground stabilization and target localization that depend on GNSS signals

play a relatively minor role in collision avoidance with other moving targets.

Finally, an interesting effect of a GNSS deception attack with ground stabi-

lization enabled on the ARPA makes radar echos from land masses appear to

move when they should be stationary.

The Automatic Identification System (AIS) allows ships to communi-

cate their position, heading, and speed in a self-organizing radio network to

aid in collision avoidance [72]. A ship’s AIS transceiver typically relies on a
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GNSS-based positioning source, although it can revert to a pre-determined

backup sources during a manifest GNSS failure. Under a GNSS deception at-

tack, a ship may transmit misleading AIS reports and incorrectly compute the

point of closest approach to surrounding ships, raising the collision risk. An

ARPA can typically overlay the AIS over the radar return and a modern ARPA

with integrated AIS can automatically correlate AIS and radar positions into

a single target.

2.1.3 Dead Reckoning

Dead reckoning (DR) is the process of propagating a known position

based solely on a ship’s course and speed, derived from compass and speed

log measurements. An estimated position (EP) corrects a dead-reckoned po-

sition by applying approximate knowledge of the effects of environmental dis-

turbances such as leeway (drift due to wind), and tidal and ocean currents.

Typically, the effects of environmental disturbances are lumped together into

a velocity error vector, whose angle and magnitude are referred to as set and

drift, respectively. The set and drift can be estimated by comparing a dead-

reckoned position to a position fix derived from either a GNSS receiver (typi-

cally), observations of celestial bodies, or radar and visual bearings. On paper

charts, DR would be reset with a position fix at least every hour, or as often

as every three minutes, depending on the accuracy required for navigating the

surrounding waters [72]. Electronic chart systems, discussed in the next sec-

tion, all have the ability to automate DR, making it easier to detect GNSS

faults or deception.
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2.1.4 Electronic Chart Display and Information System

The Electronic Chart Display and Information System (ECDIS) con-

solidates the measurements available from various ship sensors and integrates

systems such as ARPA, AIS, and DR as shown in Fig. 2.1 to provide complete

situational awareness to the ship’s crew [72]. ECDIS is the primary tool for

route planning and tertiary to the ARPA and AIS for collision avoidance, as

mandated by legislation and made explicit in maritime training. Most ECDIS

allow overlaying ARPA and AIS information on the charts and planned route

for convenience. The overlay may be useful in detecting discrepancies that

would arise due to GNSS deception of the own-ship position, e.g., failure of

radar returns to match coastal features and buoys on the charts, or the AIS-

reported position of nearby vessels. Maritime training emphasizes the need

to look for and investigate discrepancies as they normally indicate an equip-

ment problem. But, these discrepancies may simply confuse a crew unaware

of GNSS deception, although mariner training manuals have begun to iden-

tify GNSS deception as a potential issue for crew to monitor [75]. In any case,

when the distance to shore exceeds the range of radar (20 km for low-frequency

radar, less for X-band) and when there are few ships nearby, GNSS deception

attacks are not likely to be detected solely with radar. Most electronic chart

systems such as the Totem ECDIS allow configuring the reset interval of the

built-in DR and raising an alarm if the difference between the position fix and

DR exceeds a threshold [76]. Section 2.3 will develop an analytically rigorous

foundation for this approach by relating the detection threshold to the prob-

ability of hazardously misleading information (HMI) for a given false alarm
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rate and fix interval.
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Figure 2.1: Block diagram showing relationship between sensors, actuators,
and the ECDIS on a modern integrated bridge system. In this work, only
the highlighted sensors, which are used for dead-reckoning, are used for GNSS
spoofing detection.

2.1.5 Autopilot System

Virtually all large ships have a course autopilot, which maintains a

prescribed heading through rudder actuation in response to compass feed-

back. Some ships will additionally have a speed autopilot, which maintains

a prescribed speed through water by varying the engine thrust in response

to feedback from the Doppler speed log sensor. Neither of these rudimentary

autopilot systems depends on GNSS directly. However, the course autopilot

is typically driven by a higher-level track-keeping system that requires GNSS
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feedback. This work focuses on conventional PID-based control systems be-

cause they are commonly implemented in practice and typically perform just

as well as adaptive model-based control systems under nominal sea and ship

conditions [1].

2.1.6 GNSS-Independent Sensors

Sensors which do not have any dependency on GNSS include inertial,

acoustic, visual, and meteorological sensors. An inertial sensor found on most

ships is a gyroscope-based rate-of-turn (ROT) sensor, which is independent

of the compass and GNSS, for derivative course control feedback. The mod-

ern speed log uses acoustic Doppler measurements from particles in the water

column to compute three-axis speed through water. Other acoustic sensors

include conventional downward-looking sonar, also known as an echo sounder,

for sea depth measurements and round-trip acoustic ranging to transponders

embedded in the sea floor for dynamic positioning [50]. Meteorological sensors

provide measurements of temperature, wind, and pressure that can help pre-

dict, for example, the effect of leeway and surface currents [72]. Visual bearing

measurements of known reference points such as terrestrial landmarks or celes-

tial bodies can be used for positioning. However, landmarks such as buoys can

be misidentified, as in the case study in Sec. 2.1.8, or are not available in open

waters. Celestial navigation requires knowing the time, either from GNSS or

a free-running quartz crystal clock, to look up the position of celestial bodies

from an almanac [72]. A jump in ship time by 5 seconds (e.g., due to leap

second spoofing) would cause a longitude error of 0.02 degrees. Nevertheless,

22



errors less than ten seconds from either a drifting or GNSS-deceived clock are

comparable with other errors in celestial navigation.

These GNSS-independent sensors feed into alternative position sources

that can be used to cross-check GNSS in a modern integrated bridge sys-

tem. However, a subtle-enough spoofing attack can be consistent with dead

reckoning or celestial navigation and thus escape detection. Also, acoustic po-

sitioning is only useful for vessels operating in the small neighborhood of the

transponders. Although this work’s focus is on GNSS deception, it is worth

mentioning that radar and acoustic sensors systems on modern civil surface

vessels are also vulnerable to deception and jamming. Thus, although these

systems are assumed herein to be trustworthy and potentially useful for detect-

ing GNSS deception, a more thorough security analysis would need to consider

a coordinated, self-consistent attack on GNSS, radar, and acoustic sensors.

2.1.7 Summary of GNSS Deception Vulnerabilities

The ship’s crew can cross-check GNSS with (1) compass, (2) speed log,

(3) ship dynamics model, (4) radar and AIS from other ship, (5) radar and

charts, (6) echo sounder, (7) meteorological sensors. But, as will be shown

later on, even an optimal combination of (1)–(3), which amounts to sophis-

ticated DR, would not be sufficient to reliably detect a subtle attack before

the ship’s positioning error exceeds a reasonable hazardous condition thresh-

old. If (4) and (5) are properly and fully exploited, then the security situation

improves significantly. But alignment of charted objects such as the shoreline

and buoys with radar returns is often quite poor even under normal condi-
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tions because of (i) shoreline changes with tide, (ii) inadequate resolution of

charts, and (iii) positioning, bearing, and radar-ranging errors. Consequently

many ships’ crews either do not attempt radar overlay or would not consider

it a trustworthy cross-check for own-ship positioning errors. Also, comparing

radar with AIS from other ships is not trustworthy because (i) AIS data can

be manipulated, (ii) AIS-repeated location data ultimately depends on GNSS,

and (iii) ships’ crews are accustomed to discrepancies in AIS data and so many

have come to mistrust it.

For avoidance of collisions with radar-reflective objects, the ARPA re-

mains trustworthy and its collision avoidance function does not depend on

GNSS. But cross-track ship excursions outside the planned corridor are never-

theless dangerous precisely because some threatening objects (e.g., underwater

hazards) are not visible to radar and will not be detected by downward-looking

sonar. Moreover, along-track errors in a ship’s position can also be hazardous

because such errors can confuse the interpretation of radar returns or cause a

ship to over- or under-shoot the location of a planned maneuver.

2.1.8 Illustrative Example: The Grounding of the Royal Majesty

To appreciate the possible effects of a GNSS deception attack on a sur-

face vessel, it is instructive consider the grounding of the 174-meter cruise liner

Royal Majesty [47, 77]. Shortly after the ship departed Bermuda for Boston in

June of 1995, the cable connecting its GPS antenna to the unit on the bridge

became detached, forcing the GPS unit to transition to a dead-reckoning mode

in which the ship’s location was extrapolated from the last known good loca-
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tion based solely on gyro compass and water speed measurements. The crew

and autopilot, unaware of the transition to DR mode, accepted the position

indicated on the radar display’s map as truthful even as the ship accumulated

a 31 km cross-track navigational error. As the ship approached Nantucket, the

crew misidentified one buoy and ignored the absence of another. The ship’s

GPS-based navigation system had performed so utterly reliably in the past

that the crew’s trust in the ship’s displayed position was not shaken even as

a lookout sighted blue and white water ahead. Minutes later, the ship ran

aground on shoals invisible to its radar system.

In the aftermath of the Royal Majesty grounding, integrated bridge

systems were modified to more clearly indicate loss of GNSS signals, and re-

dundant GNSS units became standard. In addition, the incident is used as an

important lesson on the dangers of over-reliance on GNSS in maritime training

colleges since the crew of the Royal Majesty clearly acted in a manner inconsis-

tent with proper training, a contributing cause to the incident. Nevertheless,

the risk of a repeat of the Royal Majesty grounding, or a similar incident,

caused by deliberate, strategic GNSS deception remains because there would

be no apparent loss of GNSS, the DR would appear to remain consistent with

GNSS, and because primary and backup GNSS units would be equivalently af-

fected. The possibility of an improperly-trained or fatigued crew encountering

a GNSS failure that does not trigger alarms can never be completely elimi-

nated, and proper quantification of this risk under a GNSS deception attack

is needed.

Having offered an overview of the possible effects of GNSS deception on
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Figure 2.2: Conventional track-keeping system based on an existing course
autopilot system [1, p. 293]. Here, ψd is the desired heading angle, δ is the
rudder angle, U is the ship speed through water, ψ is the heading angle, b is
the along-track position, and e is the cross-track position.

surface vessels, this chapter now turns to developing a framework for analysis

of GNSS spoofing detection based on comparison of GNSS data with a mod-

ified version of DR. This detection strategy is appealing because of its broad

applicability: all sizable surface vessels can perform at least rudimentary DR,

and the DR technique works both far from shore and in littoral waters. The

next two sections introduce the dynamics model and the detection framework.

2.2 Ship and Spoofing Model

Consider a simplified ship dynamics model with a conventional track-

keeping guidance system as presented in [1]. A conventional track-keeping

system attempts to zero the ship’s cross-track position using a proportional-

integral (PI) controller wrapped around a course autopilot, as shown in Fig. 2.2.

2.2.1 Ship Dynamics

The ship dynamics model presented here, although quite simplified

compared to a more expressive six degree-of-freedom model, captures the low-

frquency ship motion relevant for control and spoofing. The ship’s steering
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dynamics is described by a 1st order Nomoto model [1],

T ṙ + r = Kδ + rb,

where T is the ship’s time constant (s), K is the rudder gain (1/s), δ is the

rudder angle (rad), r is the ship’s turn rate (rad/s), and rb is a slowly-varying

parameter that models environmental disturbances (rad/s). The rudder angle

δ and angular rate δ̇ are physically constrained by saturation conditions |δ| <

δmax and |δ̇| < δ̇max, respectively, but the controller is designed such that

the rudder angle dynamics remain linear under typical conditions. The ship’s

kinematics are given by [1]

ψ̇ = r

ẋ = U cosψ + dx

ẏ = U sinψ + dy,

where U is the ship’s speed through water (m/s), dx and dy model errors due

to drift caused by slowly-varying environmental disturbances such as ocean

currents and wind (m/s), x and y are the ship’s northing and easting (m),

respectively, and ψ is the ship’s heading (rad). Zero heading is defined to be

due north with increasing heading clockwise. The environmental disturbance

parameters are modeled as Gauss-Markov processes,

ḋx = − 1

Td
dx + vx

ḋy = − 1

Td
dy + vy,

where Td is the disturbance time constant and vx and vy are additive white

Gaussian noise (AWGN) sources with intensity σ2
d (m2/s3).
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2.2.2 Ship Control Laws

Only conventional controllers are considered in the sequel because they

perform just as well as adaptive and non-linear model-based controllers under

nominal sea and ship conditions [1]. A conventional course autopilot controls

the ship’s heading ψ to a desired approximately-constant heading ψd using

a proportional-integral-derivative (PID) control law. In modeling the course

control law that follows, and the track-keeping control law presented thereafter,

the measurements are assumed to be noiseless and continuous since the low-

bandwidth controllers and ship dynamics act to suppress the effects of real-

world discretization and measurement noise at the output of each closed-loop

control system. The measurements ψ(t) and r(t) from the compass and ROT

sensor, respectively, control the rudder angle δ(t) according to

δ(t) = Ki

� t

0

[ψd − ψ(τ)] dτ +Kp [ψd − ψ(t)]−Kdr(t),

where Ki is the integral gain, Kp is the proportional gain, and Kd is the

derivative gain. Following conventional PID control design of second-order

systems [1, p. 261], these gain parameters are derived from a chosen natural

frequency ωn and relative damping ratio ξ of the closed-loop system; the latter

is typically chosen in the interval 0.8 ≤ ξ ≤ 1.0. The closed-loop bandwidth

ωb, defined as

ωb , ωn

√
1− 2ξ2 +

√
4ξ4 − 4ξ2 + 2,

is chosen such that
1

T
< ωb < ωδ,
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where ωδ , δ̇max

δmax
is the rudder servo bandwidth. Finally, the PID gains are

related to ωn and ξ by

Kp =
T

K
ω2

n

Kd =
1

K
[2Tξωn − 1]

Ki =
T

K

ω3
n

10
.

An outer control loop for track-keeping is typically wrapped around the

course autopilot. In some cases, a human operator in the loop may take the role

of track-keeping controller. Whether mechanical or human, the controller can

be modeled as a PI controller. The track, or rhumb line, can be approximated

in the local Cartesian coordinates by a ray, which is parametrized by an angle

ψ0 (rad) and start position x0 and y0 (m). The along-track and cross-track

position, b and e, respectively, are given by

b = (x− x0) cosψ0 + (y − y0) sinψ0

e = (y − y0) cosψ0 − (x− x0) sinψ0.

The relationship between the global and track coordinates is illustrated graphi-

cally in Fig. 2.3. Because GNSS is the most accurate positioning source, nearly

always available, and assumed to be reliable when available, it is typically the

primary positioning source [49]. The GNSS receiver’s cross-track position mea-

surement, which is taken to be equivalent to e(t), is fed back with a PI control

law given by

ψd(t) = ψ0 −K ′i
� t

0

e(τ)dτ −K ′pe(t),
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Figure 2.3: Coordinate systems for ship global position (x, y) and track po-
sition (b, e). The track coordinate system’s origin and rotation with respect
to the global coordinate system is given by (x0, y0) and ψ0, respectively. The
ship’s orientation with respect to the global coordinate system is given by
heading angle ψ.

where K ′i is the integral gain and K ′p is the proportional gain. The gains are

chosen so that the inner course control loop and the outer track-keeping loop

have significant time scale separation, with the inner loop faster, a typical

practice for marine and aerial vehicle cascaded controller design [1, 78]. Thus,

from the perspective of the outer loop, one can assume ψ ≈ ψd, and the full

closed-loop cross-track dynamics can be approximated by a first-order system

with bandwidth ω′b = UK ′p � ωb. Note that the along-track position is not

controlled by a feedback law but instead proceeds open-loop according to an

approximate crew-selected velocity setpoint.

30



2.2.3 Spoofer Control Law

In a spoofing attack, the ship’s GNSS receiver will report the posi-

tion commanded by the spoofer. To remain covert, the spoofer will typi-

cally command positions that are gentle deviations, conveniently represented

in along-track and cross-track coordinates, from the ship’s true position. Cross-

track deviations will prompt a response from the ship’s track-keeping controller

whereas along-track deviations will elicit no response unless the ship’s track

changes. Along-track spoofing can be an effective strategy from the point of

view of the attacker, but this chapter will focus on cross-track spoofing because

it is equally effective yet requires less knowledge of the ship’s route.

In a cross-track spoofing attack, the spoofer generates a GNSS sig-

nal whose implied coordinates are the attacker’s estimate of the ship’s actual

along-track position b̂a(t) and a spoofed cross-track position es(t). The latter

can be written as the difference of two parts, the attacker’s estimate of the

ship’s true cross-track position êa(t) and a spoofer-induced cross-track mod-

ulation em(t) so that es(t) = êa(t) − em(t). The modulation em(t) is also

called the attack profile, as it represents the spoofer-intended depature from

the cross-track position. Note that to form ea(t) the attacker must continu-

ously estimate both the ship’s position and its rhumb line. This assumption is

not particularly demanding: other-ship position estimation via radar is both

accurate and routine, and surface vessels typically follow a route consisting of

waypoints connected by readily-estimable lines of constant bearing.

The attacker’s goal is to force the ship to track a spoofer-commanded
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cross-track position, denoted ē, as quickly as possible without being detected.

He evades detection by generating a subtle em(t) with limited velocity and

acceleration magnitudes:

|ėm(t)| ≤ vmax, |ëm(t)| ≤ umax (2.1)

Solving the following minimum-time optimal-control problem yields the attack

profile em(t) that achieves the spoofer’s goal. Here, tf is the final time and the

control input u(t) enters through the second derivative of em(t) as part of the

dynamical constraint.

min
u(t)

tf

s. t. ëm(t) = u(t)

em(0) = 0, ėm(0) = 0 (2.2)

em(tf) = ē, ėm(tf) = 0

|ėm(t)| ≤ vmax

|ëm(t)| ≤ umax.

For ē→∞ and tc , vmax/umax, the solution is given by

em(t) =

{
1
2
umaxt

2 0 < t ≤ tc
1
2
umaxt

2
c + vmax(t− tc) tc < t

An attack profile generated as a solution to (2.2) is easily disguised as the

effect of ocean currents. But it may not be optimal from the point of view

of the attacker; i.e., it may not be the most hazardous undetectable profile.

The optimal profile in this sense actually depends on the defender’s particular

detection test. Other strategies for generating em(t) that are more directly
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related to plausible detection tests are considered in Appendix A.4. Nonethe-

less, the strategy outlined in (2.2) has the virtue of being intuitive and readily

implementable yet generates em(t) profiles similar to those produced by the

more complex strategies.

The maxima vmax and umax are assumed to be sufficiently small that

em(t) is slow compared to the time constant of the ship’s track-keeping control

law, ensuring the attacker can dictate the ship’s true cross-track position e(t)

with only modest errors—errors due to the spoofer’s imperfect estimate of

the ship’s true position and the rhumb line, and to the ship’s own estimation

and control errors. Under this assumption, the spoofer need not adapt em(t)

to the ship’s response but may simply generate em(t) open loop. A closed-

loop spoofing controller is also possible, but its attacks are more difficult to

maintain covert, as explained in [19].

2.3 Detection Framework

The detection framework developed in this chapter attempts to mini-

mize the mean integrity risk ĪR, defined subsequently, for a given continuity

risk CR , 1/MF , where MF is the mean time between false alarms. This

framework borrows concepts from GNSS integrity monitoring in aviation ap-

plications [66] and the fault detection literature [62], which are applied here

to the “fraud detection” problem. Typically, the integrity and continuity risk

are specified in terms of the probability of hazardously misleading information

(HMI) per approach and the false-alarm rate, respectively.
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2.3.1 Overview

The schematic in Fig. 2.4 offers a graphical overview of the detection

problem. Time t = 0 denotes the beginning of an approach, or part of a

journey, such as the final approach to a harbor. At each time tk = kTs, k =

0, 1, ..., a detection test is performed to decide between two hypotheses—a

null hypothesis H0 indicating nominal operating conditions, and an alternative

hypothesis H1 indicating a spoofing attack is underway. At the beginning of

the approach, the null hypothesis is true; at some time t0 ≥ 0, a transition to

the alternative hypothesis occurs. After t0, the attack continues until either

hazardous conditions occur or the attack is detected. In this framework, the

constant time between tests Ts is a key parameter: it is taken as the free

parameter for the integrity optimization problem.

The detection strategy envisioned here is decoupled from the ship’s

track-keeping controller, which is assumed to ingest GNSS measurements at

its usual rate—typically much faster than 1/Ts—without regard for the the

periodic detection tests ocurring in parallel. A joint control-and-detection

framework is possible and would have slightly superior performance compared

to the proposed framework, but a disjoint framework is simpler and has the

benefit of being applicable to existing ships without re-certification of their

integrated bridge systems.

So long as the detection statistic q(k) remains below a threshold λ,

the detector assumes the null hypothesis; otherwise, it assumes the alternative

hypothesis and continuity is broken as the crew attempts to neutralize the
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potential spoofing threat. The threshold λ is chosen to satisfy

P (q(k) > λ|H0) = Ts/MF = CRTs

to maintain the prescribed false-alarm rate. Note that the probability distri-

bution of q(k) under H0 is independent of k, so λ need not depend on k.

LTs em (t)

q (k)
H1

≷
H0

λ

t0

t

Figure 2.4: A graphical overview of the detection problem: A spoofing at-
tack with cross-track profile em(t) begins at time t0, which is unknown to
the defender. The attacker attemps to drive the ship to exceed the alert
limit L, beyond which lie potential hazards, without detection. At every time
tk = kTs, k = 0, 1, ..., a GNSS measurement is taken and used to form the
detection statistic q(k). The time instants tk are unknown to the attacker,
though the measurement period Ts may be known. If q(k) exceeds the thresh-
old λ, the alternative hypothesis H1 (spoofing attack) is declared; otherwise,
the null hypothesis H0 is assumed.

2.3.2 Integrity Risk

Leading up to a definition of mean integrity risk ĪR, it will be useful

to define what is meant by hazardous conditions and by a so-called local HMI

event. Let the total system error of a certain state element of interest be
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denoted ε(t). The total system error is the departure of the true state element

from the controller’s desired value of that state element, and includes both

estimation and control errors. Hazardous conditions are said to occur when

|ε| > L for an alert limit L. Although the ship may not be in immediate danger

if |ε| > L, control decisions based on such divergent estimates are highly risky.

In this chapter, the state of interest is the cross-track position e(t), and a

typical value for L may be 1 km. To account for worst-case control error, L

must be substantially smaller than the distance that the ship’s route clears

charted hazards.

Assuming GNSS measurements are continuously available, as in the

ship’s control model, and that control errors remain small, then under H1,

ε(t) ≈ em(t). This deterministic approximation is a key simplifying assump-

tion: it prevents the total system error from being correlated with the detec-

tion statistic. Lack of correlation greatly simplifies the expression for the mean

integrity risk, as will be shown subsequently.

A local HMI event E(t) for t > t0 is defined as hazardous conditions

under a spoofing attack that has not been detected. Mathematically, E(t) is

expressed as

E(t) , (|em(t)| > L) ∧
(∧

k∈St

q(k) < λ

)
,

where St , {k|t0 < kTs < t}. The boolean event G indicates whether a local

HMI event has occurred at any time t > t0 during an approach:

G ,
∨

t>t0

E(t).
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Let the first time hazardous conditions occur under a spoofing attack be de-

noted tL and let SL , {k|t0 < kTs ≤ tL}. Then G can be reformulated as

G =
∧

k∈SL

q(k) < λ.

Integrity risk is defined for a particular start time t0 as IR(t0) , P (G|t0),

assuming conservatively that the probability of a spoofing attack is unity.

Assuming all spoofing start times are equally likely, mean integrity risk is

then defined as

ĪR ,
� 1

0

P (G|t0 = βTs)dβ.

2.3.3 Detection Statistic

Detector performance depends strongly on the detection statistic q(k).

If the attack profile em(t) were precisly known to the defender a priori, then

a detection statistic could be optimally tailored to the known profile. The

statistic would amount to processing estimator innovations through a filter

matched to the known profile Appendix A.3. If some attack profile parame-

ters remained unknown, such as t0 and vmax, then the generalized likelihood

ratio approach would be reasonable [62]. However, the stronger the defender’s

assumptions are about the attack profile, the more vulnerable he becomes to

an attacker who violates those assumptions.

One recognizes a zero-sum game in the simultaneous incentives the

defender has to optimize q(k) for the defender’s choice of em(t) and the attacker

has to optimize em(t) for the defender’s choice of q(k). If an equilibrium pair

{q?(k), e?m(t)} were found to exist for this game, such that neither attacker
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nor defender would benefit by unilateral departure from the equilibrium, then

q?(k) could be taken as an equilibrium-optimal detection statistic [79, 80].

However, the author was unable to discover such an equilibrium; its existence

remains an open question. Instead, a normalized-innovations-squared (NIS)

statisic [70, 62, 81] is adopted here. This statistic is not optimal in the sense

of q∗(k), but it is robust in that it makes no assumptions about the attack

trajectory; rather, it penalizes all departures from the assumed model.

The innovation sequence ν(k) on which q(k) is based is generated by a

Kalman filter ingesting a GNSS measurement every Ts seconds. A simplified

model for the Kalman filter is developed below in preparation for determining

the probability distribution of q(k). First, consider the continuous-time ship

dynamics model

η̇(t) = Aη(t) +Bu(t) + Γṽ(t),

where

η =
[
x y dx dy

]T is the state vector,

A =

[
0 I2

0 − 1
Td
I2

]
, B =

[
I2

0

]
,Γ =

[
0
I2

]
,

u = U
[
sinψ cosψ

]T is the control, and

ṽ =
[
vx vy

]T is AWGN with intensity Qc = σ2
dI2,

with In the n-by-n identity matrix and the other matrices appropriately di-

mensioned. The control u(t) is derived from the ship’s compass and speed

log measurements. The potentially-spoofed GNSS measurements are sampled

from

z(k) = Hη(kTs)− zm(kTs) + w(k),
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where w(k) is a discrete AWGN sequence with covariance R = σ2
pI2, H =

[
I2 0

]
, and zm(t) is the deterministic spoofer-induced two-dimensional posi-

tion modulation for which, by definition, zm(t) = 0 for t < t0.

The a priori and a posteriori estimation errors of the Kalman filter are

defined as ε̄(k) , η(k) − η̄(k) and ε̂(k) , η(k) − η̂(k), respectively, while the

innovation ν(k) is defined as

ν(k) , Hε̄(k)− zm(kTs) + w(k).

The recursion equations for the estimation error’s means and covariances are

given by

E [ε̄(k)] = FE [ε̂(k − 1)]

P̄ (k) , E
[
ε̄(k)ε̄T (k)

]
= FP (k − 1)FT +Q

E [ε̂(k)] = (I −K(k)H)E [ε̄(k)]−K(k)zm(kTs)

P (k) , E
[
ε̂(k)ε̂T (k)

]
= (I −K(k)H)P̄ (k),

where

F = eATs ,

Q =

� Ts

0

eAτΓQcΓ
TeA

Tτdτ,

S(k) = HP̄ (k)HT +R,

K(k) = P̄ (k)HTS−1(k), and

E [ε̄(0)] = 0.

In the sequel, it is assumed that the estimation error covariances have reached

their steady-state values, which can be found by solving a discrete-time alge-

braic Riccati equation, and so the index k is dropped from P , P̄ , S, and K.
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Note that during a spoofing attack, a nonzero zm(kTs) biases the estimation

error and innovation.

The NIS detection statistic, defined as, q(k) = νT(k)S−1ν(k), is dis-

tributed under H0 as χ2 with two degrees of freedom, and under H1 as non-

central χ2 with two degrees of freedom and non-centrality parameter δ(k) =

ν̄T(k)S−1ν̄(k), where

ν̄(k) = HE [ε̄(k)]− zm(kTs)

is the mean of innovation at index k. Since the innovation sequence is white,

each detection test is independent.

2.3.4 Optimization

A natural question arises in sequential detection: How often should the

detection test be executed? If the measurement sampling interval Ts, which

is also the detection test interval, is too small, then no innovation ν(k) will

appear particularly surprising under H1, and no cumulative effect will accrue

as the Kalman filter accepts and adjusts to the biased innovations. As Ts is

made longer, innovations under H1 become more obviously biased, but if Ts

is too long, the attacker may begin an attack and reach hazardous conditions

between detection tests.

A distinguishing feature of the current framework is that it optimizes

Ts to minimize ĪR over a range of possible vmax. Fig. 2.5 shows how ĪR varies

as a function of Ts and vmax for the parameters indicated. The optimal Ts is

a minimax solution which minimizes the maximum ĪR over the range of vmax
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Figure 2.5: Mean integrity risk ĪR vs. sampling time Ts for various choices
of vmax. The optimal sampling time T ?s that minimizes the worst-case mean
integrity risk is approximately 100 minutes, yielding Ī?R ≈ 0.6727. Note that
the worst-case attack is given by either vmax = 0.1 or 1 m/s. Other parameters
are umax = 0.03 m/s2, MF = 1 month, ē� L = 3 km, σp = 6 m, Td = 200 s, and
σd = 0.02 m/s1.5.

considered, in this case 0.1 m/s to 1 m/s. More formally, a robust optimizer for

Ts would be

min
Ts

max
vmax∈V
umax∈U

ĪR, (2.3)

where V and U are bounded sets containing reasonable values for the attack pa-

rameters. vmax is bounded from below under the assumption that the attacker

wishes to cause hazardous conditions before the end of a typical approach. If

the average duration of an approach is T̄app, then vmax ≥ L/T̄app, reasonably

assuming a linear relationship between the approach’s alert limit and aver-
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Figure 2.6: Minimax integrity risk Ī?R vs. the hazardous condition threshold
L. For L ≤ 400 m, the worst-case attack will likely cause HMI since Ī?R > 0.9.
On the other hand, L ≥ 7 km maintains an integrity risk near zero for any
reasonable attack. Other parameters are set to the values indicated in Fig. 2.5.

age duration. Induced velocities greater than 1 m/s would lead to physically

impossible set and drift values that are not captured by the Gauss-Markov dis-

turbance model and break the small control error assumption; this constraint

places an upper bound on vmax. Lastly, the impact of the acceleration regime

of the attack is diminished for large Ts since the regime only occurs for a short

period of time in the beginning of the attack. Therefore, the integrity risk

optimization is not particularly sensitive to the choice of umax, which is fixed

to a value of 0.03 m/s2 for the rest of the analysis.

A closed form solution to (2.3) does not appear possible, but the optimal

Ts can be found numerically based on the definition of ĪR and on the known

distributions for q(k) under H0 and H1. Minimax results for two example

scenarios are shown in Figs. 2.6 and 2.7.
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Figure 2.7: Minimax integrity risk Ī?R vs. L and MF . Depending on the
alert limit and continuity risk requirements of the approach, the detection
framework will maintain an integrity risk that can be either quite high (black
region), in which covert attacks are possible, or quite low (white region). Other
parameters are set to the values indicated in Fig. 2.5.
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Figure 2.8: Trajectory resulting from simulation of ship dynamics under
nominal conditions and a spoofing attack. Model parameters are given by
T = 39.94 s, K = 0.211 s−1, U = 8.23 m/s, Kp = 1.4415, Ki = 0.0126,
Kd = 21.6904, K ′p = 0.0028, K ′i = 1.8949 × 10−5. Other parameters are
set to the values indicated in Fig. 2.5.44
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Figure 2.9: Theoretical vs. simulated integrity risk for different values of vmax.
Other parameters are set to the values indicated in Fig. 2.5.

2.4 Simulation

The spoofer control law and integrity risk calculations were verified with

Monte-Carlo simulations. The simulations take into account the Nomoto ship

model, closed-loop ship controller, and open-loop spoofer controller developed

in Sec. 2.2, with ē� L. A couple of representative ship trajectories are shown

in Fig. 2.8. The simulation-based integrity risk is determined by counting

the number of HMI events over 100 sampling phases per simulation and 20

simulations per attack profile. As shown in Fig. 2.9, the simulation-based

integrity risk for different values of vmax agrees quite well with the values

predicted by the theory developed in Sec. 2.3.

2.5 Experiment

Covert control of a marine vessel by GPS spoofing was demonstrated

in the Mediterranean sea in the summer of 2013. The author was invited to

conduct the unprecedented experiment aboard the White Rose of Drachs, a
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Figure 2.10: Sketch of the spoofer setup on the White Rose of Drachs.

65-meter superyacht. The experimental setup centered on the receiver-spoofer

developed at the University of Texas at Austin [19]. The spoofer receives the

authentic signals from an antenna placed in the stern. The spoofer transmits

the false navigation signals towards the bow, where the ship’s GPS antennas

are located as shown in Fig. 2.10.

Once a safe route is established, the captain attempts to maintain the

ship’s reported position along a series of rhumb lines within some prescribed

corridor. Control actions at sea are required to maintain course due to dis-

turbances such as wind and ocean currents, which are typically not measured

directly. Instead, the disturbance sources are lumped together, and measured

indirectly through the GPS. Therefore, a spoofing attack can induce false dis-

turbances, causing the captain to believe the ship is on course, when in reality,

the ship is slowly drifting off course. In the aforementioned experiment, a

spoofer-induced velocity was introduced in the cross-track direction—at first

0.5 m/s, then increased to 2 m/s at 200 m, and finally reset to zero at 700 m.
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Figure 2.11: Comparison of the ship’s reported position and the ship’s actual
position during a spoofing attack. The thin solid lines indicate ±200 m cross-
track deviation.

The spoofer-induced acceleration in the first velocity change was 0.03 m/s2,

while for all other changes the acceleration was 0.1 m/s2. Note that the maxi-

mum spoofer-induced velocity and acceleration exceed the limits assumed in

Sec. 2.3 in order to reduce the duration of the experiment. As the captain

performed typical correction maneuvers to maintain the spoofed trajectory

within a ±200 m corridor, the actual ship’s position deviated along a parallel

track as shown in Fig. 2.11 and 2.12.
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Figure 2.12: Comparison of the ship’s heading, spoofed course, and true course
during a spoofing attack. Course is defined as the direction of the ship’s
velocity over ground vector with respect to North.
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The ship’s reported position and heading were logged to a file during

the spoofing attack. Unfortunately, the ship’s Doppler log was not functional,

but the ship’s engine throttle control was set to Full Ahead, so the ship’s

speed through water U is assumed to be a nominal 15 knots. The logged

measurements are fed post-facto into the innovations-based spoofing detection

framework developed in Sec. 2.3. In order to determine the optimal sampling

time T ?s for the experiment, many of the same parameter values indicated

in Fig. 2.5 were used, except 0.5 m/s ≤ vmax ≤ 2 m/s and L = 200 m. Even

though the ship was traveling in open waters, the narrow corridor was cho-

sen to reduce the time scale of the experiment from hours to minutes, and

could potentially represent approaches to harbors with many surrounding haz-

ards. The resulting minimax optimization yields T ?s ≈ 250 s and integrity risk

Ī?R = 0.8956 for the worst-case attacks. The first phase of the actual attack,

while |zm| ≤ 200 m, is a worst-case attack and remains covert with respect to

the detection framework. The second phase of the attack is significantly less

covert assuming L = 700 m, umax = 0.1 m/s2, and vmax = 2 m/s, which yields a

theoretical integrity risk of ĪR = 0.0067, although the actual integrity risk is

different due to the change in the spoofer-induced velocity in the middle of the

attack. The NIS values generated by the detection framework for the experi-

mental data with five different sampling phases are shown in Fig. 2.13. Recall

that the integrity risk computed previously is the marginal risk over uniformly

distributed sampling phases. A realization for a particular sampling phase

leads to HMI if the associated NIS values never cross the detection threshold

λ after the spoofing attack begins and before the attack leads to hazardous
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conditions. If the NIS value falls into the shaded regions shown in Fig. 2.13,

then the defender has succesfully detected an attack (i.e. declared H1) before

hazardous conditions occur.

2.6 Strategies for Mitigating Surface Vessel Vulnerabil-
ity to GNSS Deception

A number of promising methods are currently being developed to de-

fend against civil GNSS deception attacks. These can be categorized as (1)

receiver-autonomous signal-processing-oriented techniques, which require no

antenna motion or specialized antenna hardware [82, 83, 84, 85]; (2) receiver-

autonomous antenna-oriented techniques, which require antenna motion or

specialized antenna hardware [86, 87, 88]; (3) cryptographic techniques that

require signal specification modifications to overlay unpredictable but verifi-

able modulations on existing or future civil GNSS signals [89, 90]; and (4) tech-

niques that exploit the existing encrypted military signals to offer civil GPS

signal authentication for networked GPS receivers [91, 92, 38, 93]. Among

these methods, the dual-antenna technique described in [94, 87] seems an es-

pecially promising option for maritime protection because (1) it could be im-

plemented in the near term, and (2) its chief drawbacks relative to the other

techniques—larger size and higher cost—are not so critical for marine vessels

as they are for handheld devices and small unmanned aerial vehicles, for ex-

ample. Nonetheless, it will take years before this or other techniques mature

and are implemented on a wide scale. Meanwhile, there are no off-the-shelf

defenses against GNSS spoofing.
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Figure 2.13: NIS values generated by the detection framework with a sampling
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Chapter 3

Emitter Localization

Passive radio-frequency (RF) emitter localization has many military

and civilian applications, and in particular, finding GPS jammers as noted in

the dissertation’s introduction. Many methods for passive RF emitter localiza-

tion exist that use various types of measurements derived from the unknown

emitter signal such as received signal strength (RSS), angle of arrival (AOA),

and time and frequency difference of arrival (T/FDOA) [95, 32, 96, 97, 98, 99,

100]. The measurement type has implications on the number of sensors re-

quired for observability, emitter state estimability, and sensor complexity. For

example, AOA measurements from a single moving platform can provide good

estimability, but may require complex sensors such as a rotating directional

antenna or an antenna array. On the other hand, T/FDOA measurements ob-

tained by cross-correlation requires at least two spatially-separated platforms

with a high-throughput network link, but only a single omnidirectional an-

tenna per platform is required. RSS measurements typically require the least

complex sensors and platforms, but tend to contain less information about the

emitter state due to unknown nuisance parameters such as transmitted power,

path loss exponent, and multipath, leading to poor estimability.

The present work will focus on emitter localization based on cross-
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correlation due its low antenna and receiver complexity requirements. In a

traditional cross-correlation approach, T/FDOA measurements are obtained

from processing the cross-correlated complex ambiguity function (CAF), using

the classic algorithms in [101, 102]. Then, the measurements are ingested by

a top-level geolocation algorithm such as the algebraic hyperbolic-positioning

estimator in [103, 104], the Hough Transform-based estimator in [105], or the

T/FDOA nonlinear filter in [96]. However, this two-step estimation approach

is suboptimal, especially for low signal-to-noise ratio, because the approach

ignores the constraint that all measurements must be consistent with a single

emitter position and velocity [34]. In direct geolocation, the CAF is maximized

directly by parameterizing the delay time histories in terms of the emitter state

space and using known information about the receiver position and clock offset

time histories. This chapter will consider direct geolocation methods and their

implementation for various experimental scenarios.

This chapter makes three contributions, which distinguishes itself from

the work in [34, 35]. First, it considers practical implementation issues of

a deployed system such as time synchronization of receivers and long coher-

ent integration for non-constant T/FDOA. In addition, three different types

of emitter dynamics models—static, constant velocity, and constant velocity

with path constraint—are considered. Second, it goes beyond the simulations

in [35] to conduct and report on three field experiments. Third, it provides

a comparative study of the performance and complexity of various estimation

algorithms based on grid search, the Kalman filter, and the particle filter.
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3.1 Received Signal Model

Consider the following model for the signal transmitted by an emitter:

s (t) = As (t) cos (2πfct+ φs (t)) . (3.1)

Here, As (t) is the instantaneous amplitude, fc is the center frequency, and

φs (t) is the transmitted beat carrier phase. For convenience, consider the

complex envelope s̃ (t) = As (t) exp (jφs (t)) and analytic representation ŝ (t) =

s̃ (t) exp (2πfct) of the transmitted signal s (t). Note that analytic signals are

a valid approximation when the complex envelope is slowly varying with re-

spect to the center frequency (i.e. bandpass signals) [106]. This “narrowband”

approximation is valid in typical scenarios because the bandwidth of the base-

band signal s̃ (t) is small with respect to the carrier frequency fc. Assume that

the radio propagation channel induces a non-dispersive delay τρ (t), an atten-

uation A (ρ̄) that is a function of the average range ρ̄ over the time-of-flight

interval, and additive white Gaussian noise n′ (t). Then the received signal

r′ (t) at the receiver can be modeled as

r′ (t) = A (ρ̄) s (t− τρ (t)) + n′ (t) , (3.2)

or with an analytic representation as

r̂′ (t) = A (ρ̄) ŝ (t− τρ (t)) + n̂′ (t) ,

where n̂′ (t), the analytic representation of n′ (t), is a complex white Gaussian

noise process with single-sided power spectral density N0 in W/Hz. Other

propagation effects like multipath and shadowing are not considered in this

model.
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For electromagnetic waves traveling in a vacuum, the propagation delay

τρ (t) satisfies the implicit relationship

cτρ (t) =

√
(re (t− τρ)− rs (t))T (re (t− τρ)− rs (t)), (3.3)

where c is the speed of light, rs (t) is the receiver position vector, and re (t) is

the emitter position vector [107]. For short propagation distances commonly

encountered in terrestrial applications, (3.3) can be approximated as

cτρ (t) = ρ (t) =

√
r (t)T r (t),

where r (t) = re (t) − rs (t) is the relative position vector and ρ (t) is the

instantaneous range. The range rate is given by ρ̇ (t) = r (t)T ṙ (t) /ρ (t).

Let the relationship between the time tr at the receiver and true time

t be given by

t = tr − τr (tr) , (3.4)

where τr (tr) is the receiver’s clock offset from true time. Suppose that a mixing

signal with nominal center frequency fc is generated with the receiver’s clock.

The mixing signal’s phase φr (tr) is related to tr by

φr (tr) = 2πfctr + φr,0,

where φr,0 is the initial phase of the oscillator. Let the mixing operation be

modeled such that the resulting baseband signal r̃′ (t) is given by

r̃′ (t) = r̂′ (t) exp (−jφr (tr))

= A (ρ̄) s̃ (t− τρ (t)) exp (−jφ′ (t, tr)) + ñ′ (t) , (3.5)
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where

φ′ (t, tr) = 2π (tr − t+ τρ (t)) fc + φr,0

and ñ′ (t) = n̂′ (t) exp (−jφr (tr)) is a zero-mean baseband complex Gaussian

process. The receiver clock model in (3.4) is used in (3.5) to express r̃′ (t)

in the receiver’s time base, denoted r̃ (tr). The noise-free baseband received

signal s̃r (tr) is given by

s̃r (tr) = A (ρ̄) s̃ (tr − τm (tr)) exp (−jφm (tr)) , (3.6)

with the apparent delay τm (tr) defined as

τm (tr) = τr (tr) + τρ (tr − τr (tr)) (3.7)

and the received beat carrier phase φm (tr) given by

φm (tr) = 2πfcτm (tr) + φr,0.

The full expression for the baseband received signal r̃ (tr) is given by

r̃ (tr) = s̃r (tr) + ñ (tr) , (3.8)

where ñ (tr) = ñ′ (tr − τr (tr)) is still a zero-mean baseband complex Gaussian

process.

Assuming a nominal sampling rate Ts, the digital representation of the

signal r̃ (tr) is given by r̃[k] = r̃ (kTs). The noise ñ (tr) is generated at each

receiver based on the noise power density N0 in W/Hz over the two-sided

noise-equivalent bandwidth Bn in Hz. Therefore, the noise power σ2
n in Watts

is given by

σ2
n = N0Bn.
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The complex noise time series ñ[k] is a scaled and filtered version of a sequence

of random samples whose real and imaginary components are independent and

normally distributed. The noise samples are scaled so that

E [ñ[k]ñ?[k]] = σ2
n.

The emitter has an average transmitted power density Ps in W/Hz over

the single-sided noise-equivalent bandwidth. The spreading loss L (ρ̄) is given

by

L (ρ̄) =
λ2
c

4π2ρ̄2
,

where λc = c/fc is the nominal wavelength of the signal. Isotropic transmit

and receive antennas and no cable loss are assumed. The received signal power

σ2
s in Watts is given by

σ2
s = L (ρ̄)PsBn.

The signal component of the received signal s̃r[k] = s̃r (kTs) is scaled so that

E [s̃r[k]s̃?r[k]] = σ2
s ,

which constrains A (ρ̄) in (3.2) appropriately.

3.2 Generalized Cross-Correlation Function (GCCF)

Consider the generalized cross-correlation function (GCCF) for a pair

of complex baseband signals z̃1 (t) and z̃2 (t):

S (z̃1 (t) , z̃2 (t) , τ1 (t) , τ2 (t)) ,
T�

0

z̃1 (t+ τ1 (t)) z̃?2 (t+ τ2 (t)) ej2πfc[τ1(t)−τ2(t)]dt, (3.9)
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where τi (t) is the delay time history for received signal i ∈ {1, 2} and T is

the length of the integration interval. Note that the more familiar complex

ambiguity function (CAF) adapted from the radar literature [106],

S ′ (z̃1 (t) , z̃2 (t) , τ0, fD) ,
T�

0

z̃1 (t) z̃?2 (t+ τ0) e−j2πfDtdt, (3.10)

where τ0 is a constant delay and fD is the Doppler frequency, can be expressed

approximately in terms of the GCCF by

τ1 (t) = 0, τ2 (t) = τ̄ (t) = τ0 +
fD
fc
t. (3.11)

The impact of assuming constant delay τ0 in the CAF is negligible if the

Doppler frequency is small i.e. fD � fc
TBn

. The GCCF can capture arbitrary

geometric and clock motion, not just linear approximations usually only valid

over short intervals as in the CAF. However, the discrete-time CAF can be

efficiently evaluated for a large number of Doppler frequency with the Fast

Fourier Transform (FFT) and can be used to quickly visualize the presence

and path of strong emitters in the delay-Doppler domain.

Consider a pair of signals r̃1 (t) and r̃2 (t) from receivers 1 and 2, re-

spectively, satisfying the single-emitter propagation model in (3.8). Note that

although signals are recorded in different time bases, both signal’s functional

representation are indexed with the same integration variable t. Then, the

GCCF for the received signals is given by

S (r̃1 (t) , r̃2 (t) , τ1 (t) , τ2 (t)) = α1α
?
2S (s̃ (t) , s̃ (t) , τ ′1 (t) , τ ′2 (t))

+N (r̃1 (t) , r̃2 (t) , τ1 (t) , τ2 (t)) , (3.12)
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where the complex attenuation factor αi is defined as

αi = A (ρ̄i) e
−jφri,0 ,

S (s̃ (t) , s̃ (t) , τ ′1 (t) , τ ′2 (t)) is the generalized auto-correlation function (GACF)

of s̃ (t),

τ ′i (t) = τi (t)− τm,i (t+ τi (t)) , (3.13)

and N (r̃1 (t) , r̃2 (t) , τ1 (t) , τ2 (t)) is a noise function, which includes all correla-

tion terms involving the noise signal ñ (t). Note that the GACF is maximized

when

∀i ∀t τ ′i (t) = 0,

although if s̃ (t) has any periodic features, the GACF can reach its maximum

value for additional delay time histories. (3.13) is an implicit equation like (3.3)

and can be solved iteratively by the recursion

τn+1
i (t) = τm,i (t+ τni (t)) ,

where τ 0
i (t) = 0. In a typical scenario,

τi (t) = lim
n→∞

τni (t)

is valid and in practice, the solution converges within reasonable tolerance for

small n—usually three iterations. This recursive iteration technique is also

used to solve the time-of-flight equation in GPS receivers [108].

The (not necessarily unique) delay time histories that maximize the

GCCF in (3.12) are denoted by τ̂1 (t) and τ̂2 (t), which are typically restricted

to some subset of the real function space. For example, if τ̂1 (t) = 0 and
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τ̂2 (t) is restricted to linear functions as in (3.11), then the GCCF reduces

approximately to the CAF, which is given by

S ′ (r̃1 (t) , r̃2 (t) , τ0, fD) ≈ S (r̃1 (t) , r̃2 (t) , 0, τ̄ (t))

= α1α
?
2S (s̃ (t) , s̃ (t) ,−τm,1 (t) , τ̄ (t)− τm,2 (t+ τ̄ (t)))

+N (r̃1 (t) , r̃2 (t) , 0, τ̄ (t)) . (3.14)

The GACF term of (3.14) is maximized when

∀t F (t) = τ̄ (t)− τm,2 (t+ τ̄ (t)) + τm,1 (t) = 0 (3.15)

is satisfied. However, given the two-dimensional delay-Doppler parameter-

ization of τ̄ (t), (3.15) can only be approximately satisfied, where the best

approximation is the solution to

min
τ0,fD
‖F (t)‖ ≥ 0

with appropriate choice of function norm. For band-limited Gaussian white

noise ñ, the CAF is equivalent to the log-likelihood of {τ0, fD}, up to an addi-

tive constant and scaling [109]. Therefore, the delay and Doppler that maxi-

mize the magnitude of the CAF (including noise terms), denoted respectively

as τ̂0 and f̂D, are the corresponding maximum likelihood estimates (MLE)

of the time and frequency difference of arrival (T/FDOA) between a pair of

receivers for a single emitter. For multiple emitters, the ML approach would

be to jointly estimate all unknown emitter T/FDOA while excising known

in-band emitter sources such as GPS signals. A sub-optimal algorithm for ex-

tracting multiple T/FDOA estimates would be to find all the local maxima of
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the CAF above a threshold. However, the auto-ambiguity terms generated by

each emitter waveform may interfere with each other if their peaks are close

in the delay-Doppler domain, leading to biases in the T/FDOA estimates.

These biases can be mitigated by super-resolution methods such as MUSIC,

although the number of emitters and reflectors must be known a priori for

best performance [44, 110].

In order to compute the GCCF digitally, a zero-order hold (ZOH) ap-

proximation for τi (t) and z̃i (t) is used with hold time Ts. The ZOH continuous-

time approximations can be written in terms of the discrete-time representa-

tions τi [k] and z̃i [k] as

τi (t) ≈ τi [floor (t/Ts)] and

z̃i (t) ≈
1√
Ts
z̃i [floor (t/Ts)] , respectively.

The hold time Ts is related to the integration interval by an integer Ns such

that T = NsTs. Then, the GCCF can be approximated as

S (z̃1 (t) , z̃2 (t) , τ1 (t) , τ2 (t)) ≈
Ns−1∑

k=0

C (k) e−j2πfc∆τ [k],

where ∆τ [k] = τ2 [k]− τ1 [k] and the sub-cross-correlation term C (k) is given

by

C (k) =

(k+1)Ts�

kTs

z̃1 (t+ τ1 [k]) z̃?2 (t+ τ2 [k]) dt. (3.16)

A crude approximation of the integral in (3.16) is to hold the sample at the

midpoint of the integral, i.e.

C (k) ≈ z̃1 [km,1] z̃?2 [km,2] ,
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where

km,i = floor

(
k +

1

2
+
τi [k]

Ts

)
.

The GCCF implementation in this work uses the above midpoint approxi-

mation, although a more accurate interpolation scheme is considered in [39],

which develops a real-time implementation of GPS spoofing detection via cross-

correlation of encrypted signals.

3.3 Tightly-Coupled Radio-Frequency Frontend

“Tightly-coupled” refers to an RF receiver architecture in which emitter

signals and reference signals are down-converted with the same oscillator and

sampled in such a way that a nanosecond-accurate correspondence can be

made between the two sampled signal streams (coherent signal conditioning

and sampling). Fig. 3.1 shows one straightforward tightly-coupled receiver

architecture. Tight coupling between the emitter and reference data enables

the data streams from two separate receivers to be synchronized to within

nanoseconds and for clock variations over the cross-correlation interval to be

estimated and compensated at the carrier-phase level. The tightly-coupled

receiver architecture draws from the success of ongoing work in opportunistic

navigation at the University of Texas at Austin [111, 112, 113]. Experience

with GNSS signals, terrestrial signals of opportunity such as cellular CDMA,

and Iridium signals suggests that an emitter localization system could exploit

any instance of these three signal types as a reference.

The simplest approach to a tightly-coupled receiver architecture is to
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Figure 3.1: Basic tightly-coupled receiver architecture.

use GNSS signals as the reference signals. This approach allows one to exploit

the well-known, clean, and stable signal characteristics of GNSS signals. An

embeddable real-time software-defined GNSS receiver called GRID has been

jointly developed at the University of Texas at Austin and Cornell University,

with significant contributions to the code made by the author from 2009 to

2014 [43]. Therefore, software-defined GNSS signal processing can be done

within the receiver, which may have limited computational resources, to min-

imize network throughput requirements. A typical GNSS navigation solution

will provide estimates of the receiver position r̂′s (tr) and clock offset τ̂r (tr)

time histories. This information, coupled with a prediction of the emitter

position time history r̄e (t) = r̄e (tr − τ̂r (tr)), allows predicting the apparent

delay τ̄m (tr), given by

τ̄m (tr) = τ̂r (tr) +
1

c

√
(r̄e (tr − τ̂r (tr))− r̂′s (tr))

T (r̄e (tr − τ̂r (tr))− r̂′s (tr)).
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3.4 Limits of Coherent Integration

The first source of coherent integration loss is from the ZOH approx-

imation of the GCCF. In the sub-cross-correlation, the first-order delay rate

error ∆τ̇ (i.e. Doppler frequency error) causes power loss according to

LZOH = sinc2 (∆τ̇ fcTa) .

In order to avoid the first null of the sinc, the sub-accumulation time Ta should

be chosen such that ∆τ̇maxfcTa � 1. For highway velocities (35 m/s) and 20

cm wavelengths, Ta = 1 ms is reasonable. In addition, errors in the assumed

dynamics model of the emitter (which will typically be a low-order polynomial)

will limit the overall coherent integration time T .

The second source of loss is from the noisy estimates of the receiver

position and clock offset. Consider the coherent sum

w =
Ne−1∑

n=0

exp (jφ [n]) ,

where each phase noise sample is normally distributed φ [n] ∼ N
(
0, σ2

φ

)
and

independent. Then, the coherent integration loss due to white Gaussian phase

noise [114] is given by

LWGN =
1 + exp

(
−σ2

φ

)
(Ne − 1)

Ne

.

The result can be approximately extended to colored noise by letting the num-

ber of samples be given by

Ne =
T

τd
,
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where τd is the decorrelation time of the noise. In this formulation, Ne repre-

sents the effective number of white noise samples. Note that although phase

biases do not cause coherent integration loss and subsequent loss of estimation

precision through lower SNR, the estimation accuracy of the emitter state is

still affected.

The error covariance of a GNSS navigation solution

x =

[
rs
br

]
,

where br = cτr, is typically expressed in the form Px = σ2
URE

(
GTG

)−1, where

σURE is the user range error and G is the geometry matrix for the observations

used in the solution [108]. Dropping the time arguments, the apparent delay

in units of length is given by

bm = f (x, re) = br +

√
(re − rs)T (re − rs)

where bm = cτm. A first-order approximation of propagating the error covari-

ance through the nonlinear function f (·) [81] is given by

Pbm = HxPxH
T
x ,

where

Hx =
∂f

∂x
(x, re) =

[
rs−re√

(re−rs)T(re−rs)
1
]
.

In a typical scenario where the emitter and receivers are constrained to the

local horizontal plane, it can be shown that the error covariance of the apparent

delay can be expressed as

Pbm =
(
H2

DOP + T 2
DOP

)
σ2

URE
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where the dilution of precision (DOP) terms are related to the elements of
(
GTG

)−1 as shown in [108].

The user range error depends on the type of observations used in

the GNSS navigation solution. For example, code-phase measurements yield

σURE,UDP ≈ 6 m, which includes multipath, atmospheric, and satellite clock

and ephemeris errors, whereas single-differenced code-phase measurements

yield σURE,SDP ≈ 1 m and double-differenced (DD) carrier-phase measurements

yield σURE,DDC ≈ 1 cm [108]. The differencing operation nearly cancels com-

mon error sources from atmosphere propagation modeling and satellite clock

and ephemeris parameters. The technique of using DD carrier-phase mea-

surements with successful integer ambiguity resolution to compute a naviga-

tion solution is called carrier-phase differential GPS (CDGPS). With CDGPS,

the coherent integration loss is bounded by exp
(
−σ2

φ

)
for large Ne where

σφ ≈ 4πσURE,DDC/λc, assuming a typical DOP = 4 for CDGPS. For emitter

wavelengths of 20 cm, the loss is bounded by −1.7 dB. With code-phase mea-

surements, the phase noise is much greater than a cycle, and so the coherent

integration loss is unbounded. In fact, non-coherent integration yields less loss

for Ne > 1, so the coherent integration time T is limited by the decorrela-

tion time τd. Typically, a code-phase-based navigation solution is aided by

carrier-phase and/or IMU measurements, which can significantly increase the

decorrelation time. For example, a carrier-aided delay-locked loop can have

bandwidths as low as 0.01 Hz (an effective decorrelation time of 100 seconds),

and for T � τd, the loss is nearly equivalent to CDGPS [108]. Similarly, a

complementary Kalman filter ingesting both code-phase and IMU measure-
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ments will have an effective decorrelation time on the order of 1–100 seconds

depending on the accuracy of the IMU [81].

3.5 Single-Emitter Localization Algorithms
3.5.1 Emitter Dynamics Model

The emitter position time history throughout the integration interval

T is parameterized by a low-dimensional state space η. The following mod-

els are considered: nearly static (NS), nearly constant velocity (NCV), and

nearly constant velocity with path constraint (NCVP). The descriptions for

each model, such as the state variables, time history within the integration

interval, and update recursions, are given in Table 3.1. Note that for NCVP,

the distance along the path s can be transformed to Cartesian coordinates

by functions Tx (s) and Ty (s). The process noise v (k) represents continuous

AWGN velocity (NS) or acceleration (NCV and NCVP) integrated over the

interval T , where the covariance matrices Qn are given by

Q0 = q0I2×2T

Q1 = q1

[
Qcv 0
0 Qcv

]

Q2 = q2Qcv

and

Qcv =

[
1
3
T 3 1

2
T 2

1
2
T 2 T

]
.
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Type State Space Time History Update

NS η =

[
x0

y0

]
x (t) = x0

y (t) = y0

η (k + 1) = F0η (k) + v (k)

v (k) ∼ N (0, Q0)

NCV η =




x0

ẋ
y0

ẏ




x (t) = x0 + ẋt

y (t) = y0 + ẏt

η (k + 1) = F1η (k) + v (k)

v (k) ∼ N (0, Q1)

NCVP η =

[
s0

ṡ

]
x (t) = Tx (s0 + ṡt)

y (t) = Ty (s0 + ṡt)

η (k + 1) = F2η (k) + v (k)

v (k) ∼ N (0, Q2)

Table 3.1: Description of three different types of emitter dynamics models.

For the update equations, the state transition matrices Fn are defined as

F0 = I2×2

F1 =

[
F2 0
0 F2

]

F2 =

[
1 T
0 1

]
.

Lastly, for the rest of this work, the emitter position is constrained to the

surface of the Earth and is expressed in a local two-dimensional Cartesian

coordinate system.

3.5.2 Likelihood Function

For the following direct geolocation algorithms, given Nr receivers, the

likelihood function L (η|z) must be defined up to a scale factor, where z =

{ri|i = 1, . . . , Nr} and ri is a vector of received complex samples from the ith

receiver over some integration interval. The simplified signal model for the ith

receiver is given by

ri = αiHi (η) s+ ni,
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where s and ni ∼ CN (0, σ2
nI) are the complex baseband emitter signal and

noise vectors, respectively, αi is the complex path attenuation, and Hi (η) is

a complex matrix that time and phase shifts the signal vector according to

the received signal model in (3.8) and the emitter state. Therefore, given the

complex-normal distribution of the noise ni, the likelihood function is given

by

L′′ (η, s, α|z) ∝ exp

(
− 1

σ2
n

Nr∑

i=1

‖ri − αiHi (η) s‖2

)
, (3.17)

where α = {αi|i = 1, ..., Nr}. For the case of unknown deterministic emitter

signal, α and s are nuisance parameters. A reasonable approach is to replace

them with their maximum likelihood estimates as in [35], i.e.

L (η|z) = max
s,α

L′′ (η, s, α|z) .

For the path attenuation scalars, it can be easily shown that

α̂i =
sHHH

i (η) ri

‖Hi (η) s‖2 . (3.18)

Substituting (3.18) into (3.17) yields

L′ (η, s|z) = L′′ (η, s, α̂|z)

∝ exp

(
− 1

σ2
n

Nr∑

i=1

∥∥∥∥ri −
sHHH

i (η) ri

‖Hi (η) s‖2 Hi (η) s

∥∥∥∥
2
)

= exp

(
− 1

σ2
n

Nr∑

i=1

rH
i ri −

∣∣rH
i Hi (η) s

∣∣2

‖Hi (η) s‖2

)

∝ exp

(
1

σ2
n

Nr∑

i=1

∣∣rH
i Hi (η) s

∣∣2

‖Hi (η) s‖2

)

≈ exp

(
1

σ2
n

sHD (z, η) s

‖s‖2

)
, (3.19)
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where

D (z, η) = V (z, η)V H (z, η) , and

V (z, η) =
[
HH

1 (η) r1, . . . , H
H
L (η) rL

]
.

Note that Hi (η) is nearly square with dimension Ns and ‖Hi (η) s‖ ≈ ‖s‖ since

the non-zero elements of Hi (η) have unity magnitude. Finally, substituting

the best estimate of s into (3.19), which is proportional to the eigenvector

associated with the maximum eigenvalue of D (z, η), an Ns×Ns matrix, yields

L (η|z) = L′ (n, ŝ|z)

∝ exp

(
1

σ2
n

λmax (D (z, η))

)
. (3.20)

For large Ns, computing λmax (D (z, η)) can be quite expensive. However, note

that λmax (D (z, η)) = λmax

(
D̄ (z, η)

)
, where D̄ (z, η) = V H (z, η)V (z, η) is an

Nr×Nr matrix. Typically Nr � Ns, so computational savings can be achieved

using D̄ (z, η). In fact, the elements of D̄ (z, η) are simply evaluations of the

GCCF for a pair of receivers, i.e. for received signals r̃i (t) and associated

delay time histories τi (t, η), then

D̄i,j (z, η) = S (r̃i (t) , r̃j (t) , τi (t, η) , τj (t, η))

≈ rH
i Hi (η)HH

j (η) rj,

where S (·) is approximated by a zero-order hold representation in a digital

implementation. Note that for two receivers, the cost function is nearly equiva-

lent to the magnitude of the GCCF when the path attenuation at each receiver

is approximately equal, i.e. |α1| ≈ |α2|, as shown in [115].
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In practice, using the likelihood function L (η|z) in (3.20) can lead to

problems when the received signal power is high and the effective noise floor

is dominated by the signal’s sidelobes in the ambiguity domain rather than

the receiver noise samples. Although the ideal ambiguity function is the so-

called “thumbtack” function, actual signals under a finite integration interval

will have some power off the peak in the so-called “pedestal” as described in

the radar literature [106]. Therefore, a normalized likelihood function L̂ (η|z)

is considered such that

L̂ (z|η) = exp
(
γλmax

(
D̂ (z, η)

))
,

where γ is some scaling factor and

D̂i,j (z, η) =
Di,j (z, η)√

Di,i (z, η)Dj,j (z, η)
.

Note that the diagonal elements of D̂ (z, η) are exactly one, which imposes the

condition

1 ≤ λmax

(
D̂ (z, η)

)
≤ Nr.

Although no theoretical guidance is offered here, experimental results in the

sequel show that the range 1 ≤ γ ≤ 3 yields satisfactory results.

3.5.3 Grid Search

A straightforward algorithm to determine the maximum likelihood (ML)

estimate of the emitter state, denoted as GS, is to grid up the state space and

search for the grid point that yields the maximum value of the likelihood func-

tion for each integration interval as in [34]. The choice of likelihood function,
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either L (η|z) or L̂ (η|z), may yield different ML state estimates, although the

difference is negligible in most cases. However, the values of σn and γ do not

affect the ML estimate since the relative values of the likelihood function are

not important when searching for the maximum. The grid search algorithm is

well suited for the two-dimensional NS model, with appropriate grid spacing

and constraints. However, the search space can become unwieldy for the four-

dimensional NCV model. In addition, standard grid search does not allow

imposing the dynamical constraint between position and velocity over time

in both the NCV and NCVP model. A maximum a posteriori (MAP) esti-

mate of the emitter state could be derived from the point-mass filter, which

keeps track of prior information through weights associated with each grid

point. However, for N grid points, the weight update is O (N2), as opposed

to the O (N) update of the particle filter [116]. In addition, the particle filter

searches the state space more efficiently than the point-mass filter through a

“dynamically-sized” grid. In the following subsections, a Kalman and particle

filter implementation for direct geolocation are presented.

3.5.4 Kalman Filter

A Kalman filter allows smoothing the measurement information from

each integration interval with the dynamical constraints on the emitter state.

In addition, instead of searching the whole state space like in naive grid search,

the previous emitter state and covariance can be used constrain the search

space to a smaller region for each integration interval in order to reduce com-

putational effort, although with the added possible risk of divergence.
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The standard Kalman filter algorithm for direct geolocation, denoted

as KF1, is described in the sequel. Let η̄ (k) and η̂ (k) be the a priori and a

posteriori emitter state estimate with error covariance P̄ (k) and P (k), respec-

tively, at time k. An iteration of the Kalman filter has two steps: prediction

and update. For the nth dynamics model, the prediction step is given by

η̄ (k) = Fnη̂ (k − 1)

P̄ (k) = FnP (k − 1)FT
n +Qn.

The update step is given by

η̂ (k) = (I −K (k)) η̄ (k) +K (k) y (k)

P (k) = (I −K (k)) P̄ (k) ,

where K (k) = P̄ (k)
[
P̄ (k) +R (k)

]−1 is the Kalman gain and y (k) is the

emitter state measurement with noise covariance R (k). In order to compute

y (k), consider a set of Np sampling points P (k) = {ηi (k) |i = 1, . . . , Np},

which is generated by either grid or Monte-Carlo sampling. A naive grid sam-

pling method generates points with a user-selected resolution and the square-

root of the diagonal elements of P̄ (k) multiplied by a user-selected scale factor

to set the limits of the grid in each state dimension. A more sophisticated grid

sampling also considers the correlation between state dimensions as in the

LAMBDA method for integer estimation [117]. The Monte-Carlo sampling

method chooses each point such that ηi (k) ∼ N
(
η̄ (k) , P̄ (k)

)
. Once all the

sampling points are chosen, then the measurement y (k) is given by the most

likely point, i.e.

y (k) = arg max
η∈P(k)

L (η|z (k)) ,

73



where z (k) represents the all of the samples from all receivers for the kth

integration interval. Again, as in grid search, the choice of likelihood function

may slightly affect the state estimate.

The covarianceR (k) is determined by computing the Cramer-Rao lower

bound (CRLB) at the current state estimate η̄ (k). Linearization about the

raw sample measurements is impractical, so the CRLB is computed with

respect to range and range-rate difference of arrival (R/RR-DOA) pseudo-

measurements, denoted by ρij and ρ̇ij for receivers i and j [118]. Using the

pseudo-measurements is a reasonable approximation for slow emitter dynam-

ics, or, in other words, R/RR-DOA measurements are a nearly sufficient statis-

tic for the raw sample measurements. Let ξ (k) be the vector of R/RR-DOA

measurements from all possible receiver combinations. The model for ξ (k) is

given by

ξ (k) = h (η (k)) + w (k) ,

where h is a non-linear function that maps the emitter state space to the

R/RR-DOA measurement space and w (k) is AWGN with covariance W (k).

Choosing W (k) is somewhat arbitrary, although for simplicity, W (k) is set

to be diagonal with error variances σ2
ρ and σ2

ρ̇ for each range and range-rate

DOA measurement, respectively [102, 101]. In reality, the measurements are

correlated since the same raw samples are used in cross-correlation pairs that

share a common receiver, as shown quite thoroughly in [99]. Regardless of how

W (k) is chosen, the CRLB is given by

R (k) =
(
HT (k)W−1 (k)H (k)

)−1
,
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where

H (k) =
∂h

∂η

∣∣∣∣
η=η̄(k)

.

In the present work, a central difference method is used to approximate the

linearization matrix H (k) for simplicity and generalization of the implemen-

tation, although the R/RR-DOA linearizations with respect to typical state

parameterizations such as NS are well documented in the literature for inter-

ested readers [96].

A modified Kalman filter algorithm, denoted as KF2, uses the same

prediction step as KF1 and a particle-filter-like update step. After the pre-

diction step, a set of particles are created with Monte-Carlo sampling i.e.

ηi (k) ∼ N
(
η̄ (k) , P̄ (k)

)
. Each particle is associated with a weight wi (k)

determined by the likelihood function such that

w̄i (k) = L̂ (ηi (k) |z (k)) , and

wi (k) =

(
Np∑

i=1

w̄i (k)

)−1

w̄i (k) .

Note that normalized likelihood function L̂ (η|z) is used here exclusively be-

cause L (η|z) tends to be far too peaky, as discussed previously. Then, the

emitter estimate and error covariance are given by the conditional mean and

covariance

η̂ (k) =

Np∑

i=1

wi (k) ηi (k) , and

P (k) =

Np∑

i=1

wi (k) (ηi (k)− η̂ (k)) (ηi (k)− η̂ (k))T .
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N
(
η̄ (k) , P̄ (k)

)

MC Sampling LF Evaluation

KF1: measurement is MLE.

KF2: mean and covariance
of p.m.f. is posterior η̂ (k)
and P (k).

Figure 3.2: Diagram showing the difference between the measurement update
of KF1 and KF2 with Monte-Carlo sampling.

Schematically, the difference between the measurement update of KF1 and

KF2 with Monte-Carlo sampling is shown in Fig 3.2. The main advantage of

the KF2 formulation is that it avoids the computation of R (k) and the errors

introduced with the CRLB approximation. However, information is lost when

collapsing the particles into a mean and covariance, which is avoided in the

full particle filter implementation in the following subsection.

3.5.5 Particle Filter

A particle filter algorithm, denoted as PF, is presented in order to ad-

dress the two previously mentioned limitations of the grid search algorithm—

large search space and lack of dynamical constraints. Note that Sidi also rec-

ognized these limitations when using a particle filter to extend Weiss’s original

direct-geolocation grid search algorithm to the dynamic emitter model [35].

The bootstrap filter is used in the sequel to implement a sequential Monte-

Carlo sampling method for Bayesian filtering [119].

Let η (k) and z (k) be the emitter state and measurement vector, re-

spectively, at time k. Now, consider a set of Np sampling points or particles
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and associated weights at time k, {(ηi (k) , wi (k)) |i = 1, . . . , Np} and the set

of all measurements up to time k be given by Z (k) = {z (1) , . . . , z (k)}. Then,

an approximate posterior probability density function (pdf) is given by

p (η (k) |Z (k)) =

Np∑

i=1

wi (k) δ (η (k)− ηi (k)) .

The bootstrap filter is initialized with particles sampled from an initial pro-

posal pdf ηi (0) ∼ p0 (η) and weights set to wi (0) = 1/Np for all i. Typically

p0 (η) is a uniform distribution over a constrained region of the state space

(such as the region used in grid search). An iteration of the bootstrap filter

has three steps: prediction, update, and resampling. In the prediction step,

process noise samples for each particle are generated from a process noise pdf

vi (k) ∼ N (0, Qn) and the state transition function is used to produce the a

priori state particles η̄i (k + 1) = Fnηi (k)+vi (k), for the nth dynamics model.

Before the update, the index k is incremented. In the update step, the weights

for each particle is updated based on the likelihood of the measurement such

that

w̄i (k) = L̂ (η̄i (k) |z (k))wi (k − 1) , and

wi (k) =

(
Np∑

i=1

w̄i (k)

)−1

w̄i (k) .

Note that the normalized likelihood function L̂ (η|z) is used here exclusively

because experimental results have shown L (η|z) is far too “peaky” in practice

due to the long integration time. Finally, in the resampling step, if the number

of effective particles,

N̂eff =

(
Np∑

i=1

w2
i (k)

)−1

,
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is less than some fixed threshold Nt ≤ N , then the particles are resampled

such that

ηi (k) ∼
Np∑

i=1

wi (k) δ (η (k)− η̄i (k)) ,

and the weights are reset to wi (k) = 1/Np. Otherwise, ηi (k) = η̄i (k) and the

weights are given by wi (k) above. Note that in the original implementation of

the bootstrap filter, resampling occurs at every iteration so that the threshold

is effectively set to Nt = N . As Weiss and Sidi have already shown the

efficacy of the grid search and particle filter algorithm for direct geolocation

in simulation, the following section will apply the presented algorithms to

experimental data.

3.6 Experiments

In this section, three field experiments are documented to show the

capability of the emitter localization system. Each experiment uses the GPS

signals transmitted at 1575.42 MHz (L1) to estimate the receiver position and

clock offset. For the WSMR and UTEN scenario, the emitter was a com-

mercial off-the-shelf GPS jammer that transmitted a 30 MHz chirp waveform

at GPS L1. For the UAV scenario, the emitter was an Ettus E100 universal

software radio peripheral (USRP) that was programmed to transmit a GPS

chipping sequence in the 900 MHz amateur radio band. The scenarios for each

experiment are summarized in Table 3.2.

The post-processing emitter localization workflow is described in Fig. 3.3.

For each experiment, the raw sample data from each dual-antenna tightly-
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coupled receiver is recorded to file. First, the reference signal from each an-

tenna is processed by a software-defined GPS receiver. Then, a reference

antenna is chosen, with its absolute coordinates fixed either by pseudorange

observations or a geodetically-referenced marker, and carrier-phase differen-

tial processing for the other antennas allows estimating to within centimeters

the baseline with respect to the reference antenna. For each receiver, the lo-

cal clock offset time history is estimated using carrier-smoothed pseudorange

observations from a single satellite and the position of the antenna and the cho-

sen satellite. In order to significantly reduce the computational effort required

during cross-correlation, the time delay due to clock effects is accounted for

separately in a pre-processing stage, which generates cross-correlated “subaccu-

mulations” for each receiver pair. The pre-processing stage requires choosing

two parameters, a subaccumulation integration interval Tsub and maximum

geometric time offset τ̄sub, which must satisfy

Tsub <
λc

4vmax

and τ̄sub >
bmax

c
,

where vmax is the maximum emitter velocity and bmax is the largest baseline

between a receiver pair. Since the geometric component of the time delay is

unknown at the pre-processing stage, multiple subaccumulations are generated

per receiver pair, each testing a hypothetical geometric TDOA at the sampling

interval resolution Ts, up to ±τ̄sub. Therefore, the number of subaccumulations

generated per receiver pair is given by

Nsub = 2ceil (fsτ̄sub) + 1.
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Name Emitter Band Emitter Dynamics Receiver Configuration
WSMR GPS L1 NCV and NCVP 4 stationary
UTEN GPS L1 NCVP 2 stationary
UAV 900 MHz NS 1 stationary, 1 airborne

Table 3.2: Summary of experiment scenarios for emitter localization.

Dual-Antenna
Tightly-Coupled
Sample Data

Software-Defined
GPS Processing

Carrier-Phase
Differential
Processing

Subaccumulation
Generator

GS/KF/PF
Geolocation
Algorithm

Receiver Clock Receiver Position

Pseudorange and Phase Observations

Reference

Emitter

Subaccumulations

Model

η̂, P

Figure 3.3: Emitter localization post-processing workflow.

Note that if Tsub is too small, then there are no computational savings from us-

ing the pre-processing stage since the cross-correlation at mostly unnecessary

sample offsets must be evaluated. A more sophisticated and computationally-

efficient scheme would use a caching mechanism for the subaccumulations

within the geolocation algorithm instead of the separate pre-processing stage

to avoid evaluating (or re-evaluating) unnecessary subaccumulations. Finally,

the geolocation algorithm coherently combines the subaccumulations up to the

integration interval T and produces estimates of the emitter state and error

covariance.

80



3.6.1 WSMR Experiment

The U.S. Department of Homeland Security invited the Radionaviga-

tion Laboratory and Cornell University to participate in a GPS jamming test

exercise at White Sands Missile Range (WSMR) in New Mexico during the

summer of 2012. Of the numerous jamming scenarios, several involved driving

a commercial 2.5 W off-the-shelf chirp jammer along WSMR’s main highway

to emulate real-world jamming incidents along major U.S. highways, the most

notable being the Newark jammer [24, 25]. Four stationary receivers tuned

to GPS L1 were set up along Route 7 as shown in Fig. 3.4, with the vehicle

carrying the jammer traveling southbound at about 19 m/s. In this experi-

ment, each receiver was an Ettus USRP N200 driven by a free-running oven-

controlled crystal oscillator. The receivers recorded 16-bit complex-baseband

samples with sampling interval Ts = 110 ns or, equivalently, with sampling

rate fs ≈ 9.09 MS/s. The emitter and reference signal are derived from the same

upward-facing hemispherical-gain GPS antenna. As in the UAV experiment,

the received GPS signals were used to estimate the antenna positions and the

local clock offset time history using both pseudorange and carrier phase ob-

servables. The centimeter-accurate antenna baselines are listed in Table 3.3.

The subaccumulation integration interval, maximum geometric time offset,
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Receiver Pair Baseline Length (m)
1-2 603.27 m
1-3 653.62 m
1-4 543.86 m
2-3 1205.56 m
2-4 808.93 m
3-4 584.66 m

Table 3.3: Baseline lengths of receiver pairs for the WSMR experiment.

and number of cross-correlation offsets were set to

Tsub =
19 cm

4× 25 m/s
≈ 2 ms,

τ̄sub =
1200 m

3× 108 m/s
≈ 4µs,

Nsub = 2× ceil

(
4µs

110 ns

)
+ 1 = 75.

The unscaled raw received power from each receiver as the jammer passed

through the network during a 200-second interval is shown in Fig. 3.5. Given

the raw subaccumulations produced by the pre-processing stage, the cross-

correlated complex ambiguity function (CAF) for each receiver pair can be

generated, as shown in Fig. 3.6. The truck was carrying a high-grade inertial

navigation system, whose position and velocity estimates are used as truth in

order to evaluate the performance of the various algorithms, as detailed in the

rest of this section.

In the following set of results, only the cross-correlation pairs between

receivers 1, 3, and 4 are considered. The subset allows analyzing geolocation

performance with both good and poor emitter-receiver geometry as the emitter

moves through the network. Each geolocation algorithm is applied to this
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Figure 3.4: Receiver network layout, denoted by numbered black dots, for the
WSMR experiment. Route 7 is indicated by the black path, and the “truth”
truck position and velocity at a particular instant in time is denoted by the
blue dot and red arrow, respectively. Note that the truck’s speed is 19.8 m/s.
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Figure 3.5: Unscaled raw power in decibels measured at each receiver of each
2 ms subaccumulation for the WSMR experiment. Note that the received
power at each antenna is loosely correlated with the distance to the jammer.
Differences in cable loss and amplifier gain settings yield different raw receiver
noise power values, which must be accounted for in the standard likelihood
function L (η|z). Note that the noise power at receiver 2 and 3 is about
10 dB less than the other two receivers. For the normalized likelihood func-
tion L̂ (η|z), the raw power with all its variations pictured above is used to
normalize the cross-correlation of each pair.
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Figure 3.6: Cross-correlated complex ambiguity function, in decibels, for a
subset of receiver pairs in the WSMR experiment. Red and blue indicate the
strongest and weakest cross-correlation magnitude, respectively. The color
scale for each pair is set so that maximum point is red and anything below
the mean of the grid is blue. The subaccumulation interval is 2 ms and the
Fourier transform interval is 100 ms, so that the image above is generated with
75 RDOA offsets and 50 subaccumulation samples per offset. The instant in
time pictured above corresponds to the time of the snapshot in Fig. 3.4. Note
that the non-ideal chirp signal structure and multipath results in strong peaks
away from the true R/RR-DOA.
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subset of the WSMR dataset using the NCVP model with q = 10 m2/s3 and

T = 100 ms. Note that in order for the cross-correlation to remain coherent,

the one-sigma position uncertainty should remain well within one wavelength

of the transmitted emitter signal, assuming that the NCVP model actually

reflects reality. With the chosen parameters, this condition is met, i.e.
√
q
T 3

3
� λc ⇒ 5.8 cm < 19 cm.

For the GS algorithm, the state space was constrained to s ∈
[
0, 2000

]
m for

the path position with 300 grid points and ṡ ∈
[
−22, −13

]
m/s for the path

velocity with 30 grid points. The GS estimation error using both the stan-

dard and normalized likelihood function, along with the predicted standard

deviation of the error, is shown in Fig. 3.7. The predicted standard deviation

is based on the CRLB approximation with σρ = 100 m and σρ̇ = 1 m/s, which

were chosen to conservatively fit the experimental error instead of being based

on a theoretical thermal noise derivation. In fact, the thermal noise errors

are insignificant due to the high emitter power in this experiment, and other

sources such as clock synchronization and grid sampling errors dominate. Note

that the normalized likelihood function performs slightly better for naive grid

search. The KF1 and KF2 algorithms were initialized by using the truth state

η1 and simulated Gaussian noise, i.e. η̄1 = N
(
η1, P̄1

)
, where

P̄1 =

[
202 0
0 22

]
,

although in practice, an initial grid search would be used to “acquire” the

target. In addition, KF1 and KF2 both used Monte-Carlo sampling of L̂ (η|z)
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for the measurement update with 100 points. The PF algorithm is initialized

by uniformly sampling the GS-constrained state space with 10,000 particles

(note that the grid resolution was 300× 30). Then, after the first resampling

step, the number of particles is reduced to 100. The computational complexity

for KF1, KF2, and PF are about the same since they all use the same number

of sampling points for the likelihood function per integration interval i.e. Np =

100, although, the PF resampling stage can dominate the total run time for

short integration intervals. The threshold for the resampling stage is 70% of

the total number of particles. For the KF2 and PF algorithms, the scaling

factor for L̂ (η|z) is set to γ = 2 and γ = 1, respectively, which was observed

to provide the best overall performance. It was observed that if γ is too large,

then the particle filter tends to diverge more often, despite having smaller

“formal” errors.

Since KF1, KF2, and PF require Monte-Carlo sampling and random

initialization, the estimation error was averaged over ten trials for each algo-

rithm, as shown in Fig. 3.8. The estimates of each algorithm for a single trial

are shown in Fig. 3.9. Note that KF1 seems to outperform the other algorithms

with its lower true estimation error, although KF1 predicts the estimation er-

ror to be about twice as large. The reason for KF1’s better performance is

due to better knowledge of the measurement quality through the CRLB ap-

proximation. Therefore, towards the end, when the emitter-receiver geometry

becomes quite poor, KF1 is able to depend less on new measurements and use

the dynamics model to propagate the information from prior measurements.

KF2 and PF must sample the likelihood function with enough points so that
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any significant spreading, indicating poor measurement quality, is adequately

captured. Also, note that KF2 and PF perform quite similarly as expected due

to the update step being nearly identical, with KF2 having slightly better true

position estimation error, likely due to KF2 having a deterministic prediction

step. Finally, note that the consistency of the estimators (i.e. the difference

between predicted and true errors) are well within an order of magnitude.

The effect of the number of particles on the performance of the PF

algorithm is shown in Fig. 3.10. Note that the true error decreases with in-

creasing number of particles as expected, especially in position and in the

region with poor emitter-receiver geometry. However, the predicted position

error increases with more particles, although the predicted velocity error does

not seem to be sensitive to the number of particles. Note that the PF algorithm

with Np = 1, 000 performs similarly to the KF1 algorithm with Np = 100.

Using KF1 and KF2 in practice can lead to problems since accurate

initialization requires good emitter-receiver geometry and high received signal

strength. Otherwise, false targets may be acquired, and the Kalman filters will

not converge to the true emitter state. The effect of emitter-receiver geometry

on estimability for the NCVP model is shown in Fig. 3.11. In addition, the

GS and PF sample points are plotted together to visualize how the algorithms

cope with the changing geometry as the truck moves through the receiver

network, shown in Fig. 3.12. The start time was chosen such that truck had

already passed receiver 3 and was well within the receiver network at about

s ≈ 1000 m. A standard particle filter will be more robust to rejecting false

targets than KF1 and KF2, although parallel Kalman filters could be used in
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(a) Estimation performance over 40-second
interval of the WSMR dataset.
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(b) Zoomed-in region before emitter-receiver
geometry leads to poor estimability.

Figure 3.7: GS algorithm performance with NCVP model for the WSMR
experiment with both the standard and normalized likelihood function. Pre-
dicted standard deviation based on CRLB approximation is tuned to match
true errors.
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(a) True one-sigma estimation error averaged over ten Monte-Carlo
trials.
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(b) Predicted one-sigma estimation error for a single trial.

Figure 3.8: KF1, KF2, and PF algorithm performance with NCVP model for
the WSMR experiment.
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Figure 3.9: Estimated path position and velocity for KF1, KF2, and PF algo-
rithms with NCVP model from a single trial over a 40-second interval of the
WSMR dataset.
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(a) True one-sigma estimation error averaged over ten Monte-Carlo
trials.
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(b) Predicted one-sigma estimation error for a single trial.

Figure 3.10: PF algorithm performance with NVCPmodel and varying number
of particles for the WSMR experiment.
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a multiple hypothesis framework at the expense of computational complexity.

The PF algorithm is applied to the WSMR dataset using the NCV

model with q ∈ {10, 30} m2/s3 and T = 100 ms. The algorithm is initialized

by uniformly sampling the state space with 10,000 particles constrained to

x ∈
[
−500, 0

]
m, y ∈

[
0, 500

]
m, ẋ ∈

[
5, 20

]
m/s, and ẏ ∈

[
−20, 5

]
m/s.

Then, after the first resampling step, the number of particles is reduced to

1,000. The normalized likelihood function was used with γ = 2. The position

and velocity estimation error of the NCV model with q = 10 and q = 30

compared to the NCVP model with q = 10 and Np = 100 is shown in Fig. 3.13.

The velocity estimation error is about the same for all models, however, the

position estimation error is about twice as large for the NCV model with q = 10

than the other two. Again, the algorithm’s estimates are consistent to within

an order of magnitude. In the case of three receivers, the path constraint

was not expected to change the estimation performance, although the NCVP

model can achieve the same performance as the NCV model with 10 times

fewer particles. In addition, only two receivers are required for observability

with the NCVP model, although estimability will suffer when compared to

three receivers. A final way to decrease computational effort is to lengthen

the integration interval T so that fewer particle filter updates occur, either by

coherent or non-coherent integration.

Finally, additional results from the WSMR experiment using data from

two and four receivers are presented. First, the estimability for two and four

receivers are shown in Figs. 3.14 and 3.15, respectively. Note in Fig. 3.4

that receiver pair (2, 3) has the longest baseline, and most of the constant-
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Figure 3.11: Predicted path position and velocity error using CRLB approx-
imation with σρ = 100 m and σρ̇ = 1 m/s for NCVP model and using only re-
ceivers 1, 3, and 4 as shown in Fig. 3.4. Note that for s < 250 m or s > 1200 m,
the emitter-receiver geometry yields poor estimability, with error exceeding the
maximum value of the color scale.
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Figure 3.12: GS and PF NCVP state estimate and sample points for the
WSMR experiment at four instants in time. A portion of the 300 × 30 GS
points form the background color plot with blue and red for lower and higher
values of the normalized likelihood function, respectively. The 100 PF points
are indicated by small white dots.

95



0 5 10 15 20 25 30 35 40
0

5

10

15

20

P
a

th
 P

o
s
it
io

n
 E

rr
o

r 
(m

)

0 5 10 15 20 25 30 35 40
0

2

4

6

Time (s)

P
a

th
 V

e
lo

c
it
y
 E

rr
o

r 
(m

/s
)

 

 
NCVP (N

p
=100, q=10)

NCV (N
p
=1000, q=10)

NCV (N
p
=1000, q=30)

(a) True one-sigma estimation error averaged over ten Monte-Carlo
trials.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

P
a

th
 P

o
s
it
io

n
 E

rr
o

r 
(m

)

 

 
NCVP (N

p
=100, q=10)

NCV (N
p
=1000, q=10)

NCV (N
p
=1000, q=30)

0 5 10 15 20 25 30 35 40
0

2

4

6

P
a

th
 V

e
lo

c
it
y
 E

rr
o

r 
(m

/s
)

Time (s)

(b) Predicted one-sigma estimation error for a single trial.

Figure 3.13: PF algorithm performance comparing NCV and NCVP models
for the WSMR experiment.
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TDOA hyperbolas generated by the pair cross the road at approximately right

angles. As expected, for s < 1100 m, the predicted position and velocity

error is relatively uniform, even for just the single receiver pair. The number

of receivers required for emitter localization in a given search space can be

reduced, which additionally reduces computational and network complexity,

with strategic placement of receivers. The GS algorithm is applied to both

cases as shown in Figs. 3.16 and 3.17, which provides an upper bound on the

estimation error for all the algorithms as GS estimates are not smoothed by

the dynamics model.

3.6.2 UTEN Experiment

The UT emitter localization network (UTEN) consists of two fixed

receivers denoted as CSR and ARL in Fig. 3.18. The network was first intro-

duced in [44] and demonstrated localization of static emitters in an amateur

radio band using three static receivers (an addition mobile receiver denoted

as MBL was used). With three static receivers, it is possible to estimate the

two-dimensional position and velocity of an emitter (i.e. the NCV model is ob-

servable). However, in order to locate jammers in the GPS band, a continuous

monitoring network is required due to the infrequent nature of GPS jamming,

so the MBL receiver could not be used. In order to localize an emitter with

only two receivers, the emitter is constrained to move along the two major

highways in the area.

From December 2011 to January 2012, the CSR and ARL receivers were

tasked to continuously sample the GPS spectrum at 10 MS/s through both an
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Figure 3.14: Predicted path position and velocity error using CRLB approxi-
mation and using only receivers 2 and 3 as shown in Fig. 3.4.
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Figure 3.15: Predicted path position and velocity error using CRLB approxi-
mation and using all four receivers as shown in Fig. 3.4.
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(a) Estimation performance with receivers 2
and 3.
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(b) Estimation performance with all re-
ceivers.

Figure 3.16: GS algorithm performance with NCVP model for the WSMR
experiment with different receiver combinations. Note that for two receivers,
the standard and normalized likelihood function yield the same result. Pre-
dicted standard deviation based on CRLB approximation is tuned to match
true errors.
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and 3.
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Figure 3.17: Estimated path position and velocity for GS algorithm with dif-
ferent receiver combinations compared to truth for WSMR dataset.
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Figure 3.18: Map of UTEN with jamming localization area highlighted in
green and receiver locations denoted by red markers.
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emitter and reference antenna. When the received power exceeded a threshold,

the receiver recorded a two-minute buffer of samples in memory to disk. One

of these jamming events, which had a chirp signal commonly observed from

PPDs, is analyzed in the sequel. The PF algorithm is initialized with a flat

prior over the NCVP state space and begins to track the jammer as shown in

Figs. 3.19, 3.20, and 3.21. Further analysis is not available for this experiment

due to the loss of the recorded data and lack of time to maintain and operate

UTEN.

3.6.3 UAV Experiment

The UAV experiment was designed to mimic applications where a sta-

tionary base and dynamic rover platform work together to locate a target.

The sensor payload used in the following airborne experiments was a self-

contained prototype dual-input sensor shown in Fig. 3.22. The dual-frequency

Stereo board from Nottingham Scientific Ltd. was chosen to be the sensor’s RF

frontend. An Ettus N200 USRP driven by an oven-controlled crystal oscillator

(OXCO) was considered, but the weight, power consumption, and form factor

precluded the higher-quality combination from being selected. The Stereo was

designed for prototyping purposes in emitter localization applications since

the frontend has a common clock that drives a GPS L1-only MAX2769-based

channel for sensor synchronization and an L-band (800−2400 MHz) MAX2112-

based channel. The L1-only samples were 2-bit real and the L-band samples

were 3-bit complex. The Stereo’s sampling rate was configured to 5.3 MHz

(and therefore generated data at 5.3 MB/s). The baseband samples were trans-
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(a) Low SNR, some spreading in the ambiguity function.

(b) High SNR, compact ambiguity function.

Figure 3.19: Particle filter tracking a northbound jammer on the Mopac high-
way for two different time intervals for the UTEN experiment. The left panel
shows the ambiguity function, and the right panels shows the jammer on a
road map with the red circle indicating 1-sigma deviation of the estimate.
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Figure 3.20: Particle filter’s estimate of the jammer state over time with red
dashed lines indicating 1-sigma deviation estimates for the UTEN experiment.
The left panel shows the position state, and the right panel shows the velocity
state (both along the highway).
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Figure 3.21: Particle filter’s estimate of 1-sigma deviation over time for UTEN
experiment.
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Fully-assembled Stereo-based EMLOC sensor Stereo-based EMLOC sensor with top cover removed

for Minnowboard + Stereo and hard drive

Separate 5-V battery sources

Stereo board1 TB solid-state drive

Minnowboard
Intel Atom-based

Figure 3.22: The prototype portable self-contained dual-input UAV sensor.

mitted over USB to an Intel Minnowboard single-board computer (SBC). The

Minnowboard was selected over smaller and more powerful ARM-based SBCs

since only Intel-compiled proprietary firmware for the Stereo was available.

The SBC could transmit the digital samples over a wireless network connection

for real-time cross-correlation or store the samples to a Samsung solid-state

drive (SSD) for post-processing. Lastly, two 5 V rechargeable battery packs

(25 Wh each) were included to power the payload for about two hours. The

total weight of the payload including antennas was approximately 1 kg.

The 3DR DIY quadcopter with Pixhawk autopilot, shown in Fig. 3.23,

was chosen to carry the sensor payload after the loss of the lab’s Hornet Mini.

With no payload, the entire UAV draws a total of 20 A in hover. The UAV’s

four motors are rated at 20 A each. However, with the payload, the total

amperage draw increases to 45 A in hover, which is still within each individual

motor’s rating (unless the UAV is grossly unbalanced). The total flight time

with one 6600 mAh battery was about five minutes.
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Figure 3.23: 3DR quadcopter based on DIY Quad Kit.
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The setup was taken to a model aircraft field in November 2014 to

test locating the emitter while the UAV is airborne. The USRP E100 emit-

ter was configured to transmit an 8 MHz spread-spectrum signal at 902 MHz.

The UAV was commanded to fly a box formation around the emitter and

did not exceed a speed of 3.6 m/s. Unfortunately, due to a procedural error,

an independent “truth” measurement of the emitter location was not made.

For cross-correlation-based geolocation, at least two sensors are required, so a

static sensor using the same frontend and emitter antenna as the UAV sensor

was set up nearby. The differential position and time solution between the

UAV and static sensor was computed with a carrier-phase differential GPS

(CDGPS) algorithm, shown in Fig. 3.24. The carrier-phase residuals, shown

in Fig. 3.25, are zero-mean indicating a high probability of ambiguity conver-

gence.

Each geolocation algorithm was applied to a 30-second interval of the

collected experimental data. The UAV path partially encircles the emitter

during this interval in order to provide good emitter-receiver geometry. The

subaccumulation integration interval, maximum geometric time offset, and

number of cross-correlation offsets were set to

Tsub =
33.3 cm

4× 8 m/s
≈ 10 ms,

τ̄sub =
100 m

3× 108 m/s
≈ 333 ns,

Nsub = 2× ceil

(
333 ns

189 ns

)
+ 1 = 5.

The CAF is not useful for analysis here since the UAV dynamics breaks the

assumption of constant T/FDOA over any useful coherent integration interval.
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Figure 3.24: UAV path derived from CDGPS at model aircraft field. The
origin represents the static sensor.
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Figure 3.25: Carrier-phase residuals for UAV path at model aircraft field.
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The GS algorithm with the standard likelihood function is applied to the data

for various coherent integration intervals. Non-coherent averaging is used to

accumulate information from each integration interval in order to improve the

overall estimability of the estimate. The value of the log-likelihood function

of each grid point in each coherent interval within the total 30-second interval

is summed to produce the radar-like images shown in Fig. 3.26. Note that

longer coherent integration intervals lead to narrower likelihood peaks due

to the moving UAV receiver, an effect that is similar to synthetic aperture

radar. However, longer integration intervals require increased grid resolution

to ensure the peak is actually found with GS. Note that the PF algorithm

with q = 0 and no resampling effectively performs non-coherent averaging

over the initial particle set because the final particle weight is the product

of the likelihood function values from the current and previous integration

intervals. The results of the PF algorithm are shown in Fig. 3.27 with T = 1 s,

Np = {100, 300}, γ = 10, and q = {10−1, 10−2}, where “truth” is given by

the GS estimate with 15-second coherent integration. The best performance

from this set of parameters seems to be Np = 300 and q = 10−2, resulting in

decimeter-level accuracy.

To verify the accuracy of the system, the USRP emitter was placed

near an independently-verified location on the Woolrich Labs roof and the

UAV with integrated sensor traversed a marked pathway (not under its own

power due to limited space on the roof) as shown in Fig. 3.28. The accuracy of

the system (as measured by the distance from the pixel with the most power

to the known location) in the single run is approximately 15 cm of error over
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(a) 1-second coherent integration (b) 5-second coherent integration

(c) 15-second coherent integration (zoomed in on right)

Figure 3.26: GS emitter localization results at the model aircraft field with
non-coherent averaging. The green trace is the UAV path over a 30-second
interval. In the radar-like images, red indicates the strongest accumulation of
log-likelihood values, while blue is the weakest.
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(a) True one-sigma estimation error averaged over ten
Monte-Carlo trials.
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(b) Predicted one-sigma estimation error for a single
trial.

Figure 3.27: PF algorithm performance with NS model for the UAV experi-
ment.
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Figure 3.28: Quadcopter on pathway in Woolrich Labs roof tests.

different coherent integration intervals as shown in Fig. 3.29. The estimated

accuracy is on the same order as the total errors of the “truth” location.
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(a) 2-second coherent interval (11.5 cm error) (b) 5-second coherent interval (16.7 cm error)

(c) 10-second coherent interval (12.9 cm error)

Figure 3.29: GS emitter localization results on the roof with non-coherent
averaging. The green trace is the UAV path over a 10-second interval. The
“truth” emitter location is indicated by a white star. In the radar-like images,
red indicates the strongest accumulation of log-likelihood values, while blue is
the weakest.
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Chapter 4

Conclusions

A detection framework has been developed to detect spoofing attacks

in maritime environments based solely on Doppler log, gyrocompass, and

potentially-spoofed GPS measurements. Although more sophisticated spoof-

ing detection techniques such as the dual-antenna defense are much more effec-

tive, the framework was developed to be easily implementable in ECDIS soft-

ware currently available on all ships. The framework is based on a dynamics

model that captures the essential features of the environmental disturbances,

which are dominated by ocean currents and wind. Although this dissertation

focused on the maritime dynamics model, the framework can be easily ap-

plied to an inertial measurement unit or clock model, which both have drift

parameters governed by Gauss-Markov processes, but is left for future work.

In addition, this framework could be incorporated into a broader probabilistic

secure perception framework that includes both secure physical layer sensing

and secure estimation in a layered defense to GPS spoofing.

Although the detection framework was limited to a NIS detection statis-

tic, future work could explore more powerful statistics that consider the goal-

oriented nature of the attack. This dissertation derived the performance of

the detection framework, which is captured by the integrity risk or probability
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of HMI. The sampling time of the framework was optimized by minimizing

the maximum integrity risk given a set of possible attack profiles. In the

present work, the attack profiles for the maritime case were restricted due to

ease of implementation in the spoofer to linear ramps, which are close to the

worst-case fault profiles derived using the methods in [67]. Just as aviation

has developed rigorous integrity risk standards for GPS faults, maritime reg-

ulatory authorities can use the detection framework analysis to compute the

best possible integrity risk given reasonable values for real-world disturbance

and attack parameters and the maximum acceptable continuity risk. Lastly,

Monte-Carlo simulations verified the theoretical integrity risk of the detection

framework and an unprecedented experiment demonstrated the feasibility of

conducting a spoofing attack on an actual vessel.

A passive RF emitter localization system has been developed originally

to find GPS jammers posing a threat to critical infrastructure. The system

can find emitters of unknown waveform, regardless of intention, for both the

war-fighter and civil enforcement of protected RF bands. The system avoided

making an intermediate T/FDOA estimate based on only short intervals for

which the constant T/FDOA approximation is valid and instead used direct ge-

olocation and long coherent integration techniques, thus, in theory, improving

the system’s estimation performance with weak emitters and multipath. Three

field experiments in various emitter and receiver configurations demonstrated

the capability of the system in practice. Given the emphasis on efficiency of

implementation, the system presented in this dissertation has already shown

real-time performance with the modern computational resources of desktop
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computers and can be readily deployed in a real-time configuration with suf-

ficient network capacity.

Although the present work considers only a single emitter, future work

could investigate the implications of multiple emitters on the estimation ar-

chitecture in computational and algorithmic complexity. Blindly applying the

single-emitter direct geolocation algorithms to the multiple emitter problem

leads to problems. The GS algorithm will clearly only lock on to the strongest

emitter. However, the PF algorithm may develop a multimodal distribution

with the peak of the modes related to the SNR of the emitter signals. Nonethe-

less, without a sufficiently large number of particles, the resampling step will

prune unlikely modes, which is important for rejecting multipath-induced er-

rors. Even if the particle filter sustains tracking a multimodal distribution,

a clustering algorithm will be required to associate each particle with a par-

ticular emitter before making an estimate. A properly-dimensioned particle

filter that duplicates the state space for each additional emitter may be able

to track multiple emitters nearly optimally, but the particle filter’s curse of

dimensionality strikes as the computational complexity is O
(
MN

)
, where M

is the number of particles per emitter and N is the number of emitters.

A potential path forward may consider a bank of particle filters, where

the likelihood function of each subsequent filter in the bank is masked by some

function of the particles of the previous filters. Note that in steady-state each

subsequent filter should track a weaker emitter, and the total computational

complexity is given by O (MN). Finally, future work could develop motion

planning algorithms for dynamic receiver platforms based on an information-
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seeking control law. For example, the control law developed in [120] for two-

step geolocation, which generates feedback from the particle filter approxima-

tion of the emitter state probability distribution, could be easily applied to

the direct-geolocation PF algorithm.
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Appendix A

Generalized Sensor Deception Detection

This appendix considers an alternative formulation of the sensor de-

ception detection framework presented in Chapter 2. The formulation in the

sequel allows consideration of other detection statistics than the normalized

innovation squared (NIS) statistic and other deception profiles than linear

ramps.

A.1 Sensor Deception Model

Consider a discrete-time linear dynamics and measurement model

x (k + 1) = Fx (k) +Gu (k) + v (k)

z (k) = Hx (k) + f (k) + w (k) ,

where k is the time index, x (k) is the state vector of length nx, u (k) is

the control vector of length nu, z (k) is the measurement vector of length

nz, v (k) ∼ N (0, Q) is the white process noise vector, w (k) ∼ N (0, R) is

the white measurement noise vector, and f (k) is the deterministic deception

vector. The matrices F , G, and H complete the description of the linear time-

invariant system model. Note that f (k) is analogous to the fault vector in

the fault-detection problem. The discrete-time model has an implied sampling
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time Ts. In this work, the discrete-time linear model suffices for analysis of

sensor deception in navigation and clock applications.

Although not necessarily useful at this point, the equations for the

defender’s estimator are presented here to introduce notation. The optimal

sequential estimator for the system model under deception-free conditions (i.e.

∀k f (k) =0) is the discrete-time Kalman filter. The recursion equations for

the a priori and a posteriori estimates of the Kalman filter, x̄ (k) and x̂ (k),

respectively, are given by

x̄ (k + 1) = Fx̂ (k) +Gu (k) ,

x̂ (k) = x̄ (k) +K (k) ν (k) ,

where ν (k) = z (k)−Hx̄ (k) is the innovation and K (k) is the Kalman gain.

The recursion equations for the covariance of the a priori and a posteriori

estimation error, P̄ (k) and P (k), respectively, are given by

P̄ (k) = FP (k − 1)F T +Q

P (k) = (I −K (k)H) P̄ (k) .

Note that the Kalman gain is given by

K(k) = P̄ (k)HTS−1(k),

where

S(k) = HP̄ (k)HT +R.

In the sequel, it is assumed that the estimation error covariances have reached

their steady-state values (which can be found by solving a discrete-time al-

gebraic Riccati equation), and the index k is dropped from P , P̄ , S, and K.
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In addition, the estimation biases induced by a non-zero fault vector f (k)

are needed to analyze the effect of sensor deception. The recursion equations

for the a priori and a posteriori estimation error, ε̄ (k) = x (k) − x̄ (k) and

ε̂ (k) = x (k)− x̂ (k), respectively, are given by

ε̄(k + 1) = F ε̂(k) + v (k)

ε̂(k) = (I −KH)ε̄(k)−K (w (k) + f (k)) .

Then, the expected value of the estimation errors and innovation are given by

E [ε̄(k + 1)] = FE [ε̂(k)]

E [ε̂(k)] = (I −KH)E [ε̄(k)]−Kf (k)

E [ν (k)] = f (k) +HE [ε̄ (k)] ,

which are clearly biased for non-zero fault vectors.

A.2 Batch Residual and Filter Innovations

The equivalence of the batch linear estimation residual to the Kalman

filter innovations is useful in proving optimality of certain detection statistics.

Although the equivalence is intuitively obvious, a proof is provided for com-

pleteness. For compactness, subscripts are used to indicate the time index,

i.e. xk = x (k). In addition, without loss of generality, ∀k u (k) = 0. First,

consider the one-step cost function

J (xk−1, xk) = (xk−1 − x̂k−1)T P−1
k−1 (xk−1 − x̂k−1) (A.1)

+ (xk − Fxk−1)TQ−1 (xk − Fxk−1)

+ (zk −Hxk)TR−1 (zk −Hxk) .
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The previous state xk−1 is eliminated from (A.1) by finding its optimal value

in terms of xk and x̂k−1, also known as the smoother equation. The optimal

value x?k−1 is found by setting the gradient of the cost function with respect

to xk−1 to zero,

∂J (xk−1, xk)

∂xk−1

= P−1
k−1 (xk−1 − x̂k−1)− FTQ−1 (xk − Fxk−1) = 0. (A.2)

Letting x̄k = Fx̂k−1 and rearranging (A.2) yields

x?k−1 =
(
P−1
k−1 + FTQ−1F

)−1 (
P−1
k−1x̂k−1 + FTQ−1xk

)

= x̂k−1 +
(
P−1
k−1 + FTQ−1F

)−1
FTQ−1 (xk − x̄k) (A.3)

Considering the first two terms in (A.1) and noting the optimality condition

in (A.2) yields

J ′ (xk−1, xk) = (xk−1 − x̂k−1)T P−1
k−1 (xk−1 − x̂k−1)

+ (xk − Fxk−1)T Q−1 (xk − Fxk−1)

= (xk−1 − x̂k−1)T P−1
k−1 (xk−1 − x̂k−1)

+ (xk − x̄k − F (xk−1 − x̂k−1))T Q−1 (xk − Fxk−1)

= (xk−1 − x̂k−1)T P−1
k−1 (xk−1 − x̂k−1)

− (xk−1 − x̂k−1)T FTQ−1 (xk − Fxk−1)

+ (xk − x̄k)TQ−1 (xk − Fxk−1)

= (xk−1 − x̂k−1)T

��
��

�
��
�*0

∂J (xk−1, xk)

∂xk−1

+ (xk − x̄k)T Q−1 (xk − Fxk−1)

= (xk − x̄k)T Q−1 (xk − x̄k − F (xk−1 − x̂k−1)) . (A.4)
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Substituting (A.3) in (A.4) and judicious use of the matrix inversion lemma

yields

J ′′ (xk) = J ′
(
x?k−1, xk

)

= (xk − x̄k)T Q−1 (xk − x̄k)

− (xk − x̄k)T Q−1FT
(
P−1
k−1 + FTQ−1F

)−1
FTQ−1 (xk − x̄k)

= (xk − x̄k)T (FPk−1F
T +Q

)−1
(xk − x̄k)

= (xk − x̄k)T P̄−1
k (xk − x̄k) ,

where

P̄k = FPk−1F
T +Q.

The one-step cost can be rewritten as

J ′′′ (xk) = J
(
x?k−1, xk

)

= (xk − x̄k)T P̄−1
k (xk − x̄k) + (zk −Hxk)T R−1 (zk −Hxk) .

Let the following be defined as

P−1
k = P̄−1

k +HTR−1H

Sk = HP̄kH
T +R

νk = zk −Hx̄k

x̂k = x̄k + PkH
TR−1νk.
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Then, with appropriate substitutions,

J ′′′ (xk) = (xk − x̄k)T P̄−1
k (xk − x̄k)

+ (νk −H (xk − x̄k))TR−1 (νk −H (xk − x̄k))

= (xk − x̄k)T (P̄−1
k +HTR−1H

)
(xk − x̄k)

− 2νT
k R
−1H (xk − x̄k) + νT

k R
−1νk

=
(
xk − x̂k + PkH

TR−1νk
)T
P−1
k

(
xk − x̂k + PkH

TR−1νk
)

− 2νT
k R
−1H (xk − x̄k) + νT

k R
−1νk

= (xk − x̂k)T P−1
k (xk − x̂k)

+ 2νT
k R
−1H ((xk − x̂k)− (xk − x̄k))

+ νT
k

(
R−1 +R−1HPkH

TR−1
)
νk

= · · · − 2νT
k R
−1HPkH

TR−1νk

+ νT
k

(
R−1 +R−1HPkH

TR−1
)
νk

= · · ·+ νT
k

(
R−1 −R−1H

(
P̄−1
k +HTR−1H

)−1
HTR−1

)
νk.

A final application of the matrix inversion lemma yields

J ′′′ (xk) = (xk − x̂k)T P−1
k (xk − x̂k) + νT

k S
−1
k νk. (A.5)

Now consider the batch linear estimation cost function with prior information,

dynamical, and measurement constraints:

J0 (x0, . . . , xM) = (x0 − x̂0)T P−1
0 (x0 − x̂0)

+
M∑

k=1

(xk − Fxk−1)TQ−1 (xk − Fxk−1)

+
M∑

k=1

(zk −Hxk)T R−1 (zk −Hxk) . (A.6)
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Recursively applying the transformations of the one-step cost function yields

JL (xL, . . . , xM) =
L∑

k=1

νT
k S
−1
k νk + (xL − x̂L)T P−1

L (xL − x̂L)

+
M∑

k=L+1

(xk − Fxk−1)T Q−1 (xk − Fxk−1)

+
M∑

k=L+1

(zk −Hxk)T R−1 (zk −Hxk) ,

until only the last state remains

JM (xM) =
M∑

k=1

νT
k S
−1
k νk + (xM − x̂M)T P−1

M (xM − x̂M) . (A.7)

Then, the optimal value of xM is by inspection x?M = x̂M , and the rest of the

optimal states x?k for 0 ≤ k < M can be recursively solved with the smoother

equation (A.3), which, all together, form the solution to the batch estimation

problem. The irreducible part of (A.6) is the residual of the batch estimation

problem and is given by the sum of the NIS,

Jresid = J0 (x?0, . . . , x
?
M) = JM (x?M) =

M∑

k=1

νT
k S
−1
k νk. (A.8)

A.3 Detection Statistic

The detection framework developed in this work borrows concepts from

GPS integrity monitoring in aviation applications [66, 121] and the fault detec-

tion literature [62], which are applied here to the “fraud detection” problem. If

the fault profile can be parameterized by a “jump” magnitude and a start time

for the jump, then the generalized likelihood ratio (GLR) framework allows
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close to optimal probability of detection. In GLR, the most likely start time

is determined from a bank of matched filters tuned to different start times.

Then, a decision between the hypotheses is made based on the matched fil-

ter correlation from the most likely start time. The bank of filters is usually

truncated to a sliding window of most recent possible start times to avoid

linear computational growth in time. GLR is avoided in this work due to

the framework’s complexity, which can make evaluating integrity risk difficult.

Sequential decision procedures such as the sequential probability ratio test

(SPRT) optimally minimize the time-to-detect for a fixed probability of de-

tection and false alarm, which for some applications may be a suitable proxy

for integrity risk. However, the “indifference region” of the SPRT, where no

decision is made based on the current time decision statistic, thus requiring

more samples, can make evaluating the integrity risk difficult. Instead, a fixed

sample size (FSS) decision procedure, as outlined in [71], is considered in this

work.

In the framework, a detection test over a window of M samples decides

between two hypotheses—a null hypothesis H0 indicating nominal operating

conditions, and an alternative hypothesis H1 indicating a deception attack is

underway i.e. non-zero f (k). Let q (l) be a test statistic that monitors the

presence of sensor deception every M samples such that

q (l)
H1

≷
H0

λ,

where λ is a threshold chosen to maintain a constant false-alarm rate and l is

a positive integer. At k = 0, the null hypothesis is assumed to be true, and
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at some later time k > k0, a transition to the alternative hypothesis occurs,

although a transition is not necessarily guaranteed to occur. Additionally, if

a deception attack begins, it is assumed the attack will continue until either

hazardous conditions occur or the attack is detected. The detection statistic

q(l) must remain below a threshold in order to assume the null hypothesis.

The threshold λ satisfies

P (q(l) > λ|H0) =
Td
MF

to maintain the prescribed false-alarm rate MF , where Td = MTs is the detec-

tion interval. Note that the probability distribution of the detection statistic

under the null hypothesis, and therefore λ, is independent of time.

Various forms for the detection statistic are considered given different

assumptions for the fault profile f (k). To simplify the forms in this section,

k0 is assumed to be known and zero and the fault profile is known to cause

hazardous conditions for k > M (i.e. kL = M + 1), so that the defender must

make a decision on whether a deception attack occurred with only the first

M measurements. For an arbitrary fault profile unknown to the defender, the

optimal detection statistic for a generalized likelihood ratio test (GLRT) over

a batch of M measurements is the sum of the NIS, i.e.

q1 =
M∑

k=1

νT (k)S−1ν (k) ∼ χ2 (Mnz, δ1) .

Note that q1 is distributed as non-central chi-squared with Mnz degrees of

freedom and non-centrality parameter

δ1 =
M∑

k=1

∥∥S−1/2E [ν (k)]
∥∥2

2
.
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The proof of optimality in the GLRT sense is straightforward after noting that

the residual to the dynamic batch estimation problem is the sum of NIS as

shown previously, which Joerger failed to realize in [66]. The proof begins by

considering the likelihood ratio

Λ (Z) =
p (Z|H1)

p (Z|H0)
=
p (Z|X1, F )

p (Z|X0)
,

where

Z = {z (1) , . . . , z (M)}

is the set of all measurements,

Xi = {xi (0) , . . . , xi (M)}

is the set of all dynamical states for hypothesis Hi, and

F = {f (1) , . . . , f (M)}

is the set of all fault vectors under the spoofing hypothesis H1. Since X0, X1,

and F are unknown, the GLRT approach is to replace them with their best

estimates, i.e.

ΛGLR (Z) =
p
(
Z|X̂1, F̂

)

p
(
Z|X̂0

) .

For each hypothesis, there are (M + 1)nx dynamical and Mnz measurement

constraints. Note that for H1, the number of unknown degrees of freedom

is equal to the number of constraints. Therefore, the residual of the best

estimate is exactly zero for the observable batch linear estimation problem,
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i.e. p
(
Z|X̂1, F̂

)
= 1. For H0, the probability is easily written in terms of NIS

as

p
(
Z|X̂0

)
=

1√
((2π)nz detS)

M
exp

(
−1

2

M∑

k=1

νT (k)S−1ν (k)

)
.

The log-likelihood ratio is given by

L (Z) = log ΛGLR (Z)

=
M

2
(nz log 2π + log detS) +

1

2
q1,

which shows that q1 is equivalent to L (Z), up to an additive constant and

scaling.

However, in a deception attack, the fault profile is not arbitrary—it

is designed by the attacker to eventually cause hazardously misleading con-

ditions. If the fault profile is known to the defender, then rearranging the

generalized log-likelihood ratio yields

L (Z) = log ΛGLR (Z)

= log p
(
Z|X̂1, F

)
− log p

(
Z|X̂0

)

= −1

2

M∑

k=1

(ν (k)− E [ν (k)])T S−1 (ν (k)− E [ν (k)])

+
1

2

M∑

k=1

νT (k)S−1ν (k)

=
1

2

M∑

k=1

E [ν (k)]T S−1ν (k)− 1

2

M∑

k=1

E [ν (k)]T S−1E [ν (k)] .

Now, it is clear that the detection statistic

q2 =
M∑

k=1

ξT (k)S−
1/2ν (k) ∼ N (µ2, 1)
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is optimal in the GLRT sense, where

µ2 =
M∑

k=1

ξT (k)S−
1/2E [ν (k)]

and ξ (k) are normalized weights determined by the fault profile. Note that

the form of q2 is a matched filter, where ξ (k) is matched to the expected value

of the normalized innovations S−1/2E [ν (k)]. In order to set the variance of q2

to unity, the weights must satisfy
M∑

k=1

ξT (k) ξ (k) = 1, so

ξ (k) =
S−1/2E [ν (k)]√√√√

M∑

k=1

‖S−1/2E [ν (k)]‖2
2

.

Note that if the fault profile is expressed as f (k) = αf̃ (k), where α

is an unknown scalar and f̃ (k) is a known normalized fault profile, then q2

is a uniformly most powerful detection statistic for α > 0. Simply squaring

q2 allows optimal fault detection when positive and negative α are equally

likely, where q2
2 ∼ χ2 (1, µ2

2). Alternatively, if the fault profile is expressed as

f (k) = β (k) d̂, where β (k) are known positive scalars and d̂ is an unknown

unit direction vector, then the defender could use a detection statistic

q3 =

∥∥∥∥∥
M∑

k=1

w (k)S−
1/2ν (k)

∥∥∥∥∥

2

2

∼ χ2 (nz, δ3) ,

where

δ3 =

∥∥∥∥∥
M∑

k=1

w (k)S−
1/2E [ν (k)]

∥∥∥∥∥

2

2
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and w (k) is a normalized set of weights such that
M∑

k=1

w (k)2 = 1. Note that

for nz = 1, q3 is equivalent to q2
2, but no claims of the optimality of q3 are

made for nz > 1 in general. However, for systems where the measurement

coordinates (typically vehicle position) have identical decoupled dynamics, and

all possible direction vectors d̂ are equally likely, then q3 is a good heuristic

with w (k) = ‖ξ (k)‖. Finally, note that for M = 1 (i.e. Ts = Td), q3 is

equivalent to q1. By using only one measurement per detection interval, the

detection framework resembles a dead-reckoning consistency check. In such a

check, the a priori state x̄ and innovation covariance S represents the dead-

reckoned state and uncertainty after propagating for Td seconds, respectively.

The dead-reckoned state is reset by ingesting the measurement if the detection

test decides H0. However, while the detection framework prefers Ts to be large

to improve detection performance for the slowest possible attack profile, the

system’s controller prefers Ts to be small in order for the control error to remain

small. In one implementation requiring two separate estimators, the controller

could ingest measurements at a different rate than the detection framework,

as was considered in Chapter 2.

A.4 Worst-Case Fault Profile

If the deception attack is restricted to a family of fault profiles (such as

linear or quadratic ramps where f̃ (k) or β (k) are known), then the defender

should choose statistics like q2
2 or q3 with appropriately chosen weights. How-

ever, in reality, the attacker is allowed to choose any fault profile that will cause
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hazardous conditions and is smooth enough so that the control error remains

small. Within this set of fault profiles and assuming the attacker knows the

defender’s choice of weights, the attacker will choose the worst-case (from the

defender’s perspective) fault profile f̄ (k), which maximizes the integrity risk

of the detection framework. For an uncoordinated attack, where the defender

cannot assume alignment of the detection window with the deception attack,

then a reasonable strategy for the weights is a uniform distribution over the

detection window, i.e. w (k) = 1/
√
M in order to maximize detection for all

possible window alignments. Similarly, for the attacker, a reasonable strategy

is to evenly distribute the magnitude of the normalized expected innovation

S−1/2E [ν (k)] over the duration of the deception attack in order to minimize

detection for all possible attack alignments. For k0 = 0 and kL specified and

defining hazardous conditions as ‖HE [ε̂ (k)]‖2 ≥ L, the worst-case fault profile

f̄ (k) is the solution to the following optimal control problem

min
f(k)

max
k

∥∥S−1/2E [ν (k)]
∥∥

2
(A.9)

s.t. HE [ε̂ (kL)] = Ld̂

E [ε̂ (0)] = 0

0 < k ≤ kL E [ε̂(k)] = (I −KH)FE [ε̂(k − 1)]−Kf (k)

0 < k < kL E [ν (k)] = f (k) +HFE [ε̂ (k − 1)]

0 < k < kL ‖HE [ε̂ (k)]‖2 ≤ L

The minimax cost function equalizes the magnitude of the normalized innova-

tion for all k, i.e. ∀k
∥∥S−1/2E [ν (k)]

∥∥
2

= C. Note that choosing to minimize
∑

k

∥∥S−1/2E [ν (k)]
∥∥2

2
instead of (A.9) can be shown to be nearly identical to
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the worst-case fault profiles produced by [67]. For one-dimensional ship dy-

namics with parameters Td = 200 s, σd = 0.02 m/s1.5, Ts = 5 s, and σp = 3 m,

the resulting fault profiles for the minimax and two-norm costs with L = 200 m

and kL = 400 are shown in Fig. A.1. Note that the profiles are very similar to

the ramp-like modulations proposed in Chapter 2.
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(a) Minimax worst-case fault profile.
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(b) Two-norm worst-case fault profile.

Figure A.1: Worst-case fault profile for one-dimensional ship dynamics using
two-norm and minimax innovation heuristics.
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